Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos

graficas, tablas

Autores:
Cortés Cortés, Claudia Lucía
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83030
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83030
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::537 - Electricidad y electrónica
Respuesta de fase
Técnicas de modulación
Variaciones de fase
Procesamiento de imágenes
Multiplexación por división en frecuencia
Forma de pulso
Diagrama de constelación
Phase response
Modulation techniques
Phase offset
Image processing
Frequecy division multiplexing
Pulse shape
Constellation diagram
Innovación científica
Scientific innovations
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9b81d63a201eabdc0153b01e21a1eff0
oai_identifier_str oai:repositorio.unal.edu.co:unal/83030
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
dc.title.translated.spa.fl_str_mv Multicarrier automatic estimation methodology of data transmission channel response
title Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
spellingShingle Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
530 - Física::537 - Electricidad y electrónica
Respuesta de fase
Técnicas de modulación
Variaciones de fase
Procesamiento de imágenes
Multiplexación por división en frecuencia
Forma de pulso
Diagrama de constelación
Phase response
Modulation techniques
Phase offset
Image processing
Frequecy division multiplexing
Pulse shape
Constellation diagram
Innovación científica
Scientific innovations
title_short Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
title_full Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
title_fullStr Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
title_full_unstemmed Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
title_sort Metodología de estimación automática multiportadora de respuesta de canal de transmisión de datos
dc.creator.fl_str_mv Cortés Cortés, Claudia Lucía
dc.contributor.advisor.none.fl_str_mv Guerrero-Gonzalez, Neil
dc.contributor.author.none.fl_str_mv Cortés Cortés, Claudia Lucía
dc.contributor.researchgroup.spa.fl_str_mv Gtt ­ Grupo de Investigación en Telemática y Telecomunicaciones
dc.contributor.orcid.spa.fl_str_mv Cortés Cortés, Claudia Lucía [0000-0001-5760-9990]
dc.contributor.cvlac.spa.fl_str_mv Cortés Cortés, Claudia Lucía [0001381627]
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
topic 530 - Física::537 - Electricidad y electrónica
Respuesta de fase
Técnicas de modulación
Variaciones de fase
Procesamiento de imágenes
Multiplexación por división en frecuencia
Forma de pulso
Diagrama de constelación
Phase response
Modulation techniques
Phase offset
Image processing
Frequecy division multiplexing
Pulse shape
Constellation diagram
Innovación científica
Scientific innovations
dc.subject.proposal.spa.fl_str_mv Respuesta de fase
Técnicas de modulación
Variaciones de fase
Procesamiento de imágenes
Multiplexación por división en frecuencia
Forma de pulso
Diagrama de constelación
dc.subject.proposal.eng.fl_str_mv Phase response
Modulation techniques
Phase offset
Image processing
Frequecy division multiplexing
Pulse shape
Constellation diagram
dc.subject.unesco.spa.fl_str_mv Innovación científica
dc.subject.unesco.eng.fl_str_mv Scientific innovations
description graficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-19T19:02:49Z
dc.date.available.none.fl_str_mv 2023-01-19T19:02:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83030
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83030
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Microsoft, “WORLDWIDE UTILITIES INDUSTRY SURVEY 2010,” Tech. Rep. March, 2010.
P. J. Winzer, “Modulation and multiplexing in optical communications,” 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, no. February, pp. 3–4, 2009.
S. Hara and R. Prasad, Multicarrier techniques for 4G Mobile Communications. Artech House, Inc.685 Canton St. Norwood, MA, United States, 2003.
Universidad Nacional Autónoma de México, “Sistema de Comunicaciones Óptico: Estado del Arte,” 2011.
C. A. Balbuena-Campuzano and F. J. García-Ugalde, “Rendimiento de un sistema de control de errores con turbo códigos para canales PLC,” Ingeniería Investigación y Tecnología, vol. 15, no. 3, pp. 363–376, 2014.
Naciones Unidas, Agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para América Latina y el Caribe. 2018.
Naciones Unidas, “Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible,” 2015.
Prospectiva 2020 Foresight, “MATRIZ ENERGÉTICA MUNDIAL (Parte III),” 2013.
United Nations Educational Scientific and Cultural Organization – UNESCO, “Agua y Energía: Datos y Estadísticas,” 2014.
A. G. Peralta Sevilla and F. Amata Fernández, “Evolución de las Redes Eléctricas hacia Smart Grid en Países de la Región Andina,” Revista Educación en Ingeniería, vol. 8, pp. 48–61, jun. 2013.
M. MINETAD, “Smart Grids y la Evolución de la Red Eléctrica,” 2011.
E. EPRI, “Smart Grid Resource Center,” 2011.
C. A. Díaz Andrade and J. C. Hernández, “Smart Grid: Las TICs y la modernización de las redes de energía eléctrica – Estado del Arte,” Revista S&T, vol. 9, no. 18, pp. 53–81, 2011.
D. B. Unsal and T. Yalcinoz, “Applications of New Power Line Communication Model for Smart Grids,” International Journal of Computer and Electrical Engineering, vol. 7, no. 3, pp. 168–178, 2015.
Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: Motivations, equirements and Challenges,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1, pp. 5–20, 2013.
F. Aalamifar, H. S. Hassanein, and G. Takahara, “Viability of Powerline Communication for the Smart Grid,” 2012 26th Biennial Symposium on Communications, QBSC 2012, pp. 19–23, 2012.
