Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia

ilustraciones a color, fotografías, mapas, tablas

Autores:
Jaimes Villarreal, Vanessa Nathalia
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79622
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79622
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
Environmental Seismology
Seismic Structural Health Monitoring
Modes
IRF
Seismic Interferometry
Ambient Vibration
Velocity Variations
Sismología Ambiental
Modos de vibración
IRF
Interferometría sísmica
Vibraciones Ambientales
Variaciones de Velocidad
Prospección sísmica
Geophysical prospecting
Sismicidad
Seismicity
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_9ba9e1d6bf9a8f0253b50dd02a64220e
oai_identifier_str oai:repositorio.unal.edu.co:unal/79622
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
dc.title.translated.spa.fl_str_mv Monitoreo sísmico continuo de una construcción vertical: Edificio Crisanto Luque, en Bogotá, Colombia
title Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
spellingShingle Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
550 - Ciencias de la tierra
Environmental Seismology
Seismic Structural Health Monitoring
Modes
IRF
Seismic Interferometry
Ambient Vibration
Velocity Variations
Sismología Ambiental
Modos de vibración
IRF
Interferometría sísmica
Vibraciones Ambientales
Variaciones de Velocidad
Prospección sísmica
Geophysical prospecting
Sismicidad
Seismicity
title_short Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
title_full Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
title_fullStr Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
title_full_unstemmed Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
title_sort Continuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, Colombia
dc.creator.fl_str_mv Jaimes Villarreal, Vanessa Nathalia
dc.contributor.advisor.none.fl_str_mv Prieto Gómez, Germán Andrés
dc.contributor.author.none.fl_str_mv Jaimes Villarreal, Vanessa Nathalia
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
Environmental Seismology
Seismic Structural Health Monitoring
Modes
IRF
Seismic Interferometry
Ambient Vibration
Velocity Variations
Sismología Ambiental
Modos de vibración
IRF
Interferometría sísmica
Vibraciones Ambientales
Variaciones de Velocidad
Prospección sísmica
Geophysical prospecting
Sismicidad
Seismicity
dc.subject.proposal.eng.fl_str_mv Environmental Seismology
Seismic Structural Health Monitoring
Modes
IRF
Seismic Interferometry
Ambient Vibration
Velocity Variations
dc.subject.proposal.spa.fl_str_mv Sismología Ambiental
Modos de vibración
IRF
Interferometría sísmica
Vibraciones Ambientales
Variaciones de Velocidad
dc.subject.unesco.none.fl_str_mv Prospección sísmica
Geophysical prospecting
Sismicidad
Seismicity
description ilustraciones a color, fotografías, mapas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-09T21:39:06Z
dc.date.available.none.fl_str_mv 2021-06-09T21:39:06Z
dc.date.issued.none.fl_str_mv 2021-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79622
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79622
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv References Asteris, P., & Plevris, V. (2015). Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures. ISBN13: 9781466682863: IGI Global. Brenguier , F., Campillo, M., Hadziioannou, C., Shapiro, N., Nadeau, R., & Larose, E. (2008). Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, Vol. 321, pp. 1478-1481. Brenguier, F., Shapiro, N., Campillo , M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian , A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, Vol. 1, pp. 126-130. Bukenya, P., Moyo , P., Beushausen, H., & Oosthuizen, C. (2014). Health monitoring of concrete dams: a literature review. Journal of Civil Structural Health Monitoring. Vol. 4, pp. 235–244. Cárdenas-Soto, M., Ramos-Saldaña, H., & Vidal-Garcia, M. (2016). Interferometría de ruido sísmico para la caracterización de la estructura de velocidad 3D de un talud en la 3ª Sección del Bosque de Chapultepec. Boletín de la Sociedad Geológica Mexicana Vol. 68, No. 2, pp. 173-186. Chang, P., Flatau, A., & Liu, S. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring (SHM), Vol. 2, No.32, pp. 257–267. Chicangana, G., Bocanegra, G., Kammer, A., Vargas, C., Salcedo, H., & Gómez-Capera, A. (2017). Geotectonic Evolution and Seismotectonics of North Faults of Algeciras Fault System, Colombia. Seattle, USA: Conference: GSA Annual Meeting. Poster. Claerbout, J. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics. Vol. 33, No. 2, pp. 264–269. Clements, T., & Denolle, M. (2018). Tracking Groundwater Levels Using the Ambient Seismic Field. Geophysical Research Letters, Vol. 45, pp. 6459–6465. Clinton, J., Case Bradford, S., Heato, T., & Favela, J. (2006). The Observed Wander of the Natural Frequencies in a Structure. Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 237–257. Denolle, M., Dunham, E., Prieto , G., & Beroza, G. (2013). Ground motion prediction of realistic earthquake sources using the ambient seismic field. Journal of Geophysical Research: Solid Earth, Vol. 118, pp. 1–17. Gueguen, P., Langlais, M., Roux, P., Schinkmann, J., & Douste-Bacque, I. (2014). Frequency and Damping Wandering in Existing Buildings Using the Random Decrement Technique. Nantes, France: 7th European Workshop on Structural Health Monitoring. IDU. (2004). Informe preeliminar determinación del peso por eje de los buses articulados y buses alimentadores del sistema transmilenio. Bogota: Universidad de los Andes. Ikeda, T., & Tsuji, T. (2018). Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation. Progress in Earth and Planetary Science, pp. 1-12. Jaimes, N., Prieto, G., & Rodriguez, C. (2019). Seismic monitoring of a 14-story building using continuously recorded earthquake and ambient vibration data. San Francisco, USA: AGU Falls Meeting. Poster presentation. Jaimes, N., Prieto, G., & Rodriguez, C. (2020). Effect of ambient vibrations and earthquake ground motions on the response of a 14-story building. San Francisco, USA: AGU Falls Meeting. iPoster presentation. Jiang, C., & Denolle, M. (2020). NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, Vol. 91, No. 3. pp 1853–1866. Kohler, M., Davis, P., & Safak, E. (2005). Earthquake and Ambient Vibration Monitoring of the Steel-Frame UCLA Factor Building. Earthquake Spectra, Vol. 21, No. 3, pp. 715–736. Kohler, M., Heaton, T., & Bradford, S. (2007). Propagating Waves in the Steel, Moment-Frame Factor Building Recorded during Earthquakes. Bulletin of the Seismological Society of America, Vol. 97, No. 4, pp. 1334–1345. Massari, A., Clayton, R., & Kohler, M. (2018). Damage Detection by Template Matching of Scattered Waves. Bulletin of the Seismological Society of America, doi: 10.1785/0120170319. Mikesell, T., Malcolm, A., Yang, D., & Haney, M. (2015). A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry. Geophysical Journal International. Vol. 202, pp. 347–360. Mordret, A., Mikesell, T., Harig, C., Lipovsky, B., & Prieto, G. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science Advances, Vol. 2, No. 5, e1501538. Mordret, A., Sun, H., Prieto, G., Toksöz, M., & Büyüköztürk, O. (2017). Continuous Monitoring of High-Rise Buildings Using Seismic Interferometry. Bulletin of the Seismological Society of America, Vol. 107, No. 6, pp. 2759–2773. Nakata, N., & Snieder, R. (2014). Monitoring a Building Using Deconvolution Interferometry. II: Ambient Vibration Analysis. Bulletin of the Seismological Society of America, Vol. 104, No. 1, pp. 204–213. Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., & Kunimi, T. (2013). Monitoring a Building Using Deconvolution Interferometry I: Earthquake-Data Analysis. Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1662–1678. Nakata, N., Tanaka, W., & Oda, Y. (2015). Damage Detection of a Building Caused by the 2011 Tohoku-Oki Earthquake with Seismic Interferometry. Bulletin of the Seismological Society of America, Vol. 105, No. 5. Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal of Geophysical Research: Solid Earth, Vol. 118, pp. 6285–6294. Park, H., & Oh, B. (2018). Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness. Journal of Sound and Vibration, Vol. 418, pp. 122-143. Pavičević, B. (2005). Mitigation of seismic risk of old towns and cultural heritage: Urban Planning and L.S.C. aspects. Kotor, Montenegro: Seminar earthquake protection in historical Buildings, pp. 54-59. Planès , T., Mooney, M., Rittgers, J., Parekh, M., Behm, M., & Snieder, R. (2015). Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise. Géotechnique, Vol. 66, No. 4, pp. 301-312. Poli, P., Prieto, G., Yu, C., Florez, M., Agurto-Detzel, H., Mikesell, T., . . . Pedraza, P. (2016). Complex rupture of the M6.3 2015 March 10 Bucaramanga earthquake: evidence of strong weakening process. Geophysical Journal International, Vol. 205, pp. 988–994. Prieto, G., & Beroza, G. (2008). Earthquake ground motion prediction using the ambient seismic field. Geophysical Research Letters, Vol. 35, L14304. Prieto, G., Beroza, G., Barret, S., Lopez, G., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics 570–571, pp. 42–56. Prieto, G., Lawrence, J., Chung, A., & Kohler, M. (2010). Impulse Response of Civil Structures from Ambient Noise Analysis. Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp. 2322–2328. Prieto, G., Parker , R., & Vernon III, F. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, Vol. 35, pp. 1701–1710. Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt. Merapi (Indonesia). Geophysical Research Letters, Vol. 22, No. 7, pp. 775-778. Salvermoser, J., Hadziioannou, C., & Stähler, S. (2015). Structural monitoring of a highway bridge using passive noise recordings from street traffic. Acoustical Society of America, Vol. 138, No. 6, pp. 3864–3872. Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, Vol. 33, L21302. Sepulveda-Jaimes, F., & Cabrera-Zambrano, F. (2018). Tomografía sísmica 3D del nido sismico de Bucaramanga (Colombia). Boletín de Geología, Vol. 40, No. 2, pp. 15-33. SGC. (2020). El sismo de Mesetas - Meta del 24 de diciembre de 2019. Aspectos sismológicos, movimiento fuerte y consideraciones geodésicas. Informe Tecnico. Bogota: Servicio Geologico Colombiano. Snieder, R., & Hagerty, M. (2004). Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophysical Research Letters, Vol. 31, L09608. Snieder, R., & Safak, E. (2006). Extracting the Building Response Using Seismic Interferometry: Theory and Application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, Vol. 96, No. 2, pp. 586–598. Snieder, R., Gret, A., & Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, Vol. 295, pp. 2253-2255. Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., & Wapenaar, K. (2009). A Comparison of Strategies for Seismic Interferometry. Survey Geophysics, Vol. 30, pp. 503–523. Sohn, H., Farrar, C., Hemez, F., Czarnecki, J., Shunk, D., Stinemates, D., & Nadler, B. (2004). A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS. Somerville, P. (2000). Seismic hazard evaluation. Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 33, No. 3, pp. 371-386. Sun, H., Mordret, A., Prieto, G., Toksöz, M., & Büyüköztürk, O. (2017). Bayesian characterization of buildings using seismic interferometry on ambient vibrations. Mechanical Systems and Signal Processing, Vol. 85. pp. 468–486. Syracusea, E., Maceira, M., Prieto, G., Zhang, H., & Ammon, C. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, Vol. 444, pp.139–149. VanDecar, J., & Crosson, R. (1990). Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bulletin of the Seismological Society of America, Vol. 80, No. 1, pp. 150-169. Velandia, F., Acosta, J., Terraza, R., & Villegas, H. (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, Vol. 399, pp 313-329. Wang, X., Chakraborty, J., Klikowicz, P., & Niederleithinger, E. (2019). Monitoring a concrete bridge girder with the coda wave interferometry method. Potsdam, Germany: 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, (SMAR 2019). Wiens, D., & Gilbert, H. (1996). Effect of slab temperature on deep-earthquake aftershock productivity and magnitude–frequency relations. Nature, Vol. 384, pp. 153-156. Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., & Fukao, Y. (2003). Long-term observation of in situ seismic velocity and attenuation. Journal of Geophysical Research, Vol. 108, No. B6, 2317
