La transformación de la participación de la demanda en los mercados eléctricos
Los compromisos internacionales para la consecución de objetivos renovables sumados a la consciencia ambiental, el compromiso social, y la disminución de costos de nuevas tecnologías, han permitido la consolidación de una transformación en el sector eléctrico, de la que se vislumbran importantes cam...
- Autores:
-
Jiménez Zapata, Maritza
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79637
- Palabra clave:
- 330 - Economía::333 - Economía de la tierra y de la energía
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Demanda de energía eléctrica
Consumo de energía
Curva de Carga
Eficiencia Energética
Gestión de la Demanda
Mercado Eléctrico
Microgeneración
Participación de la Demanda
Respuesta de la Demanda
Conservación
Conservation
Demand-Side Management
Demand Response
Energy Efficiency
Electricity Market
Load Curve
Microgeneration
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_9b0f85e2651c6e3c2449726d03b029ea |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79637 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
La transformación de la participación de la demanda en los mercados eléctricos |
dc.title.translated.eng.fl_str_mv |
Transformation of demand-side participation in the electricity markets |
title |
La transformación de la participación de la demanda en los mercados eléctricos |
spellingShingle |
La transformación de la participación de la demanda en los mercados eléctricos 330 - Economía::333 - Economía de la tierra y de la energía 000 - Ciencias de la computación, información y obras generales::003 - Sistemas Demanda de energía eléctrica Consumo de energía Curva de Carga Eficiencia Energética Gestión de la Demanda Mercado Eléctrico Microgeneración Participación de la Demanda Respuesta de la Demanda Conservación Conservation Demand-Side Management Demand Response Energy Efficiency Electricity Market Load Curve Microgeneration |
title_short |
La transformación de la participación de la demanda en los mercados eléctricos |
title_full |
La transformación de la participación de la demanda en los mercados eléctricos |
title_fullStr |
La transformación de la participación de la demanda en los mercados eléctricos |
title_full_unstemmed |
La transformación de la participación de la demanda en los mercados eléctricos |
title_sort |
La transformación de la participación de la demanda en los mercados eléctricos |
dc.creator.fl_str_mv |
Jiménez Zapata, Maritza |
dc.contributor.advisor.none.fl_str_mv |
Franco Cardona, Carlos Jaime Dyner Rezonzew, Isaac |
dc.contributor.author.none.fl_str_mv |
Jiménez Zapata, Maritza |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Sistemas Energéticos |
dc.subject.ddc.spa.fl_str_mv |
330 - Economía::333 - Economía de la tierra y de la energía 000 - Ciencias de la computación, información y obras generales::003 - Sistemas |
topic |
330 - Economía::333 - Economía de la tierra y de la energía 000 - Ciencias de la computación, información y obras generales::003 - Sistemas Demanda de energía eléctrica Consumo de energía Curva de Carga Eficiencia Energética Gestión de la Demanda Mercado Eléctrico Microgeneración Participación de la Demanda Respuesta de la Demanda Conservación Conservation Demand-Side Management Demand Response Energy Efficiency Electricity Market Load Curve Microgeneration |
dc.subject.lemb.none.fl_str_mv |
Demanda de energía eléctrica Consumo de energía |
dc.subject.proposal.spa.fl_str_mv |
Curva de Carga Eficiencia Energética Gestión de la Demanda Mercado Eléctrico Microgeneración Participación de la Demanda Respuesta de la Demanda Conservación |
dc.subject.proposal.eng.fl_str_mv |
Conservation Demand-Side Management Demand Response Energy Efficiency Electricity Market Load Curve Microgeneration |
description |
Los compromisos internacionales para la consecución de objetivos renovables sumados a la consciencia ambiental, el compromiso social, y la disminución de costos de nuevas tecnologías, han permitido la consolidación de una transformación en el sector eléctrico, de la que se vislumbran importantes cambios para los participantes del mercado. Dentro de estos cambios sobresalen las nuevas alternativas tecnológicas que se ofrecen para los diferentes sectores de demanda de electricidad, permitiéndoles hacer una gestión activa de su consumo a través de mecanismos de participación como la microgeneración, la eficiencia energética, la conservación y la respuesta de la demanda. Ante este nuevo escenario, surge la incertidumbre de los impactos en el mercado procedentes de la participación activa de los sectores de demanda residencial y no residencial. Esta tesis desarrolla una plataforma para la evaluación de políticas orientadas a la gestión de la demanda de electricidad que permita identificar si es posible reforzar los comportamientos favorables al mercado y mitigar los comportamientos desfavorables, ante la inminente modificación de la participación de la demanda en el mercado eléctrico colombiano. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-16T14:50:15Z |
dc.date.available.none.fl_str_mv |
2021-06-16T14:50:15Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79637 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79637 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.references.spa.fl_str_mv |