V. Akarte, N. Punse, and A. Dhanorkar, “Power Line Communication Systems,” International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 2, no. 1, pp. 709–713, 2014.
A. Horiguchi, A. Matsuzaki, S. Tanabe, Y. Mizugai, M. Oya, S. Ojima, Y. Hori, T. Akitomi, T. Kikuchi, T. Shimomura, H. Okamoto, Y. Murata, T. Kimura, and W. Matsumoto, “High Speed Power Line Communication Technology,” tech. rep., Mitsubishi electric Advance, 2005.
H. Paz Penagos, “Ruido e interferencia en canales de comunicaciones por línea de distribución eléctrica,” Revista cientíica y tecnológica de la Universidad del Valle, vol. 17, no. 1, pp. 223–231, 2009.
H. Paz Penagos, “Modulación por división de frecuencia ortogonal para minimizar el ruido en aplicaciones Smart Grid sobre comunicaciones por línea de potencia,” ITECKNE, vol. 10, no. 2, pp. 178–189, 2013.
M. Cordero Limón, “Técnicas de estimación de canal en la capa física Wireless MAN -OFDM de la norma IEEE 802.16e,” 2009.
R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in 2012 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2, 2012.
J. Lazaro, S. Knorr, B. Schrenk, I. Cano, V. Polo, J. Prat, A. Carena, and G. Bosco, “Digital nyquist wdm for access networks using limited bandwidth relective semiconductor optical amplifiers,” National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest, vol. paper JTh2A.57, 2012.
Zhongqi Pan, Junyi Wang, and Yi Weng, “Digital signal processing techniques in Nyquist-WDM transmission systems,” 2015 14th International Conference on Optical Communications and Networks (ICOCN), vol. 32, no. 2, pp. 1–3, 2015.
A. Lowery, L. Zhuang, B. Corcoran, C. Zhu, and Y. Xie, “Photonic Circuit Topologies for Optical OFDM and Nyquist WDM,” Journal of Lightwave Technology, vol. 8724, no. c, pp. 1–1, 2016.
L. Farias, M. Barreto, M. Leme, and S. Stevan, “Technical feasibility and performance analysis of g3-plc standard for monitoring in industrial environment,” IEEE LatinAmerica Transactions, vol. 14, no. 10, pp. 4241–4248, 2016.
X. López Quiroz and C. Mora Martínez, “ANÁLISIS DE TÉCNICAS DE MODULACIÓN ADAPTIVA EN REDES INALÁMBRICAS DE BANDA ANCHA (IEEE 802.16, WIMAX),” 2006.
I. H. H. HHI, “OFDM / Nyquist WDM.”
Universidad Nacional de Quilmes, “TEORÍA DE LAS TELECOMUNICACIONES,” 2008.
M. T. Cerón López, “FUNDAMENTOS DE TELECOMUNICACIONES - MULTIPLEXACIÓN,” 2011.
A. Artés Rodríguez, F. Pérez González, J. Cid Sueiro, R. López Valcarce, C. Mosquera Nartallo, and F. Pérez Cruz, Comunicaciones digitales, 2012.
Ciena Corporation, “Qué es wdm o dwdm?,” 2022.
Universidad del Azuay, “Multiplexación,” 2022.
N. E. Hernández Romero, ANALISIS DE OPCIONES TECNOLOGICAS DE MODULACION Y MULTIPLEXACION EN LAS REDES OPTICAS DE 100 Gbps Y MAS. PhD thesis, UNIVERSIDAD AUSTRAL DE CHILE, 2015.
S. Knorr, “Nyquist WDM for FTTH Applications using Relective Semiconductor Optical Amplifiers,” 2011.
M. A. SHOAIE, “Optical Signal Processing and Pulse Shaping for Wavelength Multiplexed High Speed Communication Systems,” 2016.
M. d. C. Clemente Medina, Modulación Adaptativa y Diversidad en canales de Comunicaciones Acústicas Subacuáticas . PhD thesis, Universidad de Málaga – Málaga, Spain, 2013.
G. Llano Ramírez, Modelado en frecuencia del canal UWB y su aplicación en el análisis de técnicas de modulación adaptativa en sistemas MB-OFDM UWB para redes WPAN. PhD thesis, Universidad Politécnica de Valencia, 2010.
NuWaves Engineering, “Application note an-005: Understanding constellation diagrams and how they are used,” tech. rep., NuWaves Engineering, 2019.
F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ru ni, and M. Tornatore, “An overview on application of machine learning techniques in optical networks,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.
B. Mahesh, “Machine learning algorithms - a review,” International Journal of Science and Research, vol. 9, no. 1, pp. 381–386, 2019.
Y. R. Zheng, “Channel estimation and phase-correction for robust underwater acoustic communications,” in Proceedings - IEEE Military Communications Conference MIL-COM, 2007.
S. Singh and N. Singh, “Nonlinear efects in optical ibers: Origin, management and applications,” Progress In Electromagnetics Research (PIER), vol. 73, pp. 249–275, 2007.
W. Stark, Efects of Multipath Fading in Wireless Communication Systems. 06 2003.
E. Lee and D. Messerschmitt, Digital Communication 2nd Ed. Springer, Boston, MA, 2011
R. Zeng, T. Liu, X. Yu, and Z. Zhang, “Novel channel quality indicator prediction scheme for adaptive modulation and coding in high mobility environments,” IEEE Access, vol. 7, pp. 11543–11553, 2019.