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (61 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Bogotá
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79622/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79622/2/NathaliaJaimes_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79622/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79622/4/NathaliaJaimes_2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
9f036f417b493cb2455b874140e9bbce
f7d494f61e544413a13e6ba1da2089cd
19d831ce3853661438462a386ad118f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089618589483008
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prieto Gómez, Germán Andrésf4b1fdb24cfa6e27fe443f67c37eb290Jaimes Villarreal, Vanessa Nathalia697a4eaed3cc62e8d20946e86cb23b792021-06-09T21:39:06Z2021-06-09T21:39:06Z2021-02https://repositorio.unal.edu.co/handle/unal/79622Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, fotografías, mapas, tablasEl monitoreo continuo del estado de cualquier estructura es actualmente un tema de investigación y desarrollo. En geofísica es común el uso del estudio que, por sus siglas en inglés, recibe el nombre de Seismic Structural Health Monitoring (S2HM), el cual evalúa de manera continua estructuras civiles para estimar su seguridad y hacer recomendaciones de mejora a través del análisis de datos y modelos matemáticos. Por primera vez en Colombia, se ha desplegado una red de monitoreo permanente y continuo, con propósitos académicos, en un edificio de 14 pisos en el centro de Bogotá. Se instalaron 6 acelerómetros ETNA-2 de tres componentes, los cuales iniciaron el registro de datos en junio de 2019, permitiendo usar diferentes grupos de datos para este estudio. Inicialmente, 25 días de datos continuos registrados basados en vibraciones ambientales, fueron analizados para comprender la respuesta del edificio. Se realizó un análisis espectral preliminar que permitió identificar un modo muy claro a 1,25 Hz, para el componente longitudinal (X) de los acelerómetros. Otros modos de vibración en frecuencias más alta también se notaron alrededor de 1.5 - 2.5 Hz y 3.5 - 4 Hz, incluso por encima de 5 Hz, particularmente visto en los pisos superiores; esta información permitió seleccionar diferentes bandas de frecuencia de 0.5 - 2 Hz, 2 - 5 Hz, 6 - 10 Hz y 0.5 - 10 Hz para un análisis más detallado. Siguiendo el enfoque de Interferometría Sísmica basada en deconvolución propuesto por Prieto, y otros, 2010, para una campaña de monitoreo de 225 días (3 de julio de 2019 a 14 de febrero de 2020), las funciones de respuesta al impulso (IRF) fueron estimadas a partir de 2 fuentes diferentes de datos: 49 terremotos registrados (IRF basados en terremotos) y 225 días de datos registrados continuamente (IRF basados en vibración ambiental), ambos conjuntos de datos fueron utilizados como datos de entrada en las mediciones de variación de velocidad, utilizando la técnica de estiramiento. Un notable terremoto de Magnitud 6 ocurrió el 24 de diciembre de 2019 en Mesetas, Meta, produciendo un cambio significativo en la respuesta del edificio, notado en ambos conjuntos de datos (basados en vibraciones ambientales y basados en terremotos), para el componente longitudinal de los sensores.Seismic Structural Health Monitoring (S2HM) allows the continuous evaluation of engineering structures to estimate their safety and making recommendations for improvement through data analysis and mathematical models. For the first time in Colombia, a permanent and continuous monitoring network for engineering structures with an academic purpose has been deployed in a 14-story ecofriendly steel-frame building combined with a reinforced concrete structure in the downtown of Bogota. The six 3-component ETNA-2 accelerometers started recording on June 2019, and different sets of data were used for this study. As an