ABB. (2017). Lista de precios productos de automatización y control. https://new.abb.com/docs/librariesprovider78/colombia-ecuador-docs/2-lp-productos-de-automatizacion-y-control.pdf?sfvrsn=b8938c12_2 ABB Group. (2013). Eficiencia en motores nuevos desarrollos y tecnologías ABB IE4 Super Premium y SynRM 1E4. https://new.abb.com/docs/librariesprovider78/chile-documentos/jornadas-tecnicas-2013---presentaciones/3-josé-simpson---eficiencia-en-motores-nuevos-desarrollos-y-tecnologías-abb.pdf?sfvrsn=2 Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. https://doi.org/10.1016/j.rser.2010.09.003 Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273–291. https://doi.org/10.1016/j.jenvp.2005.08.002 Abreu, J., Wingartz, N., & Hardy, N. (2019). New trends in solar: a comparative study assessing the attitudes towards the adoption of rooftop PV. Energy Policy, 128(December 2018), 347–363. https://doi.org/10.1016/j.enpol.2018.12.038 Aelenei, D., Lopes, R. A., Aelenei, L., & Gonçalves, H. (2019). Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renewable Energy, 137, 189–197. https://doi.org/10.1016/j.renene.2018.07.140 Aghaei, J., & Alizadeh, M. I. (2013). Demand response in smart electricity grids equipped with renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 18, 64–72. https://doi.org/10.1016/j.rser.2012.09.019 Agterbosch, S., Meertens, R. M., & Vermeulen, W. J. V. (2009). The relative importance of social and institutional conditions in the planning of wind power projects. Renewable and Sustainable Energy Reviews, 13(2), 393–405. https://doi.org/10.1016/j.rser.2007.10.010 Ahmad, S., Mat Tahar, R., Muhammad-Sukki, F., Munir, A. B., & Abdul Rahim, R. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29–37. https://doi.org/10.1016/j.rser.2015.11.034 Alam, M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2019). Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society, 44(September 2018), 56–69. https://doi.org/10.1016/j.scs.2018.09.022 Andersson, E., Karlsson, M., Thollander, P., & Paramonova, S. (2018). Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program. Renewable and Sustainable Energy Reviews, 93(May), 165–177. https://doi.org/10.1016/j.rser.2018.05.037 Andor, M. A., & Fels, K. M. (2018). Behavioral economics and energy conservation – A systematic review of non-price interventions and their causal effects. Ecological Economics, 148, 178–210. https://doi.org/10.1016/j.ecolecon.2018.01.018 Ankamah-Yeboah, I., & Rehdanz, K. (2014). Explaining the variation in the value of building energy efficiency certificates: A quantitative meta-analysis. Kiel Working Paper 1949. https://www.econstor.eu/handle/10419/100700 Annala, S., Lukkarinen, J., Primmer, E., Honkapuro, S., Ollikka, K., Sunila, K., & Ahonen, T. (2018). Regulation as an enabler of demand response in electricity markets and power systems. Journal of Cleaner Production, 195, 1139–1148. https://doi.org/10.1016/j.jclepro.2018.05.276 Anukoolthamchote, P. C., Assané, D., & Konan, D. E. (2020). Net electricity load profiles: Shape and variability considering customer-mix at transformers on the island of Oahu, Hawai’i. Energy Policy, 147, 111732. https://doi.org/10.1016/j.enpol.2020.111732 Apeaning, R. W., & Thollander, P. (2013). Barriers to and driving forces for industrial energy efficiency improvements in African industries - A case study of Ghana’s largest industrial area. Journal of Cleaner Production, 53, 204–213. https://doi.org/10.1016/j.jclepro.2013.04.003 Arango, S., Franco, C., Olaya, Y., Naranjo, M., Alcaráz, S., & Gutiérrez, F. (2012). Análisis de diseño de esquemas de subsidios en los servicios públicos colombianos por medio de economía experimental y simulación (1st ed.). Universidad Nacional de Colombia (Medellín). Argun, I. D., Kayakutlu, G., Ozgozen, N. Y., & Daim, T. U. (2021). Models for Energy Efficiency Obligation Systems through different perspectives. Technology in Society, 64, 101436. https://doi.org/10.1016/j.techsoc.2020.101436 Avancini, D. B., Rodrigues, J. J. P. C., Martins, S. G. B., Rabêlo, R. A. L., Al-Muhtadi, J., & Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702–715. https://doi.org/10.1016/j.jclepro.2019.01.229 Baatz, B., Relf, G., & Nowak, S. (2018). The role of energy efficiency in a distributed energy future. The Electricity Journal, 31(10), 13–16. https://doi.org/10.1016/j.tej.2018.11.004 Balasubramanian, S., & Balachandra, P. (2021). Characterising Electricity Demand through Load Curve Clustering: A Case of Karnataka Electricity System in India. Computers & Chemical Engineering, 107316. https://doi.org/10.1016/j.compchemeng.2021.107316 Balcombe, P., Rigby, D., & Azapagic, A. (2013). Motivations and barriers associated with adopting microgeneration energy technologies in the UK. Renewable and Sustainable Energy Reviews, 22, 655–666. https://doi.org/10.1016/j.rser.2013.02.012 Balcombe, P., Rigby, D., & Azapagic, A. (2014). Investigating the importance of motivations and barriers related to microgeneration uptake in the UK. Applied Energy, 130, 403–418. https://doi.org/10.1016/j.apenergy.2014.05.047 Balcombe, P., Rigby, D., & Azapagic, A. (2015). Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, 139, 245–259. https://doi.org/10.1016/j.apenergy.2014.11.034 Banco de la República de Colombia. (2019). Tasas de captación semanales y mensuales. https://www.banrep.gov.co/es Banco de la República de Colombia. (2020). Banco de la República | Colombia. Producto Interno Bruto (PIB). https://www.banrep.gov.co/es/estadisticas/producto-interno-bruto-pib Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4 Basher, S. A., Masini, A., & Aflaki, S. (2015). Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment. Renewable and Sustainable Energy Reviews, 52, 1680–1692. https://doi.org/10.1016/j.rser.2015.08.028 Bass, F. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227. Baur, L., & M, M. U. (2018). Diffusion of photovoltaic technology in Germany: A sustainable success or an illusion driven by guaranteed feed-in tariffs? Energy, 150, 289–298. https://doi.org/10.1016/j.energy.2018.02.104 Bedoya, L. (2017). Efectos del desarrollo tecnológico de las baterías en el Sistema Interconectado Nacional de Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60848 Behm, C., Nolting, L., & Praktiknjo, A. (2020). How to model European electricity load profiles using artificial neural networks. Applied Energy, 277, 115564. https://doi.org/10.1016/j.apenergy.2020.115564 Bergaentzlé, C., Clastres, C., & Khalfallah, H. (2014). Demand-side management and European environmental and energy goals: An optimal complementary approach. Energy Policy, 67, 858–869. https://doi.org/10.1016/j.enpol.2013.12.008 Bergman, N., & Eyre, N. (2011). What role for microgeneration in a shift to a low carbon domestic energy sector in the UK? Energy Efficiency, 4(3), 335–353. https://doi.org/10.1007/s12053-011-9107-9 Blaser, F. (2009). Diagnóstico de Electrodomésticos y de Aparatos Electrónicos de Consumo. https://quimicos.minambiente.gov.co/images/RAEE/documentos_raee/8_EMPA-ANDI_Diagnostico_Electrodomesticos_y_Aparatos_Electronicos_de_Consumo.pdf Bolwig, S., Bazbauers, G., Klitkou, A., Lund, P. D., Blumberga, A., Gravelsins, A., & Blumberga, D. (2019). Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 101(June 2018), 440–452. https://doi.org/10.1016/j.rser.2018.11.019 Borchers, A. M., Xiarchos, I., & Beckman, J. (2014). Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach. Energy Policy, 69, 106–115. https://doi.org/10.1016/j.enpol.2014.02.014 Boßmann, T., & Eser, E. J. (2016). Model-based assessment of demand-response measures - A comprehensive literature review. Renewable and Sustainable Energy Reviews, 57, 1637–1656. https://doi.org/10.1016/j.rser.2015.12.031 Breyer, C., Azzuni, A., & Breyer, C. (2018). Energy security and energy storage technologies. Energy Procedia, 155, 237–258. https://doi.org/10.1016/j.egypro.2018.11.053 Brown, M., & Watkins, T. (2016). The “green premium” for environmentally certified homes: a meta-analysis and exploration. Brunke, J. C., Johansson, M., & Thollander, P. (2014). Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Journal of Cleaner Production, 84(1), 509–525. https://doi.org/10.1016/j.jclepro.2014.04.078 Bryant, S. T., Straker, K., & Wrigley, C. (2018). The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, 195, 1032–1046. https://doi.org/10.1016/j.jclepro.2018.05.233 Bugden, D., & Stedman, R. (2019). A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research and Social Science, 47(August 2018), 137–145. https://doi.org/10.1016/j.erss.2018.08.025 Cagno, E., & Trianni, A. (2013). Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises. Applied Energy, 104, 276–285. https://doi.org/10.1016/j.apenergy.2012.10.053 Cagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. https://doi.org/10.1016/j.jclepro.2014.06.057 Cardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case. Journal of Cleaner Production, 112, 3759–3773. https://doi.org/10.1016/j.jclepro.2015.08.089 Cardenas, L., Zapata, M., Franco, C. J., & Dyner, I. (2017). Assessing the combined effect of the diffusion of solar rooftop generation, energy conservation and efficient appliances in households. Journal of Cleaner Production, 162, 491–503. https://doi.org/10.1016/j.jclepro.2017.06.068 Castaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179 Castaneda, M., Jimenez, M., Zapata, S., Franco, C. J., & Dyner, I. (2017). Myths and facts of the utility death spiral. Energy Policy, 110, 105–116. https://doi.org/10.1016/j.enpol.2017.07.063 Castaneda, M., Zapata, S., Cherni, J., Aristizabal, A. J., & Dyner, I. (2020). The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector. Renewable Energy, 155, 1432–1443. https://doi.org/10.1016/j.renene.2020.04.051 Christoph, H., Lena, S., Berger, C., Joachim, U., Hahnel, J., & Wüstenhagen, R. (2018). Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms. Energy Policy, 118(April), 596–602. https://doi.org/10.1016/j.enpol.2018.04.005 Claudy, M. C., Michelsen, C., & O’Driscoll, A. (2011). The diffusion of microgeneration technologies – assessing the influence of perceived product characteristics on home owners’ willingness to pay. Energy Policy, 39(3), 1459–1469. https://doi.org/10.1016/j.enpol.2010.12.018 Claudy, M. C., Michelsen, C., O’Driscoll, A., & Mullen, M. R. (2010). Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland. Renewable and Sustainable Energy Reviews, 14(7), 2154–2160. https://doi.org/10.1016/j.rser.2010.03.028 Congreso de la República de Colombia. (1994a). Ley 142 de 1994. Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones. Congreso de la República de Colombia. (1994b). Ley 143 de 1994. Por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia ener (Issue 41, p. 64). http://www.minminas.gov.co/documents/10180/667537/Ley_143_1994.pdf/c2cfbda4-fe12-470e-9d30-67286b9ad17e Congreso de la República de Colombia. (2014). Ley 1715. Por la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional (pp. 1–26). http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdf Cooremans, C., & Schönenberger, A. (2019). Energy management: a key driver of energy-efficiency investment? Journal of Cleaner Production, 221–231. https://doi.org/10.1016/j.jclepro.2019.04.333 Costello, K. W., & Hemphill, R. C. (2014). Electric Utilities’ ‘Death Spiral’: Hyperbole or Reality? The Electricity Journal, 27(10), 7–26. https://doi.org/10.1016/j.tej.2014.09.011 Crago, C. L., & Chernyakhovskiy, I. (2017). Are policy incentives for solar power effective? Evidence from residential installations in the Northeast. Journal of Environmental Economics and Management, 81, 132–151. https://doi.org/10.1016/j.jeem.2016.09.008 CREG. (2006). Resolución 071 de 2006. Por la cual se adopta la metodología para la remuneración del cargo por confiabilidad en el mercado mayorista de energía. http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2006-Creg071-2006 Resolución 056 de 2007, (2007). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolución-2007-CREG056-2007#. Resolución 097 de 2008, (2008). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/d1dba6c9018b37ce0525785a007a709b?OpenDocument CREG. (2015). Resolución 024 de 2015. Por la cual se regula la actividad de autogeneración a gran escala en el sistema interconectado nacional (SIN) y se dictan otras disposiciones. (p. 9). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/67513914c35d6b8c05257e2d007cf0b0/$FILE/Creg024-2015.pdf CREG. (2017). Resolución 121 de 2017. Por la cual se ordena hacer público el proyecto de resolución “Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el sistema interconectado nacional”. (p. 21). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/b5341fbcfab96db80525819b006d42fa/$FILE/Creg121-2017.pdf CREG. (2018a). Documento CREG 077 de 2018. Infraestructura de medición avanzada - Anexo de la circular 054 de 2018. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/3413698103ff1fde052582e5007b5317/$FILE/Circular054-2018 Anexo.pdf CREG. (2018b). Resolución 030 de 2018. Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el Sistema Interconectado Nacional. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191?OpenDocument Curtius, H. C. (2018). The adoption of building-integrated photovoltaics: barriers and facilitators. Renewable Energy, 126, 783–790. https://doi.org/10.1016/j.renene.2018.04.001 D’Agostino, D., Cuniberti, B., & Bertoldi, P. (2017). Energy consumption and efficiency technology measures in European non-residential buildings. Energy and Buildings, 153, 72–86. https://doi.org/10.1016/j.enbuild.2017.07.062 DANE. (2012). Clasificación industrial internacional uniforme de todas las actividades económicas. Revisión 4 adaptada para Colombia. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdf DANE. (2019). Encuesta nacional de calidad de vida (ECV) 2018. Anexos. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2018 DANE. (2020). Censo nacional de población y vivienda 2018 Colombia. Principales Resultados Viviendas, Hogares y Personas - VIHOPE-. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 Darby, S. (2006). The effectiveness of feedback on energy consumption. In A Review for DEFRA of the Literature on Metering, Billing and direct Displays. https://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf Defeuilley, C. (2019). Energy transition and the future(s) of the electricity sector. Utilities Policy, 57(March), 97–105. https://doi.org/10.1016/j.jup.2019.03.002 Delmas, M. A., Fischlein, M., & Asensio, O. I. (2013). Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012. Energy Policy, 61, 729–739. https://doi.org/10.1016/j.enpol.2013.05.109 Denholm, P., Drury, E., & Margolis, R. (2009). The Solar Deployment System (SolarDS) Model: Documentation and Sample Results. In National Renewable Energy Laboratory (NREL) (Issue September). http://www.nrel.gov/docs/fy10osti/45832.pdf der Veen, R. A. C., & De Vries, L. J. (2009). The impact of microgeneration upon the Dutch balancing market. Energy Policy, 37(7), 2788–2797. https://doi.org/10.1016/j.enpol.2009.03.015 Dharshing, S. (2017). Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Research & Social Science, 23, 113–124. https://doi.org/10.1016/j.erss.2016.10.012 Divshali, P. H., & Choi, B. J. (2016). Electrical market management considering power system constraints in smart distribution grids. Energies, 9(6), 1–30. https://doi.org/10.3390/en9060405 Dong, C., Zhou, R., & Li, J. (2021). Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China. Applied Energy, 281, 116007. https://doi.org/10.1016/j.apenergy.2020.116007 Duan, H.-B., Zhu, L., & Fan, Y. (2014). A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology. Technological Forecasting and Social Change, 83, 156–169. https://doi.org/10.1016/j.techfore.2013.07.005 Dufo-López, R., & Bernal-Agustín, J. L. (2015). A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684–694. https://doi.org/10.1016/j.energy.2015.03.031 Dyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2), 136–144. Dyner, I., & Franco, C. J. (2004). Consumers’ bounded rationality: the case of competitive energy markets. Systems Research and Behavioral Science, 21(4), 373–389. https://doi.org/10.1002/sres.644 Earle, R., Kahn, E. P., & Macan, E. (2009). Measuring the capacity impacts of demand response. The Electricity Journal, 22(6), 47–58. https://doi.org/10.1016/j.tej.2009.05.014 easy. (2020a). Bombillo Ahorrador 3U 20W E27 6500K Luz Fría Pack X4 Nex. https://www.easy.com.co/p/bombillo-ahorrador-3u-20w-e27-6500k-luz-fria-pack-x4-nex/ easy. (2020b). Bombillo Led A60 12W E27 1050Lm Luz Fría Evergreen. https://www.easy.com.co/p/bombillo-led-a60-12w-e27-1050lm-luz-fria-evergreen/ Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322 Ehrhardt-Martinez, K., Donelly, K. A., & Laitner, J. A. (2010). Advanced metering initiatives and residential feedback programas: a meta-review for household electricity-saving ppportunities. https://www.aceee.org/sites/default/files/publications/researchreports/e105.pdf Eid, C., Reneses Guillén, J., Frías Marín, P., & Hakvoort, R. (2014). The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, 244–254. https://doi.org/10.1016/j.enpol.2014.09.011 Enersic, & DNP. (2017). Energy demand situation in Colombia. Engelken, M., Römer, B., Drescher, M., Welpe, I. M., & Picot, A. (2016). Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renewable and Sustainable Energy Reviews, 60, 795–809. https://doi.org/10.1016/j.rser.2015.12.163 Falabella. (2020). Neveras. https://www.falabella.com.co/falabella-co/category/cat1040982/Neveras Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. https://doi.org/10.1007/s12053-008-9009-7 Fizaine, F., Voye, P., & Baumont, C. (2018). Does the literature support a high willingness to pay for green label buildings? An answer with treatment of publication bias. Revue d’économie Politique, 128(5), 1013. https://doi.org/10.3917/redp.285.1013 Fleiter, T., Schleich, J., & Ravivanpong, P. (2012). Adoption of energy-efficiency measures in SMEs-An empirical analysis based on energy audit data from Germany. Energy Policy, 51, 863–875. https://doi.org/10.1016/j.enpol.2012.09.041 Gao, Y., Zhou, X., Mu, Q., & Zhu, J. (2019). Evaluation on the short-term power supply capacity of an active distribution system based on multiple scenarios considering uncertainties. In Smart Power Distribution Systems (pp. 467–502). Elsevier. https://doi.org/10.1016/B978-0-12-812154-2.00020-1 Gaspar, R., Antunes, D., Faria, A., & Meiszner, A. (2017). Sufficiency before efficiency: Consumers’ profiling and barriers/facilitators of energy efficient behaviours. Journal of Cleaner Production, 165, 134–142. https://doi.org/10.1016/j.jclepro.2017.07.075 Gautier, A., Hoet, B., Jacqmin, J., & Driessche, S. Van. (2019). Self-consumption choice of residential PV owners under net-metering. Energy Policy, 128(October 2018), 648–653. https://doi.org/10.1016/j.enpol.2019.01.055 Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K., & Sovacool, B. K. (2018). Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Research and Social Science, 40(June 2017), 23–35. https://doi.org/10.1016/j.erss.2017.11.003 Gelazanskas, L., & Gamage, K. A. A. (2014). Demand side management in smart grid: A review and proposals for future direction. Sustainable Cities and Society, 11, 22–30. https://doi.org/10.1016/j.scs.2013.11.001 Gellings, C. W. (1985). The concept of demand side management for electric utilities. Proceedings of the IEEE, 10, 1468–1470. Genus, A. (2012). Changing the rules? Institutional innovation and the diffusion of microgeneration. Technology Analysis & Strategic Mangement, September 2014, 37–41. https://doi.org/10.1080/09537325.2012.705122 Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006 Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the Social Scientist (Second). Mc Graw-Hill Education. Giraldo, N. R. (2018). Evaluación de políticas para la autogestión de la electricidad en el sector comercial no regulado en Colombia : caso supermercados [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/76195/1038412033.2018.pdf?sequence=1&isAllowed=y Good, N. (2019). Using behavioural economic theory in modelling of demand response. Applied Energy, 239, 107–116. https://doi.org/10.1016/j.apenergy.2019.01.158 Good, N., Ellis, K. A., & Mancarella, P. (2017). Review and classification of barriers and enablers of demand response in the smart grid. Renewable and Sustainable Energy Reviews, 72(November 2016), 57–72. https://doi.org/10.1016/j.rser.2017.01.043 Guidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technological Forecasting and Social Change, 77(2), 279–296. https://doi.org/10.1016/j.techfore.2009.07.003 Gulagi, A., Bogdanov, D., & Breyer, C. (2017). The demand for storage technologies in energy transition pathways towards 100% renewable energy for India. Energy Procedia, 135, 37–50. https://doi.org/10.1016/j.egypro.2017.09.485 Guo, P., Li, V. O. K., & Lam, J. C. K. (2017). Smart demand response in China: Challenges and drivers. Energy Policy, 107, 1–10. https://doi.org/10.1016/j.enpol.2017.04.019 Gupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society, 31, 244–259. https://doi.org/10.1016/j.scs.2017.02.005 Gutiérrez-Pedrero, M. J., Tarancón, M. Á., del Río, P., & Alcántara, V. (2018). Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe. Applied Energy, 211(June 2017), 743–754. https://doi.org/10.1016/j.apenergy.2017.10.115 Hackbarth, A., & Löbbe, S. (2020). Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading. Energy Policy, 138, 111238. https://doi.org/10.1016/j.enpol.2020.111238 Haider, H. T., See, O. H., & Elmenreich, W. (2016). A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews, 59, 166–178. https://doi.org/10.1016/j.rser.2016.01.016 Hamwi, M., & Lizarralde, I. (2017). A review of business models towards service-oriented electricity systems. Procedia CIRP, 64, 109–114. https://doi.org/10.1016/j.procir.2017.03.032 Hanna, R., Leach, M., & Torriti, J. (2018). Microgeneration: The installer perspective. Renewable Energy, 116(September 2012), 458–469. https://doi.org/10.1016/j.renene.2017.09.023 Hassan, M. T., Burek, S., & Asif, M. (2017). Barriers to industrial energy efficiency improvement - manufacturing SMEs of Pakistan. Energy Procedia, 113, 135–142. https://doi.org/10.1016/j.egypro.2017.04.040 Hayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: The importance of household segmentation. Energy Research & Social Science, 3, 30–45. https://doi.org/10.1016/j.erss.2014.07.002 Hayward, J. A., & Graham, P. W. (2013). A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies. Energy Economics, 40, 537–548. https://doi.org/10.1016/j.eneco.2013.08.010 Helm, C., & Mier, M. (2019). On the efficient market diffusion of intermittent renewable energies. Energy Economics, 80, 812–830. https://doi.org/10.1016/j.eneco.2019.01.017 Herrera, B., Amell, A., Chejne, F., Cacua, K., Manrique, R., Henao, W., & Vallejo, G. (2017). Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia. Energy, 140, 1047–1058. https://doi.org/10.1016/j.energy.2017.09.041 Hesselink, L. X. W., & Chappin, E. J. L. (2019). Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99(July 2018), 29–41. https://doi.org/10.1016/j.rser.2018.09.031 Hochman, G., & Timilsina, G. R. (2017). Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis. Energy Economics, 63, 22–30. https://doi.org/10.1016/j.eneco.2017.01.013 Hohmeyer, O. H., & Bohm, S. (2015). Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies. Wiley Interdisciplinary Reviews: Energy and Environment, 4(1), 74–97. https://doi.org/10.1002/wene.128 Homecenter. (2020a). Aires Acondicionados. https://www.homecenter.com.co/homecenter-co/category/cat10388/Aires-acondicionados Homecenter. (2020b). Lámpara Led Panel 60x60cm 48w Ilumax. https://www.homecenter.com.co/homecenter-co/product/233841/?cid=494566&=INTERNA Homecenter. (2020c). Neveras y Nevecones. https://www.homecenter.com.co/homecenter-co/category/cat10850/Neveras-y-Nevecones Homecenter. (2020d). Tubo Fluorescente T8 2784 Lúmenes 32w Luz Blanca. https://www.homecenter.com.co/homecenter-co/product/208806/tubo-fluorescente-t8-2784-lumenes-32w-luz-blanca Honsberg, C., & Bowden, S. (2014). Calculation of Solar Insolation. Photovoltaic Education Network. http://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation Horbach, J., & Rammer, C. (2018). Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy, 121(June), 404–414. https://doi.org/10.1016/j.enpol.2018.06.042 Hou, Q., Zhang, N., Du, E., Miao, M., Peng, F., & Kang, C. (2019). Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 242, 205–215. https://doi.org/10.1016/j.apenergy.2019.03.067 Huang, Y., Tian, H., & Wang, L. (2015). Demand response for home energy management system. International Journal of Electrical Power and Energy Systems, 73, 448–455. https://doi.org/10.1016/j.ijepes.2015.05.032 Hughes, J. E., & Podolefsky, M. (2015). Getting green with solar subsidies: evidence from the California solar initiative. Journal of the Association of Environmental and Resource Economists, 2(2), 235–275. https://doi.org/10.1086/681131 Huh, S.