A. García Marqués, Cuantiicación del Estado del Canal para la Minimización de la Potencia en Sistemas con Transmisores Adaptativos. PhD thesis, Universidad Carlos III de Madrid – Escuela Politécnica Superior – Madrid, Spain, 2007.
Umesha G.B. and M. Shanmukha Swamy, “Bit loading with ber-constraint for multicarrier systems,” International Journal of Engineering Research & Technology (IJERT), vol. 5, no. 1, pp. 15–19, 2017.
C. Prieto del Amo, Estimación de Canal y Desplazamiento de Frecuencia en Sistemas MIMO-OFDM con Preijo Cíclico Insuiciente. PhD thesis, Universidad Carlos III de Madrid – Escuela Politécnica Superior – Madrid, Spain, 2015.
D. Mavares T., Estimación de Canal y Selección Adaptativa de Código Espacio-Tiempo en Sistemas de Diversidad en Transmisión. PhD thesis, Universidad de Cantabria –Cantabria, Spain, 2006.
X. Li, F. Dong, S. Zhang, and W. Guo, “A survey on deep learning techniques in wireless signal recognition,” Hindawi Wireless Communications and Mobile Computing, vol. Article ID 5629572, p. 12, 2019.
G. Foschini, R. Gitlin, and S. Weinstein, “Optimization of two-dimensional signal constellations in the presence of gaussian noise,” IEEE Transactions on Communications, vol. 22, no. 1, pp. 28–38, 1974.
M. Fuentes, Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems. PhD thesis, Universitat Politècnica de València – Valencia, Spain, 2017.
M. Reza Khanzadi, Phase Noise in Communication Systems Modeling, Compensation, and Performance Analysis. PhD thesis, Chalmers University of Technology – Göteborg, Sweden, 2015.
Y. Gao, E. Ha, A. Lau, C. Lu, X. Xu, and L. Li, “Non-data-aided and universal cycle slip detection and correction for coherent communication systems,” Optics Express, vol. 22, no. 25, pp. 31167–31179, 2014.
N. Guerrero Gonzalez, D. Zibar, A. Caballero, and I. Tafur Monroy, “Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-iber link with digital demodulation by a K -means algorithm,” IEEE Photonics Technology Letters, vol. 22, no. 5, pp. 335–337, 2010.
C. L. Cortés Cortés and N. Guerrero González, “Caracterización de la respuesta en fase y compensación de fase en sistemas multiportadora para canales con respuesta en frecuencia no uniforme,” Revista Ingenierías Universidad de Medellín, vol. 19, pp. 167 – 185, 06 2020.
M. Zimmermann and K. Dostert, “A Multipath Model for the Powerline Channel,” IEEE Transactions on Communications, vol. 50, no. 4, pp. 553–559, 2002.
K. Sharma and L. M. Saini, “Power-line communications for smart grid: Progress, challenges, opportunities and status,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 704–751, 2017.
C. Cano, A. Pittolo, D. Malone, L. Lampe, A. M. Tonello, and A. G. Dabak, “State of the art in power line communications: From the applications to the medium,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 7, pp. 1935–1952, 2016.
P. Fränti and S. Sieranoja, “How much can k-means be improved by using better initialization and repeats?,” Pattern Recognition, vol. 93, pp. 95–112, 2019.
O. M. Shekoni, A. N. Hasan, and T. Shongwe, “Applications of artiicial intelligence in powerline communications in terms of noise detection and reduction: a review,” Australian Journal of Electrical and Electronics Engineering, vol. 15, no. 1-2, pp. 29–37, 2018.
A. M. Tonello, N. A. Letizia, D. Righini, and F. Marcuzzi, “Machine learning tips and tricks for power line communications,” IEEE Access, vol. 7, pp. 82434–82452, 2019.
F. J. Cañete, K. Dostert, S. Galli, M. Katayama, L. Lampe, M. Lienard, S. Mashayekhi, D. G. Michelson, M. Nassar, R. Pighi, A. Pinomaa, M. Raugi, A. M. Tonello, M. Tucci, and F. Versolatto, Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid, Second Edition. Hoboken, NJ, USA. Wiley, 2016.
K. Dostert, M. Girotto, L. Lampe, R. Raheli, D. Rieken, T. G. Swart, A. M. Tonello, A. J. H. Vinck, and S. Weiss, Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid, Second Edition. Hoboken, NJ, USA. Wiley, 2016.
C. L. Cortés Cortés, S. X. Carvajal Quintero, and N. Guerrero González, “Demand side management system characterization for residential users in manizales city,” IEEE Latin America Transactions, vol. 19, p. 378–384, Jun. 2021.
C. L. Cortés Cortés, M. A. Montaño Argote, A. M. Osorio, and N. Guerrero González, “Diseño de una red backhaul autogestionable para conectividad rural en sucre - Colombia,” Revista UIS Ingenierías, vol. 20, no. 1, pp. 67–78, 2021.
Ubiquiti Networks Inc, “Connecting everything everywhere,” 2021.
C. A. Herter Jr., “The electromagnetic spectrum: A critical natural resource,” Natural resources journal, vol. 25, pp. 651–663, 1985.
