Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition

In this thesis, two promising and actively researched fields from pattern recognition (PR) and digital signal processing (DSP) are studied, adapted and applied for the automated recognition of bioacoustic signals: (i) learning from weakly-labeled data, and (ii) dictionary-based decomposition. The do...

Full description

Autores:
Ruiz Muñoz, José Francisco
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/59393
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/59393
http://bdigital.unal.edu.co/56866/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Pattern recognition
Digital signal processing
Multiple instance learning
Dictionary learning
Bioacoustics
Reconocimiento de patrones
Procesamiento digital de señales
Aprendizaje multi-instancia
Aprendizaje de diccionarios
Bioacústica
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_9b0ffd1853f888a8bc81719e60afe6fc
oai_identifier_str oai:repositorio.unal.edu.co:unal/59393
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
title Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
spellingShingle Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
62 Ingeniería y operaciones afines / Engineering
Pattern recognition
Digital signal processing
Multiple instance learning
Dictionary learning
Bioacoustics
Reconocimiento de patrones
Procesamiento digital de señales
Aprendizaje multi-instancia
Aprendizaje de diccionarios
Bioacústica
title_short Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
title_full Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
title_fullStr Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
title_full_unstemmed Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
title_sort Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition
dc.creator.fl_str_mv Ruiz Muñoz, José Francisco
dc.contributor.advisor.spa.fl_str_mv Orozco Alzate, Mauricio (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Ruiz Muñoz, José Francisco
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Pattern recognition
Digital signal processing
Multiple instance learning
Dictionary learning
Bioacoustics
Reconocimiento de patrones
Procesamiento digital de señales
Aprendizaje multi-instancia
Aprendizaje de diccionarios
Bioacústica
dc.subject.proposal.spa.fl_str_mv Pattern recognition
Digital signal processing
Multiple instance learning
Dictionary learning
Bioacoustics
Reconocimiento de patrones
Procesamiento digital de señales
Aprendizaje multi-instancia
Aprendizaje de diccionarios
Bioacústica
description In this thesis, two promising and actively researched fields from pattern recognition (PR) and digital signal processing (DSP) are studied, adapted and applied for the automated recognition of bioacoustic signals: (i) learning from weakly-labeled data, and (ii) dictionary-based decomposition. The document begins with an overview of the current methods and techniques applied for the automated recognition of bioacoustic signals, and an analysis of the impact of this technology at global and local scales. This is followed by a detailed description of my research on studying two approaches from the above-mentioned fields, multiple instance learning (MIL) and dictionary learning (DL), as solutions to particular challenges in bioacoustic data analysis. The most relevant contributions and findings of this thesis are the following ones: 1) the proposal of an unsupervised recording segmentation method of audio birdsong recordings that improves species classification with the benefit of an easier implementation since no manual handling of recordings is required; 2) the confirmation that, in the analyzed audio datasets, appropriate dissimilarity measures are those which capture most of the overall differences between bags, such as the modified Hausdorff distance and the mean minimum distance; 3) the adoption of dissimilarity adaptation techniques for the enhancement of dissimilarity-based multiple instance classification, along with the potential further enhancement of the classification performance by building dissimilarity spaces and increasing training set sizes; 4) the proposal of a framework for solving MIL problems by using the one nearest neighbor (1-NN) classifier; 5) a novel convolutive DL method for learning a representative dictionary from a collection of multiple-bird audio recordings; 6) such a DL method is successfully applied to spectrogram denoising and species classification; and, 7) an efficient online version of the DL method that outperforms other state-of-the-art batch and online methods, in both, computational cost and quality of the discovered patterns
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017
dc.date.accessioned.spa.fl_str_mv 2019-07-02T15:58:12Z
dc.date.available.spa.fl_str_mv 2019-07-02T15:58:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/59393
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/56866/
url https://repositorio.unal.edu.co/handle/unal/59393
http://bdigital.unal.edu.co/56866/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación
Departamento de Ingeniería Eléctrica, Electrónica y Computación
dc.relation.references.spa.fl_str_mv Ruiz Muñoz, José Francisco (2017) Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/59393/1/1053784297.2017.pdf
https://repositorio.unal.edu.co/bitstream/unal/59393/2/1053784297.2017.pdf.jpg
bitstream.checksum.fl_str_mv 3931a2ac9bb291bd6ebc842f71c7f9d6
02c9e3cd20212bbcc98a0d4411aec716
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089773999980544