initial attempt to understand the building’s response, with only 25 days of continuous recorded data, the anthropogenic behavior from the ambient vibrations-based data was analyzed. A preliminary spectral analysis was performed, allowing to identify a very clear mode at 1.25 Hz, in the longitudinal (X) component. Higher frequency modes were also noticed around 1.5 – 2.5 Hz and 3.5 – 4 Hz, even above 5 Hz, particularly seen in the top floors; this information leaded on the selection of particular frequency bands at 0.5 – 2 Hz, 2 – 5 Hz, 6 – 10 Hz and 0.5 – 10 Hz for further analysis. Following the deconvolution-based seismic interferometry approach proposed by Prieto, et al., 2010, for a 225 daylong monitoring campaign (from July 3rd 2019 to February 14th 2020), the Impulse Response Function (IRF) was estimated, from 2 different sources of data: 49 registered earthquakes (IRFs based on earthquakes) and 225 days of continuously recorded data (IRFs based on ambient vibration), both used as an input in the velocity variation measurements, using a stretching technique. A remarkable M6 earthquake occurred on December 24, 2019, in Mesetas, Meta, yielding a significant change in the building’s response, noticed in both sets of data (ambient vibration-based data and earthquake-base data), for the longitudinal component.MaestríaMagíster en Ciencias - Geofísica1 recurso en línea (61 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaDepartamento de GeocienciasFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraEnvironmental SeismologySeismic Structural Health MonitoringModesIRFSeismic InterferometryAmbient VibrationVelocity VariationsSismología AmbientalModos de vibraciónIRFInterferometría sísmicaVibraciones AmbientalesVariaciones de VelocidadProspección sísmicaGeophysical prospectingSismicidadSeismicityContinuous monitoring of a civil structure: Crisanto Luque Building case, in Bogota, ColombiaMonitoreo sísmico continuo de una construcción vertical: Edificio Crisanto Luque, en Bogotá, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáReferences Asteris, P., & Plevris, V. (2015). Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures. ISBN13: 9781466682863: IGI Global. Brenguier , F., Campillo, M., Hadziioannou, C., Shapiro, N., Nadeau, R., & Larose, E. (2008). Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, Vol. 321, pp. 1478-1481. Brenguier, F., Shapiro, N., Campillo , M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian , A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, Vol. 1, pp. 126-130. Bukenya, P., Moyo , P., Beushausen, H., & Oosthuizen, C. (2014). Health monitoring of concrete dams: a literature review. Journal of Civil Structural Health Monitoring. Vol. 4, pp. 235–244. Cárdenas-Soto, M., Ramos-Saldaña, H., & Vidal-Garcia, M. (2016). Interferometría de ruido sísmico para la caracterización de la estructura de velocidad 3D de un talud en la 3ª Sección del Bosque de Chapultepec. Boletín de la Sociedad Geológica Mexicana Vol. 68, No. 2, pp. 173-186. Chang, P., Flatau, A., & Liu, S. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring (SHM), Vol. 2, No.32, pp. 257–267. Chicangana, G., Bocanegra, G., Kammer, A., Vargas, C., Salcedo, H., & Gómez-Capera, A. (2017). Geotectonic Evolution and Seismotectonics of North Faults of Algeciras Fault System, Colombia. Seattle, USA: Conference: GSA Annual Meeting. Poster. Claerbout, J. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics. Vol. 33, No. 2, pp. 264–269. Clements, T., & Denolle, M. (2018). Tracking Groundwater Levels Using the Ambient Seismic Field. Geophysical Research Letters, Vol. 45, pp. 6459–6465. Clinton, J., Case Bradford, S., Heato, T., & Favela, J. (2006). The Observed Wander of the Natural Frequencies in a Structure. Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 237–257. Denolle, M., Dunham, E., Prieto , G., & Beroza, G. (2013). Ground motion prediction of realistic earthquake sources using the ambient seismic field. Journal of Geophysical Research: Solid Earth, Vol. 118, pp. 1–17. Gueguen, P., Langlais, M., Roux, P., Schinkmann, J., & Douste-Bacque, I. (2014). Frequency and Damping Wandering in Existing Buildings Using the Random Decrement Technique. Nantes, France: 7th European Workshop on Structural Health Monitoring. IDU. (2004). Informe preeliminar determinación del peso por eje de los buses articulados y buses alimentadores del sistema transmilenio. Bogota: Universidad de los Andes. Ikeda, T., & Tsuji, T. (2018). Temporal change in seismic velocity associated with an offshore MW 5.9 Off-Mie earthquake in the Nankai subduction zone from ambient noise cross-correlation. Progress in Earth and Planetary Science, pp. 1-12. Jaimes, N., Prieto, G., & Rodriguez, C. (2019). Seismic monitoring of a 14-story building using continuously recorded earthquake and ambient vibration data. San Francisco, USA: AGU Falls Meeting. Poster presentation. Jaimes, N., Prieto, G., & Rodriguez, C. (2020). Effect of ambient vibrations and earthquake ground motions on the response of a 14-story building. San Francisco, USA: AGU Falls Meeting. iPoster presentation. Jiang, C., & Denolle, M. (2020). NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, Vol. 91, No. 3. pp 1853–1866. Kohler, M., Davis, P., & Safak, E. (2005). Earthquake and Ambient Vibration Monitoring of the Steel-Frame UCLA Factor Building. Earthquake Spectra, Vol. 21, No. 3, pp. 715–736. Kohler, M., Heaton, T., & Bradford, S. (2007). Propagating Waves in the Steel, Moment-Frame Factor Building Recorded during Earthquakes. Bulletin of the Seismological Society of America, Vol. 97, No. 4, pp. 1334–1345. Massari, A., Clayton, R., & Kohler, M. (2018). Damage Detection by Template Matching of Scattered Waves. Bulletin of the Seismological Society of America, doi: 10.1785/0120170319. Mikesell, T., Malcolm, A., Yang, D., & Haney, M. (2015). A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry. Geophysical Journal International. Vol. 202, pp. 347–360. Mordret, A., Mikesell, T., Harig, C., Lipovsky, B., & Prieto, G. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science Advances, Vol. 2, No. 5, e1501538. Mordret, A., Sun, H., Prieto, G., Toksöz, M., & Büyüköztürk, O. (2017). Continuous Monitoring of High-Rise Buildings Using Seismic Interferometry. Bulletin of the Seismological Society of America, Vol. 107, No. 6, pp. 2759–2773. Nakata, N., & Snieder, R. (2014). Monitoring a Building Using Deconvolution Interferometry. II: Ambient Vibration Analysis. Bulletin of the Seismological Society of America, Vol. 104, No. 1, pp. 204–213. Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., & Kunimi, T. (2013). Monitoring a Building Using Deconvolution Interferometry I: Earthquake-Data Analysis. Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1662–1678. Nakata, N., Tanaka, W., & Oda, Y. (2015). Damage Detection of a Building Caused by the 2011 Tohoku-Oki Earthquake with Seismic Interferometry. Bulletin of the Seismological Society of America, Vol. 105, No. 5. Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal of Geophysical Research: Solid Earth, Vol. 118, pp. 6285–6294. Park, H., & Oh, B. (2018). Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness. Journal of Sound and Vibration, Vol. 418, pp. 122-143. Pavičević, B. (2005). Mitigation of seismic risk of old towns and cultural heritage: Urban Planning and L.S.C. aspects. Kotor, Montenegro: Seminar earthquake protection in historical Buildings, pp. 54-59. Planès , T., Mooney, M., Rittgers, J., Parekh, M., Behm, M., & Snieder, R. (2015). Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise. Géotechnique, Vol. 66, No. 4, pp. 301-312. Poli, P., Prieto, G., Yu, C., Florez, M., Agurto-Detzel, H., Mikesell, T., . . . Pedraza, P. (2016). Complex rupture of the M6.3 2015 March 10 Bucaramanga earthquake: evidence of strong weakening process. Geophysical Journal International, Vol. 205, pp. 988–994. Prieto, G., & Beroza, G. (2008). Earthquake ground motion prediction using the ambient seismic field. Geophysical Research Letters, Vol. 35, L14304. Prieto, G., Beroza, G., Barret, S., Lopez, G., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics 570–571, pp. 42–56. Prieto, G., Lawrence, J., Chung, A., & Kohler, M. (2010). Impulse Response of Civil Structures from Ambient Noise Analysis. Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp. 2322–2328. Prieto, G., Parker , R., & Vernon III, F. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, Vol. 35, pp. 1701–1710. Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt. Merapi (Indonesia). Geophysical Research Letters, Vol. 22, No. 7, pp. 775-778. Salvermoser, J., Hadziioannou, C., & Stähler, S. (2015). Structural monitoring of a highway bridge using passive noise recordings from street traffic. Acoustical Society of America, Vol. 138, No. 6, pp. 3864–3872. Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, Vol. 33, L21302. Sepulveda-Jaimes, F., & Cabrera-Zambrano, F. (2018). Tomografía sísmica 3D del nido sismico de Bucaramanga (Colombia). Boletín de Geología, Vol. 40, No. 2, pp. 15-33. SGC. (2020). El sismo de Mesetas - Meta del 24 de diciembre de 2019. Aspectos sismológicos, movimiento fuerte y consideraciones geodésicas. Informe Tecnico. Bogota: Servicio Geologico Colombiano. Snieder, R., & Hagerty, M. (2004). Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophysical Research Letters, Vol. 31, L09608. Snieder, R., & Safak, E. (2006). Extracting the Building Response Using Seismic Interferometry: Theory and Application to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America, Vol. 96, No. 2, pp. 586–598. Snieder, R., Gret, A., & Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, Vol. 295, pp. 2253-2255. Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., & Wapenaar, K. (2009). A Comparison of Strategies for Seismic Interferometry. Survey Geophysics, Vol. 30, pp. 503–523. Sohn, H., Farrar, C., Hemez, F., Czarnecki, J., Shunk, D., Stinemates, D., & Nadler, B. (2004). A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS. Somerville, P. (2000). Seismic hazard evaluation. Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 33, No. 3, pp. 371-386. Sun, H., Mordret, A., Prieto, G., Toksöz, M., & Büyüköztürk, O. (2017). Bayesian characterization of buildings using seismic interferometry on ambient vibrations. Mechanical Systems and Signal Processing, Vol. 85. pp. 468–486. Syracusea, E., Maceira, M., Prieto, G., Zhang, H., & Ammon, C. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, Vol. 444, pp.139–149. VanDecar, J., & Crosson, R. (1990). Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bulletin of the Seismological Society of America, Vol. 80, No. 1, pp. 150-169. Velandia, F., Acosta, J., Terraza, R., & Villegas, H. (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, Vol. 399, pp 313-329. Wang, X., Chakraborty, J., Klikowicz, P., & Niederleithinger, E. (2019). Monitoring a concrete bridge girder with the coda wave interferometry method. Potsdam, Germany: 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, (SMAR 2019). Wiens, D., & Gilbert, H. (1996). Effect of slab temperature on deep-earthquake aftershock productivity and magnitude–frequency relations. Nature, Vol. 384, pp. 153-156. Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., & Fukao, Y. (2003). Long-term observation of in situ seismic velocity and attenuation. Journal of Geophysical Research, Vol. 108, No. B6, 2317LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79622/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALNathaliaJaimes_2021.pdfNathaliaJaimes_2021.pdfTesis de Maestria en Ciencias - Geofísicaapplication/pdf4949887https://repositorio.unal.edu.co/bitstream/unal/79622/2/NathaliaJaimes_2021.pdf9f036f417b493cb2455b874140e9bbceMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79622/3/license_rdff7d494f61e544413a13e6ba1da2089cdMD53THUMBNAILNathaliaJaimes_2021.pdf.jpgNathaliaJaimes_2021.pdf.jpgGenerated Thumbnailimage/jpeg4499https://repositorio.unal.edu.co/bitstream/unal/79622/4/NathaliaJaimes_2021.pdf.jpg19d831ce3853661438462a386ad118f0MD54unal/79622oai:repositorio.unal.edu.co:unal/796222023-07-21 23:03:58.39Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==