M. Zahid and Z. Meng, “Recent advances in neural network techniques for channel equalization: A comprehensive survey,” 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), vol. Southend, United Kingdom, pp. 178–182, 2018.
L. Wong, W. Headley, and A. Michaels, “Estimation of transmitter i/q imbalance using convolutional neural networks,” 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), vol. Las Vegas, NV, pp. 948–955, 2018.
L. Zhang and L.-L. Yang, Machine Learning for Future Wireless Communications. Wiley-IEEE Press, Hoboken, NJ, 2020.
J. Jargon, X. Wu, H. Choi, Y. Chung, and A. Willner, “Optical performance monitoring of qpsk data channels by use of neural networks trained with parameters derived from asynchronous constellation diagrams,” Optics Express, vol. 18, no. 9, pp. 4931–4938, 2010.
X. Liu, D. Yang, and A. Gamal, “Deep neural network architectures for modulation classification,” 2017 51st Asilomar Conference on Signals, Systems, and Computers, vol. Pacific Grove, CA, pp. 915–919, 2017.
F. Khan, K. Zhong, X. Zhou, W. Al-Arashi, C. YU, C. LU, and A. Tao Lau, “Joint osnr monitoring and modulation format identiication in digital coherent receivers using deep neural networks,” Optics Express, vol. 25, no. 15, pp. 17767–17776, 2017.
Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for automatic modulation recognition in cognitive radios,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 2019.
T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, “Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm,” Journal of Optical Communications and Networking, vol. 11, no. 1, pp. A52–A59, 2019.
S. Zhang, F. Yaman, Nakamura, V. Kamalov, L. Jovanovski, V. Vusirikala, E. Mateo, Y. Inada, and T. Wang, “Field and lab experimental demonstration of nonlinear impairment compensation using neural networks,” Nature Communications, vol. 10, no. 3033, pp. 1–8, 2019.
G. Song, M. Jang, and D. Yoon, “Cnn-based modulation classiication for ofdm signal,” in 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1326–1328, 2021.
Y. Mao, M.-L. Zhu, T. Sun, Y.-Y. Dong, and C.-X. Dong, “Automatic modulation classiication based on snr estimation via two-stage convolutional neural networks,” in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 294–298, 2021.
Z. An, T. Zhang, M. Shen, E. De Carvalho, B. Ma, C. Yi, and T. Song, “Series-constellation feature based blind modulation recognition for beyond 5g mimo-ofdm systems with channel fading,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 793–811, 2022.
J. Zhang, W. Chen, M. Gao, Y. Ma, Y. Zhao, W. Chen, and G. Shen, “Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm,” Optics Express, vol. 26, no. 14, pp. 18684–18698, 2018.
S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-D. Yao, “Modulation classiication based on signal constellation diagrams and deep learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 718–727, 2019.
K. Jiang, J. Zhang, H. Wu, A. Wang, and Y. Iwahori, “A novel digital modulation recognition algorithm based on deep convolutional neural network,” Applied Sciences MDPI, vol. 10, no. 1166, pp. 1–14, 2020.
D. Wang, M. Zhang, J. Li, Z. Li, J. Li, C. Song, and X. Chen, “Intelligent constellation diagram analyzer using convolutional neural network-based deep learning,” Optics Express, vol. 25, no. 15, pp. 32188–32198, 2017.
C. L. Cortés and N. Guerrero González, “Constellation diagram processing with convolutional neural networks for channel phase response estimation,” Computer Communications, vol. 180, pp. 89–96, 2021.
Y. Xue, N. Ray, J. Hugh, and G. Bigras, “Cell counting by regression using convolutional neural network,” in Computer Vision – ECCV 2016 Workshops (G. Hua and H. Jégou, eds.), (Cham), pp. 274–290, Springer International Publishing, 2016.
J. Brownlee, “Deep learning with time series forecasting,” 2017.
MathWorks ®, “Train convolutional neural network for regression,” 2017.
H. Z. Ur Rehman and S. Lee, “Automatic image alignment using principal component analysis,” IEEE Access, vol. 6, pp. 72063–72072, 2018.
L. Frenzel Jr, Handbook of Serial Communications Interfaces A Comprehensive Compendium of Serial Digital Input/output (I/o) Standards. Neunes, Ed. Elsevier, 2016.