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco Alzate, Mauricio (Thesis advisor)54487a86-76a1-4a1e-82d3-790241ea68e4-1Ruiz Muñoz, José Francisco0c7ab9be-d338-43a9-b0a7-029d4ecb32fe3002019-07-02T15:58:12Z2019-07-02T15:58:12Z2017https://repositorio.unal.edu.co/handle/unal/59393http://bdigital.unal.edu.co/56866/In this thesis, two promising and actively researched fields from pattern recognition (PR) and digital signal processing (DSP) are studied, adapted and applied for the automated recognition of bioacoustic signals: (i) learning from weakly-labeled data, and (ii) dictionary-based decomposition. The document begins with an overview of the current methods and techniques applied for the automated recognition of bioacoustic signals, and an analysis of the impact of this technology at global and local scales. This is followed by a detailed description of my research on studying two approaches from the above-mentioned fields, multiple instance learning (MIL) and dictionary learning (DL), as solutions to particular challenges in bioacoustic data analysis. The most relevant contributions and findings of this thesis are the following ones: 1) the proposal of an unsupervised recording segmentation method of audio birdsong recordings that improves species classification with the benefit of an easier implementation since no manual handling of recordings is required; 2) the confirmation that, in the analyzed audio datasets, appropriate dissimilarity measures are those which capture most of the overall differences between bags, such as the modified Hausdorff distance and the mean minimum distance; 3) the adoption of dissimilarity adaptation techniques for the enhancement of dissimilarity-based multiple instance classification, along with the potential further enhancement of the classification performance by building dissimilarity spaces and increasing training set sizes; 4) the proposal of a framework for solving MIL problems by using the one nearest neighbor (1-NN) classifier; 5) a novel convolutive DL method for learning a representative dictionary from a collection of multiple-bird audio recordings; 6) such a DL method is successfully applied to spectrogram denoising and species classification; and, 7) an efficient online version of the DL method that outperforms other state-of-the-art batch and online methods, in both, computational cost and quality of the discovered patternsResumen : En esta tesis se estudian, adaptan y aplican dos prometedoras y activas áreas del reconocimiento de patrones (PR) y procesamiento digital de señales (DSP): (i) aprendizaje débilmente supervisado y (ii) descomposiciones basadas en diccionarios. Inicialmente se hace una revisión de los métodos y técnicas que actualmente se aplican en tareas de reconocimiento automatizado de señales bioacústicas y se describe el impacto de esta tecnología a escalas nacional y global. Posteriormente, la investigación se enfoca en el estudio de dos técnicas de las áreas antes mencionadas, aprendizaje multi-instancia (MIL) y aprendizaje de diccionarios (DL), como soluciones a retos particulares del análisis de datos bioacústicos. Las contribuciones y hallazgos ms relevantes de esta tesis son los siguientes: 1) se propone un método de segmentacin de grabaciones de audio que mejora la clasificación automatizada de especies, el cual es fácil de implementar ya que no necesita información supervisada de entrenamiento; 2) se confirma que, en los conjuntos de datos analizados, las medidas de disimilitudes que capturan las diferencias globales entre bolsas funcionan apropiadamente, tales como la distancia modificada de Hausdorff y la distancia media de los mínimos; 3) la adopción de técnicas de adaptación de disimilitudes para mejorar la clasificación multi-instancia, junto con el incremento potencial del desempeño por medio de la construcción de espacios de disimilitudes y el aumento del tamaño de los conjuntos de entrenamiento; 4) se presenta un esquema para la solución de problemas MIL por medio del clasificador del vecino ms cercano (1-NN); 5) se propone un método novedoso de DL, basado en convoluciones, para el aprendizaje automatizado de un diccionario representativo a partir de un conjunto de grabaciones de audio de múltiples vocalizaciones de aves; 6) dicho mtodo DL se utiliza exitosamente como técnica de reducción de ruido en espectrogramas y clasificación de grabaciones bioacústicas; y 7) un método DL, de procesamiento en línea, que supera otros métodos del estado del arte en costo computacional y calidad de los patrones descubiertosDoctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónRuiz Muñoz, José Francisco (2017) Dissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognition. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.62 Ingeniería y operaciones afines / EngineeringPattern recognitionDigital signal processingMultiple instance learningDictionary learningBioacousticsReconocimiento de patronesProcesamiento digital de señalesAprendizaje multi-instanciaAprendizaje de diccionariosBioacústicaDissimilarity-based multiple instance classification and dictionary learning for bioacoustic signal recognitionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL1053784297.2017.pdfapplication/pdf6479630https://repositorio.unal.edu.co/bitstream/unal/59393/1/1053784297.2017.pdf3931a2ac9bb291bd6ebc842f71c7f9d6MD51THUMBNAIL1053784297.2017.pdf.jpg1053784297.2017.pdf.jpgGenerated Thumbnailimage/jpeg4873https://repositorio.unal.edu.co/bitstream/unal/59393/2/1053784297.2017.pdf.jpg02c9e3cd20212bbcc98a0d4411aec716MD52unal/59393oai:repositorio.unal.edu.co:unal/593932024-04-08 23:13:35.292Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co