C. L. Cortés and N. Guerrero-González, “Fast deep learning based multicarrier phase response estimation in non-flat frequency response channels,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), p. SpTh2I.2, Optical Society of America, 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 98 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83030/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83030/2/1053776114.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9e51d2281318cd7b3f3096cb31c9952c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885961722757120
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero-Gonzalez, Neil9860fbd1ba392596553a4fbf4a8ff47d600Cortés Cortés, Claudia Lucía2787e97078c61a531084f9eb2e066796600Gtt ­ Grupo de Investigación en Telemática y TelecomunicacionesCortés Cortés, Claudia Lucía [0000-0001-5760-9990]Cortés Cortés, Claudia Lucía [0001381627]2023-01-19T19:02:49Z2023-01-19T19:02:49Z2022https://repositorio.unal.edu.co/handle/unal/83030Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasEn el marco de los Objetivos de Desarrollo Sostenible (ODS) y la Agenda 2030 acordada por los países reunidos en las Naciones Unidas en el año 2015, entre ellos Colombia, se hace necesaria la innovación tecnológica en las Tecnologías de la Información y Comunicaciones como eje transversal para el cumplimiento de los ODS. En esta tesis se propone una metodología para la caracterización automática de la respuesta de fase del canal de transmisión de comunicaciones como contribución científica al estado del arte. La metodología propuesta es escalable a cualquier canal de transmisión dado que se basa en el procesamiento de imágenes de diagramas de constelación con redes neuronales convolucionales, imágenes que son generadas a partir de una señal 4-QAM (QAM, Quadrature-Amplitude Modulation) modificada. La metodología propuesta para la estimación de la respuesta de fase divide la banda de frecuencia disponible en sub-bandas y usa técnicas de modulación y multiplexación avanzadas que permiten obtener el desplazamiento de fase por sub-banda y realizar la compensación de este desplazamiento para demodular la señal de información adaptandose a las variaciones rápidas del canal de transmisión. El uso de técnicas de modulación y multiplexación capaces de operar para grandes tasas de transmisión con suficiente robustez respecto a las características de ruido del canal de comunicaciones se convierten en parte fundamental para el avance de los sistemas de comunicaciones, donde la Multiplexación por División de Frecuencias Ortogonales (OFDM, Orthogonal Frequency Division Multiplexing) es la técnica de modulación de mayor difusión. Esta técnica divide el espectro disponible en múltiples subportadoras utilizándolo de forma más eficiente. El uso de OFDM como esquema multiportadora permite transmitir la información por N subcanales, de forma que el sistema se podría ver como N sistemas de portadora única con respuesta en frecuencia plana, razón por la cual este esquema multiportadora no es capaz de adaptarse a las variaciones rápidas del canal de transmisión. (Texto tomado de la fuente)Sustainable Development Goals (SDG) framework and 2030 Agenda agreed at the United Nations in 2015 countries meeting, including Colombia, Technological innovation in Information and Communication Technologies is necessary as a transversal axis for SDGs fulfillment. In this thesis is proposed a methodology for communications transmission channel phase response automatic’s characterization, as a scientific contribution to the state of the art. The proposed methodology is scalable to any transmission channel since it is based on constellation diagram image processing with convolutional neural networks, images from modified 4-QAM signals (QAM, Quadrature-Amplitude Modulation). The proposed methodology for phase response estimation divides the available frequency band in sub-bands and uses advanced modulation and multiplexing techniques that allow to obtain the sub-band phase shift and to compensate the phase offset per sub-band in order to demodulate the information signal by adapting to rapid variations of the transmission channel. The use of modulation and multiplexing techniques capable of operating for large transmission rates regarding the noise characteristics of the communications channel become a fundamental part for communications systems advancement, where Orthogonal Frequency Division Multiplexing (OFDM) is the most widespread modulation technique. OFDM divides the available spectrum into multiple subcarriers, using it more efficiently. OFDM, as a multicarrier modulation scheme, allows information to be transmitted by N subchannels, so that the system could be seen as N single-carrier systems with flat frequency response, which is why this multicarrier scheme is not able to adapt to transmission channel rapid variations.DoctoradoDoctor en IngenieríaEléctrica, Electrónica, Automatización Y Telecomunicacionesxviii, 98 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales530 - Física::537 - Electricidad y electrónicaRespuesta de faseTécnicas de modulaciónVariaciones de faseProcesamiento de imágenesMultiplexación por división en frecuenciaForma de pulsoDiagrama de constelaciónPhase responseModulation techniquesPhase offsetImage processingFrequecy division multiplexingPulse shapeConstellation diagramInnovación científicaScientific innovationsMetodología de estimación automática multiportadora de respuesta de canal de transmisión de datosMulticarrier automatic estimation methodology of data transmission channel responseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextMicrosoft, “WORLDWIDE UTILITIES INDUSTRY SURVEY 2010,” Tech. Rep. March, 2010.P. J. Winzer, “Modulation and multiplexing in optical communications,” 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, no. February, pp. 3–4, 2009.S. Hara and R. Prasad, Multicarrier techniques for 4G Mobile Communications. Artech House, Inc.685 Canton St. Norwood, MA, United States, 2003.Universidad Nacional Autónoma de México, “Sistema de Comunicaciones Óptico: Estado del Arte,” 2011.C. A. Balbuena-Campuzano and F. J. García-Ugalde, “Rendimiento de un sistema de control de errores con turbo códigos para canales PLC,” Ingeniería Investigación y Tecnología, vol. 15, no. 3, pp. 363–376, 2014.Naciones Unidas, Agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para América Latina y el Caribe. 2018.Naciones Unidas, “Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible,” 2015.Prospectiva 2020 Foresight, “MATRIZ ENERGÉTICA MUNDIAL (Parte III),” 2013.United Nations Educational Scientific and Cultural Organization – UNESCO, “Agua y Energía: Datos y Estadísticas,” 2014.A. G. Peralta Sevilla and F. Amata Fernández, “Evolución de las Redes Eléctricas hacia Smart Grid en Países de la Región Andina,” Revista Educación en Ingeniería, vol. 8, pp. 48–61, jun. 2013.M. MINETAD, “Smart Grids y la Evolución de la Red Eléctrica,” 2011.E. EPRI, “Smart Grid Resource Center,” 2011.C. A. Díaz Andrade and J. C. Hernández, “Smart Grid: Las TICs y la modernización de las redes de energía eléctrica – Estado del Arte,” Revista S&T, vol. 9, no. 18, pp. 53–81, 2011.D. B. Unsal and T. Yalcinoz, “Applications of New Power Line Communication Model for Smart Grids,” International Journal of Computer and Electrical Engineering, vol. 7, no. 3, pp. 168–178, 2015.Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: Motivations, equirements and Challenges,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1, pp. 5–20, 2013.F. Aalamifar, H. S. Hassanein, and G. Takahara, “Viability of Powerline Communication for the Smart Grid,” 2012 26th Biennial Symposium on Communications, QBSC 2012, pp. 19–23, 2012.V. Akarte, N. Punse, and A. Dhanorkar, “Power Line Communication Systems,” International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 2, no. 1, pp. 709–713, 2014.A. Horiguchi, A. Matsuzaki, S. Tanabe, Y. Mizugai, M. Oya, S. Ojima, Y. Hori, T. Akitomi, T. Kikuchi, T. Shimomura, H. Okamoto, Y. Murata, T. Kimura, and W. Matsumoto, “High Speed Power Line Communication Technology,” tech. rep., Mitsubishi electric Advance, 2005.H. Paz Penagos, “Ruido e interferencia en canales de comunicaciones por línea de distribución eléctrica,” Revista cientíica y tecnológica de la Universidad del Valle, vol. 17, no. 1, pp. 223–231, 2009.H. Paz Penagos, “Modulación por división de frecuencia ortogonal para minimizar el ruido en aplicaciones Smart Grid sobre comunicaciones por línea de potencia,” ITECKNE, vol. 10, no. 2, pp. 178–189, 2013.M. Cordero Limón, “Técnicas de estimación de canal en la capa física Wireless MAN -OFDM de la norma IEEE 802.16e,” 2009.R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in 2012 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2, 2012.J. Lazaro, S. Knorr, B. Schrenk, I. Cano, V. Polo, J. Prat, A. Carena, and G. Bosco, “Digital nyquist wdm for access networks using limited bandwidth relective semiconductor optical amplifiers,” National Fiber Optic Engineers Conference (NFOEC), OSA Technical Digest, vol. paper JTh2A.57, 2012.Zhongqi Pan, Junyi Wang, and Yi Weng, “Digital signal processing techniques in Nyquist-WDM transmission systems,” 2015 14th International Conference on Optical Communications and Networks (ICOCN), vol. 32, no. 2, pp. 1–3, 2015.A. Lowery, L. Zhuang, B. Corcoran, C. Zhu, and Y. Xie, “Photonic Circuit Topologies for Optical OFDM and Nyquist WDM,” Journal of Lightwave Technology, vol. 8724, no. c, pp. 1–1, 2016.L. Farias, M. Barreto, M. Leme, and S. Stevan, “Technical feasibility and performance analysis of g3-plc standard for monitoring in industrial environment,” IEEE LatinAmerica Transactions, vol. 14, no. 10, pp. 4241–4248, 2016.X. López Quiroz and C. Mora Martínez, “ANÁLISIS DE TÉCNICAS DE MODULACIÓN ADAPTIVA EN REDES INALÁMBRICAS DE BANDA ANCHA (IEEE 802.16, WIMAX),” 2006.I. H. H. HHI, “OFDM / Nyquist WDM.”Universidad Nacional de Quilmes, “TEORÍA DE LAS TELECOMUNICACIONES,” 2008.M. T. Cerón López, “FUNDAMENTOS DE TELECOMUNICACIONES - MULTIPLEXACIÓN,” 2011.A. Artés Rodríguez, F. Pérez González, J. Cid Sueiro, R. López Valcarce, C. Mosquera Nartallo, and F. Pérez Cruz, Comunicaciones digitales, 2012.Ciena Corporation, “Qué es wdm o dwdm?,” 2022.Universidad del Azuay, “Multiplexación,” 2022.N. E. Hernández Romero, ANALISIS DE OPCIONES TECNOLOGICAS DE MODULACION Y MULTIPLEXACION EN LAS REDES OPTICAS DE 100 Gbps Y MAS. PhD thesis, UNIVERSIDAD AUSTRAL DE CHILE, 2015.S. Knorr, “Nyquist WDM for FTTH Applications using Relective Semiconductor Optical Amplifiers,” 2011.M. A. SHOAIE, “Optical Signal Processing and Pulse Shaping for Wavelength Multiplexed High Speed Communication Systems,” 2016.M. d. C. Clemente Medina, Modulación Adaptativa y Diversidad en canales de Comunicaciones Acústicas Subacuáticas . PhD thesis, Universidad de Málaga – Málaga, Spain, 2013.G. Llano Ramírez, Modelado en frecuencia del canal UWB y su aplicación en el análisis de técnicas de modulación adaptativa en sistemas MB-OFDM UWB para redes WPAN. PhD thesis, Universidad Politécnica de Valencia, 2010.NuWaves Engineering, “Application note an-005: Understanding constellation diagrams and how they are used,” tech. rep., NuWaves Engineering, 2019.F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ru ni, and M. Tornatore, “An overview on application of machine learning techniques in optical networks,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.B. Mahesh, “Machine learning algorithms - a review,” International Journal of Science and Research, vol. 9, no. 1, pp. 381–386, 2019.Y. R. Zheng, “Channel estimation and phase-correction for robust underwater acoustic communications,” in Proceedings - IEEE Military Communications Conference MIL-COM, 2007.S. Singh and N. Singh, “Nonlinear efects in optical ibers: Origin, management and applications,” Progress In Electromagnetics Research (PIER), vol. 73, pp. 249–275, 2007.W. Stark, Efects of Multipath Fading in Wireless Communication Systems. 06 2003.E. Lee and D. Messerschmitt, Digital Communication 2nd Ed. Springer, Boston, MA, 2011R. Zeng, T. Liu, X. Yu, and Z. Zhang, “Novel channel quality indicator prediction scheme for adaptive modulation and coding in high mobility environments,” IEEE Access, vol. 7, pp. 11543–11553, 2019.A. García Marqués, Cuantiicación del Estado del Canal para la Minimización de la Potencia en Sistemas con Transmisores Adaptativos. PhD thesis, Universidad Carlos III de Madrid – Escuela Politécnica Superior – Madrid, Spain, 2007.Umesha G.B. and M. Shanmukha Swamy, “Bit loading with ber-constraint for multicarrier systems,” International Journal of Engineering Research & Technology (IJERT), vol. 5, no. 1, pp. 15–19, 2017.C. Prieto del Amo, Estimación de Canal y Desplazamiento de Frecuencia en Sistemas MIMO-OFDM con Preijo Cíclico Insuiciente. PhD thesis, Universidad Carlos III de Madrid – Escuela Politécnica Superior – Madrid, Spain, 2015.D. Mavares T., Estimación de Canal y Selección Adaptativa de Código Espacio-Tiempo en Sistemas de Diversidad en Transmisión. PhD thesis, Universidad de Cantabria –Cantabria, Spain, 2006.X. Li, F. Dong, S. Zhang, and W. Guo, “A survey on deep learning techniques in wireless signal recognition,” Hindawi Wireless Communications and Mobile Computing, vol. Article ID 5629572, p. 12, 2019.G. Foschini, R. Gitlin, and S. Weinstein, “Optimization of two-dimensional signal constellations in the presence of gaussian noise,” IEEE Transactions on Communications, vol. 22, no. 1, pp. 28–38, 1974.M. Fuentes, Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems. PhD thesis, Universitat Politècnica de València – Valencia, Spain, 2017.M. Reza Khanzadi, Phase Noise in Communication Systems Modeling, Compensation, and Performance Analysis. PhD thesis, Chalmers University of Technology – Göteborg, Sweden, 2015.Y. Gao, E. Ha, A. Lau, C. Lu, X. Xu, and L. Li, “Non-data-aided and universal cycle slip detection and correction for coherent communication systems,” Optics Express, vol. 22, no. 25, pp. 31167–31179, 2014.N. Guerrero Gonzalez, D. Zibar, A. Caballero, and I. Tafur Monroy, “Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-iber link with digital demodulation by a K -means algorithm,” IEEE Photonics Technology Letters, vol. 22, no. 5, pp. 335–337, 2010.C. L. Cortés Cortés and N. Guerrero González, “Caracterización de la respuesta en fase y compensación de fase en sistemas multiportadora para canales con respuesta en frecuencia no uniforme,” Revista Ingenierías Universidad de Medellín, vol. 19, pp. 167 – 185, 06 2020.M. Zimmermann and K. Dostert, “A Multipath Model for the Powerline Channel,” IEEE Transactions on Communications, vol. 50, no. 4, pp. 553–559, 2002.K. Sharma and L. M. Saini, “Power-line communications for smart grid: Progress, challenges, opportunities and status,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 704–751, 2017.C. Cano, A. Pittolo, D. Malone, L. Lampe, A. M. Tonello, and A. G. Dabak, “State of the art in power line communications: From the applications to the medium,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 7, pp. 1935–1952, 2016.P. Fränti and S. Sieranoja, “How much can k-means be improved by using better initialization and repeats?,” Pattern Recognition, vol. 93, pp. 95–112, 2019.O. M. Shekoni, A. N. Hasan, and T. Shongwe, “Applications of artiicial intelligence in powerline communications in terms of noise detection and reduction: a review,” Australian Journal of Electrical and Electronics Engineering, vol. 15, no. 1-2, pp. 29–37, 2018.A. M. Tonello, N. A. Letizia, D. Righini, and F. Marcuzzi, “Machine learning tips and tricks for power line communications,” IEEE Access, vol. 7, pp. 82434–82452, 2019.F. J. Cañete, K. Dostert, S. Galli, M. Katayama, L. Lampe, M. Lienard, S. Mashayekhi, D. G. Michelson, M. Nassar, R. Pighi, A. Pinomaa, M. Raugi, A. M. Tonello, M. Tucci, and F. Versolatto, Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid, Second Edition. Hoboken, NJ, USA. Wiley, 2016.K. Dostert, M. Girotto, L. Lampe, R. Raheli, D. Rieken, T. G. Swart, A. M. Tonello, A. J. H. Vinck, and S. Weiss, Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid, Second Edition. Hoboken, NJ, USA. Wiley, 2016.C. L. Cortés Cortés, S. X. Carvajal Quintero, and N. Guerrero González, “Demand side management system characterization for residential users in manizales city,” IEEE Latin America Transactions, vol. 19, p. 378–384, Jun. 2021.C. L. Cortés Cortés, M. A. Montaño Argote, A. M. Osorio, and N. Guerrero González, “Diseño de una red backhaul autogestionable para conectividad rural en sucre - Colombia,” Revista UIS Ingenierías, vol. 20, no. 1, pp. 67–78, 2021.Ubiquiti Networks Inc, “Connecting everything everywhere,” 2021.C. A. Herter Jr., “The electromagnetic spectrum: A critical natural resource,” Natural resources journal, vol. 25, pp. 651–663, 1985.M. Zahid and Z. Meng, “Recent advances in neural network techniques for channel equalization: A comprehensive survey,” 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), vol. Southend, United Kingdom, pp. 178–182, 2018.L. Wong, W. Headley, and A. Michaels, “Estimation of transmitter i/q imbalance using convolutional neural networks,” 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), vol. Las Vegas, NV, pp. 948–955, 2018.L. Zhang and L.-L. Yang, Machine Learning for Future Wireless Communications. Wiley-IEEE Press, Hoboken, NJ, 2020.J. Jargon, X. Wu, H. Choi, Y. Chung, and A. Willner, “Optical performance monitoring of qpsk data channels by use of neural networks trained with parameters derived from asynchronous constellation diagrams,” Optics Express, vol. 18, no. 9, pp. 4931–4938, 2010.X. Liu, D. Yang, and A. Gamal, “Deep neural network architectures for modulation classification,” 2017 51st Asilomar Conference on Signals, Systems, and Computers, vol. Pacific Grove, CA, pp. 915–919, 2017.F. Khan, K. Zhong, X. Zhou, W. Al-Arashi, C. YU, C. LU, and A. Tao Lau, “Joint osnr monitoring and modulation format identiication in digital coherent receivers using deep neural networks,” Optics Express, vol. 25, no. 15, pp. 17767–17776, 2017.Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for automatic modulation recognition in cognitive radios,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 2019.T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, “Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm,” Journal of Optical Communications and Networking, vol. 11, no. 1, pp. A52–A59, 2019.S. Zhang, F. Yaman, Nakamura, V. Kamalov, L. Jovanovski, V. Vusirikala, E. Mateo, Y. Inada, and T. Wang, “Field and lab experimental demonstration of nonlinear impairment compensation using neural networks,” Nature Communications, vol. 10, no. 3033, pp. 1–8, 2019.G. Song, M. Jang, and D. Yoon, “Cnn-based modulation classiication for ofdm signal,” in 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1326–1328, 2021.Y. Mao, M.-L. Zhu, T. Sun, Y.-Y. Dong, and C.-X. Dong, “Automatic modulation classiication based on snr estimation via two-stage convolutional neural networks,” in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 294–298, 2021.Z. An, T. Zhang, M. Shen, E. De Carvalho, B. Ma, C. Yi, and T. Song, “Series-constellation feature based blind modulation recognition for beyond 5g mimo-ofdm systems with channel fading,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 793–811, 2022.J. Zhang, W. Chen, M. Gao, Y. Ma, Y. Zhao, W. Chen, and G. Shen, “Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm,” Optics Express, vol. 26, no. 14, pp. 18684–18698, 2018.S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and Y.-D. Yao, “Modulation classiication based on signal constellation diagrams and deep learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 718–727, 2019.K. Jiang, J. Zhang, H. Wu, A. Wang, and Y. Iwahori, “A novel digital modulation recognition algorithm based on deep convolutional neural network,” Applied Sciences MDPI, vol. 10, no. 1166, pp. 1–14, 2020.D. Wang, M. Zhang, J. Li, Z. Li, J. Li, C. Song, and X. Chen, “Intelligent constellation diagram analyzer using convolutional neural network-based deep learning,” Optics Express, vol. 25, no. 15, pp. 32188–32198, 2017.C. L. Cortés and N. Guerrero González, “Constellation diagram processing with convolutional neural networks for channel phase response estimation,” Computer Communications, vol. 180, pp. 89–96, 2021.Y. Xue, N. Ray, J. Hugh, and G. Bigras, “Cell counting by regression using convolutional neural network,” in Computer Vision – ECCV 2016 Workshops (G. Hua and H. Jégou, eds.), (Cham), pp. 274–290, Springer International Publishing, 2016.J. Brownlee, “Deep learning with time series forecasting,” 2017.MathWorks ®, “Train convolutional neural network for regression,” 2017.H. Z. Ur Rehman and S. Lee, “Automatic image alignment using principal component analysis,” IEEE Access, vol. 6, pp. 72063–72072, 2018.L. Frenzel Jr, Handbook of Serial Communications Interfaces A Comprehensive Compendium of Serial Digital Input/output (I/o) Standards. Neunes, Ed. Elsevier, 2016.C. L. Cortés and N. Guerrero-González, “Fast deep learning based multicarrier phase response estimation in non-flat frequency response channels,” in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), p. SpTh2I.2, Optical Society of America, 2020.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83030/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053776114.2023.pdf1053776114.2023.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf31702944https://repositorio.unal.edu.co/bitstream/unal/83030/2/1053776114.2023.pdf9e51d2281318cd7b3f3096cb31c9952cMD52unal/83030oai:repositorio.unal.edu.co:unal/830302023-01-19 14:07:40.53Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=