-Y., & Lee, C.-Y. (2014). Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy, 69, 248–257. https://doi.org/10.1016/j.enpol.2014.02.028 Hurtado Munoz, L. A., Huijben, J. C. C. M., Verhees, B., & Verbong, G. P. J. (2014). The power of grid parity: A discursive approach. Technological Forecasting and Social Change, 87, 179–190. https://doi.org/10.1016/j.techfore.2013.12.012 Huuki, H., Karhinen, S., Kopsakangas-Savolainen, M., & Svento, R. (2020). Flexible demand and supply as enablers of variable energy integration. Journal of Cleaner Production, 258, 120574. https://doi.org/10.1016/j.jclepro.2020.120574 Hyysalo, S., Johnson, M., & Juntunen, J. K. (2017). The diffusion of consumer innovation in sustainable energy technologies. Journal of Cleaner Production, 162, S70–S82. https://doi.org/10.1016/j.jclepro.2016.09.045 IDEAM, & UPME. (2019). Atlas de radiación solar. http://atlas.ideam.gov.co/presentacion/ IEA. (2018). Electricity information: overview. https://webstore.iea.org/download/direct/2261?fileName=Electricity_Information_ 2018_Overview.pdf IEA. (2020). World energy investment 2020. https://www.iea.org/reports/world-energy-investment-2020 IRENA. (2017). REthinking Energy 2017. In ASHRAE Journal (Vol. 55, Issue July). http://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdf IRENA. (2018). Global energy transformation: A roadmap to 2050. In Global Energy Transformation. A Roadmap to 2050. http://irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050%0Awww.irena.org IRENA. (2020). RE Technology patents reports. http://inspire.irena.org/Pages/patents/Patents-Search.aspx Islam, J., Hu, Y., Haltas, I., Balta-ozkan, N., Jr, G., & Varga, L. (2018). Reducing industrial energy demand in the UK : A review of energy efficiency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94(July), 1153–1178. https://doi.org/10.1016/j.rser.2018.06.040 Islam, T. (2014). Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy, 65, 340–350. https://doi.org/10.1016/j.enpol.2013.10.004 Iwai, N., Kurahashi, N., Kishita, Y., Yamaguchi, Y., Shimoda, Y., Fukushige, S., & Umeda, Y. (2014). Scenario analysis of regional electricity demand in the residential and commercial sectors - Influence of diffusion of photovoltaic systems and electric vehicles into power grids -. Procedia CIRP, 15, 319–324. https://doi.org/10.1016/j.procir.2014.06.076 Jacksohn, A., Grösche, P., Rehdanz, K., & Schröder, C. (2019). Drivers of renewable technology adoption in the household sector. Energy Economics, 81, 216–226. https://doi.org/10.1016/j.eneco.2019.04.001 Janda, K. (2018). Slovak electricity market and the price merit order effect of photovoltaics. Energy Policy, 122(August 2018), 551–562. https://doi.org/10.1016/j.enpol.2018.07.021 Jang, D., Eom, J., Jae Park, M., & Jeung Rho, J. (2016). Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers. Energy Policy, 88, 11–26. https://doi.org/10.1016/j.enpol.2015.09.029 Jayaweera, N., Jayasinghe, C. L., & Weerasinghe, S. N. (2018). Local factors affecting the spatial diffusion of residential photovoltaic adoption in Sri Lanka. 119(April), 59–67. https://doi.org/10.1016/j.enpol.2018.04.017 Jiang, B., Farid, A. M., & Youcef-Toumi, K. (2015). Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches. Applied Energy, 156, 642–654. https://doi.org/10.1016/j.apenergy.2015.07.014 Jiménez, M., Cadavid, L., & Franco, C. (2014). Scenarios of photovoltaic grid parity in Colombia. Dyna, 188(81), 237–245. https://doi.org/10.15446/dyna.v81n188.42165 Jimenez, M., Franco, C. J., & Dyner, I. (2016). Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, 111. https://doi.org/10.1016/j.energy.2016.06.051 Kangas, H. L., Lazarevic, D., & Kivimaa, P. (2018). Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies. Energy Policy, 114(November 2017), 63–76. https://doi.org/10.1016/j.enpol.2017.11.060 Karakaya, E., Hidalgo, A., & Nuur, C. (2015). Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany. Renewable and Sustainable Energy Reviews, 43, 1090–1098. https://doi.org/10.1016/j.rser.2014.11.077 Karlin, B., Zinger, J. F., & Ford, R. (2015). The effects of feedback on energy conservation: A meta-analysis. Psychological Bulletin, 141(6), 1205–1227. https://doi.org/10.1037/a0039650 Kaya, İ., Çolak, M., & Terzi, F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207–228. https://doi.org/10.1016/j.esr.2019.03.003 Keiner, D., Ram, M., Barbosa, L. D. S. N. S., Bogdanov, D., & Breyer, C. (2019). Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy, 185, 406–423. https://doi.org/10.1016/j.solener.2019.04.081 Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. https://doi.org/10.1016/j.rser.2015.10.117 Konidari, P., & Mavrakis, D. (2007). A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy, 35(12), 6235–6257. https://doi.org/10.1016/j.enpol.2007.07.007 Kostka, G., Moslener, U., & Andreas, J. (2013). Barriers to increasing energy efficiency: Evidence from small-and medium-sized enterprises in China. Journal of Cleaner Production, 57(2013), 59–68. https://doi.org/10.1016/j.jclepro.2013.06.025 Krajačić, G., Duić, N., Tsikalakis, A., Zoulias, M., Caralis, G., Panteri, E., & Carvalho, M. da G. (2011). Feed-in tariffs for promotion of energy storage technologies. Energy Policy, 39(3), 1410–1425. https://doi.org/10.1016/j.enpol.2010.12.013 Kubli, M., Loock, M., & Wüstenhagen, R. (2018). The flexible prosumer: Measuring the willingness to co-create distributed flexibility. Energy Policy, 114(August 2017), 540–548. https://doi.org/10.1016/j.enpol.2017.12.044 Kurdgelashvili, L., Shih, C. H., Yang, F., & Garg, M. (2019). An empirical analysis of county-level residential PV adoption in California. Technological Forecasting and Social Change, 139(November 2018), 321–333. https://doi.org/10.1016/j.techfore.2018.11.021 La Viña, A. G., Tan, J. M., Guanzon, T. I. M., Caleda, M. J., & Ang, L. (2017). Navigating a trilemma: Energy security, equity, and sustainability in the Philippines’ low-carbon transition. Energy Research & Social Science, October, 0–1. https://doi.org/10.1016/j.erss.2017.10.039 Labandeira, X., Labeaga, J. M., Linares, P., & López-Otero, X. (2020). The impacts of energy efficiency policies: Meta-analysis. Energy Policy, 147(September 2019), 111790. https://doi.org/10.1016/j.enpol.2020.111790 Langlois-Bertrand, S., Benhaddadi, M., Jegen, M., & Pineau, P. O. (2015). Political-institutional barriers to energy efficiency. Energy Strategy Reviews, 8, 30–38. https://doi.org/10.1016/j.esr.2015.08.001 Laws, N. D., Epps, B. P., Peterson, S. O., Laser, M. S., & Wanjiru, G. K. (2017). On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage. Applied Energy, 185, 627–641. https://doi.org/10.1016/j.apenergy.2016.10.123 Lazard. (2016). Lazard’s levelised cost of energy analysis (version 10.0) (Issue December). https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf Lazzeroni, P., Olivero, S., Repetto, M., Stirano, F., & Vallet, M. (2019). Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study. Energy, 175, 704–721. https://doi.org/10.1016/j.energy.2019.03.113 Leepa, C., & Unfried, M. (2013). Effects of a cut-off in feed-in tariffs on photovoltaic capacity: Evidence from Germany. Energy Policy, 56, 536–542. https://doi.org/10.1016/j.enpol.2013.01.018 Leisen, R., Steffen, B., & Weber, C. (2019). Regulatory risk and the resilience of new sustainable business models in the energy sector. Journal of Cleaner Production, 219, 865–878. https://doi.org/10.1016/j.jclepro.2019.01.330 Li, H., Wang, Z., Hong, T., Parker, A., & Neukomm, M. (2021). Characterizing patterns and variability of building electric load profiles in time and frequency domains. Applied Energy, 291, 116721. https://doi.org/10.1016/j.apenergy.2021.116721 Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/j.energy.2018.06.049 Liu, H., Du, K., & Li, J. (2019). An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China’s industrial energy demand. Energy Economics, 80, 720–730. https://doi.org/10.1016/j.eneco.2019.02.012 Loorbach, D., & Wijsman, K. (2013). Business transition management: Exploring a new role for business in sustainability transitions. Journal of Cleaner Production, 45, 20–28. https://doi.org/10.1016/j.jclepro.2012.11.002 Luo, X., Hong, T., Chen, Y., & Piette, M. A. (2017). Electric load shape benchmarking for small- and medium-sized commercial buildings. Applied Energy, 204, 715–725. https://doi.org/10.1016/j.apenergy.2017.07.108 Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings : A review. Applied Energy, 142, 80–94. https://doi.org/10.1016/j.apenergy.2014.12.028 Malinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy ef fi ciency in industry : EU and national policies in Italy and the UK. Energy, 172, 255–269. https://doi.org/10.1016/j.energy.2019.01.130 Manrique, R., Vásquez, D., Vallejo, G., Chejne, F., Amell, A. A., & Herrera, B. (2018). Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia. Energy, 143, 575–584. https://doi.org/10.1016/j.energy.2017.11.023 Maribu, K. M., Firestone, R. M., Marnay, C., & Siddiqui, A. S. (2007). Distributed energy resources market diffusion model. Energy Policy, 35(9), 4471–4484. https://doi.org/10.1016/j.enpol.2007.03.005 Martins, J. F., Pronto, A. G., Delgado-Gomes, V., & Sanduleac, M. (2019). Smart meters and advanced metering infrastructure. In Pathways to a Smarter Power System (pp. 89–114). https://doi.org/10.1016/B978-0-08-102592-5.00004-1 Maticka, M. J. (2019). The SWIS DUCK – Value pricing analysis of commercial scale photovoltaic generation in the South West Interconnected System. The Electricity Journal, 32(6), 57–65. https://doi.org/10.1016/j.tej.2019.05.020 Matisoff, D. C., & Johnson, E. P. (2017). The comparative effectiveness of residential solar incentives. Energy Policy, 108, 44–54. https://doi.org/10.1016/j.enpol.2017.05.032 Mazzeo, D. (2019). Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis. Energy, 168, 310–331. https://doi.org/10.1016/j.energy.2018.11.057 McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, 6(2), 387–405. https://doi.org/10.1007/s12053-012-9169-3 Meyabadi, A. F., & Deihimi, M. H. (2017). A review of demand-side management: Reconsidering theoretical framework. Renewable and Sustainable Energy Reviews, 80(March), 367–379. https://doi.org/10.1016/j.rser.2017.05.207 Mills, B., & Schleich, J. (2012). Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries. Energy Policy, 49, 616–628. https://doi.org/10.1016/j.enpol.2012.07.008 Mimouni, K., & Temimi, A. (2018). What drives energy efficiency? New evidence from financial crises. Energy Policy, 122(May), 332–348. https://doi.org/10.1016/j.enpol.2018.07.057 MME. (2014). Decreto 2469. Por el cual se establecen los lineamientos de política energética en materia de entrega de excedentes de autogeneración (p. 3). https://www.minenergia.gov.co/documents/10180/23517/36864-Decreto-2469-02Dic2014.pdf MME. (2015a). Anexo general. Reglamento técnico de etiquetado. RETIQ. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/09/ANEXO-RETIQ_Septiembre2015-pdf.pdf MME. (2015b). Resolución 41012 de 2015. Por la cual se expide el Reglamento Técnico de Etiquetado - RETIQ, con fines de Uso Racional de Energía aplicable a algunos equipos de uso final de energía eléctrica y gas combustible, para su comercialización y uso en Colombia (p. 5). https://www.minenergia.gov.co/documents/10180/23517/36731-Resolucion-41012-18Sep2015.pdf MME. (2017). Decreto 348 de 2017. Por el cual se adiciona el Decreto 1073 de 2015, en lo que respecta al establecimiento de los lineamientos de política pública en materia de gestión eficiente de la energía y entrega de excedentes de autogeneración a pequeña escala. http://es.presidencia.gov.co/normativa/normativa/DECRETO 348 DEL 01 DE MARZO DE 2017.pdf MME. (2018). Resolución 40072 de 2018. Por la cual se establecen los mecanismos para implementar la Infraestructura de Medición Avanzada en el servicio público de energía eléctrica. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_d9dbab376fb849659b43f8a1ca96b435 MME, & UPME. (2016). Plan de acción indicativo de eficiencia energética 2017-2022. http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf Morcillo, J. D., Franco, C. J., & Angulo, F. (2017). Delays in electricity market models. Energy Strategy Reviews, 16(February), 24–32. https://doi.org/10.1016/j.esr.2017.02.004 Morcillo, J. D., Franco, C. J., & Angulo, F. (2018). Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems. Applied Energy, 216(October 2017), 504–520. https://doi.org/10.1016/j.apenergy.2018.02.104 Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research and Social Science, 38(February), 128–137. https://doi.org/10.1016/j.erss.2018.01.018 Morton, C., Wilson, C., & Anable, J. (2018). The diffusion of domestic energy efficiency policies: A spatial perspective. Energy Policy, 114(April 2017), 77–88. https://doi.org/10.1016/j.enpol.2017.11.057 Moura, P. S., & de Almeida, A. T. (2010). The role of demand-side management in the grid integration of wind power. Applied Energy, 87(8), 2581–2588. https://doi.org/10.1016/j.apenergy.2010.03.019 Mudgal, S., Lyons, L., Cohen, F., Lyons, R., & Fedrigo-Fazio, D. (2013). Energy performance certificates in buildings and their impact on transaction prices and rents in selected EU countries (Issue April). http://eur-lex.europa.eu/legal-content/ET/TXT/HTML/?uri=CELEX:32010L0031&from=EN Mutingi, M., Mbohwa, C., & Dube, P. (2017). System dynamics archetypes for capacity management of energy systems. Energy Procedia, 141, 199–205. https://doi.org/10.1016/j.egypro.2017.11.038 Mutingi, M., Mbohwa, C., & Kommula, V. P. (2017). System dynamics approaches to energy policy modelling and simulation. Energy Procedia, 141, 532–539. https://doi.org/10.1016/j.egypro.2017.11.071 Nadel, S. (1992). Utility Demand-Side Management Experience and Potential- A Critical Review. Annual Review of Energy and the Environment, 17(1), 507–535. https://doi.org/10.1146/annurev.eg.17.110192.002451 NAHB. (2007). Study of life expectancy of home components (Issue February). OECD/IEA. (2018). World energy outlook 2018: Executive summary. www.iea.org/t&c/ OECD. (2020). Perspectivas económicas mundiales: América Latina y el Caribe (Vol. 19). http://pubdocs.worldbank.org/en/657071588788309322/Global-Economic-Prospects-June-2020-Regional-Overview-LAC-SP.pdf Olkkonen, L., Korjonen-Kuusipuro, K., & Grönberg, I. (2017). Redefining a stakeholder relation: Finnish energy “prosumers” as co-producers. Environmental Innovation and Societal Transitions, 24, 57–66. https://doi.org/10.1016/j.eist.2016.10.004 Olsthoorn, M., Schleich, J., & Faure, C. (2019). Exploring the diffusion of low-energy houses: An empirical study in the European Union. Energy Policy, 129(March), 1382–1393. https://doi.org/10.1016/j.enpol.2019.03.043 Ornaghi, C., Costanza, E., Kittley-Davies, J., Bourikas, L., Aragon, V., & James, P. A. B. (2018). The effect of behavioural interventions on energy conservation in naturally ventilated offices. Energy Economics, 74, 582–591. https://doi.org/10.1016/j.eneco.2018.07.008 Palm, J. (2017). Household installation of solar panels - motives and barriers in a 10-year perspective. Not yet Publiched, 113(October 2017), 1–8. https://doi.org/10.1016/j.enpol.2017.10.047 Papachristos, G. (2018). System dynamics modelling and simulation for sociotechnical transitions research. Environmental Innovation and Societal Transitions, September, 1–14. https://doi.org/10.1016/j.eist.2018.10.001 Parrish, B., Heptonstall, P., Gross, R., & Sovacool, B. K. (2020). A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy, 138, 111221. https://doi.org/10.1016/j.enpol.2019.111221 Partain, L. D., & Fraas, L. M. (2010). Solar Cell Electricity Market History, Public Policy, Projected Future, and Estimated Cost. In Solar Cells and Their Applications (2nd ed., pp. 17–43). Wiley. Paterakis, N. G., Erdinç, O., & Catalão, J. P. S. (2017). An overview of Demand Response: Key-elements and international experience. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 871–891). https://doi.org/10.1016/j.rser.2016.11.167 Pereira, P., Dantas, G., Ivan, G., Câmara, L., & Castro, N. J. De. (2019). Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation. Renewable and Sustainable Energy Reviews, 103(April 2018), 30–39. https://doi.org/10.1016/j.rser.2018.12.028 Pillot, B., de Siqueira, S., & Dias, J. B. (2018). Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case. Renewable Energy, 127, 974–988. https://doi.org/10.1016/j.renene.2018.05.032 Pina, A., Silva, C., & Ferrão, P. (2012). The impact of demand side management strategies in the penetration of renewable electricity. Energy, 41(1), 128–137. https://doi.org/10.1016/j.energy.2011.06.013 Pothitou, M., Hanna, R. F., & Chalvatzis, K. J. (2017). ICT entertainment appliances’ impact on domestic electricity consumption. Renewable and Sustainable Energy Reviews, 69, 843–853. https://doi.org/10.1016/j.rser.2016.11.100 Qudrat-ullah, H. (2015). Modelling and simulation in service of energy policy. Energy Procedia, 75, 2819–2825. https://doi.org/10.1016/j.egypro.2015.07.558 Qudrat-Ullah, H. (2013). Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach. Energy, 59, 285–294. https://doi.org/10.1016/j.energy.2013.07.029 Raineri, R., Ríos, S., & Schiele, D. (2006). Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison. Energy Policy, 34(13), 1540–1555. https://doi.org/10.1016/j.enpol.2004.11.015 Raineri, Ricardo, Arce, R., Ríos, S., & Salamanca, C. (2008). From a bundled energy-capacity pricing model to an energy–capacity–ancillary services pricing model. Energy Policy, 36(8), 2878–2886. https://doi.org/10.1016/j.enpol.2008.04.006 Ramos, A., Gago, A., Labandeira, X., & Linares, P. (2015). The role of information for energy efficiency in the residential sector. Energy Economics, 52, S17–S29. https://doi.org/10.1016/j.eneco.2015.08.022 Raugei, M., Hutchinson, A., & Morrey, D. (2018). Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. Journal of Cleaner Production, 201, 1043–1051. https://doi.org/10.1016/j.jclepro.2018.08.107 Razavi, S. E., Rahimi, E., Javadi, M. S., Nezhad, A. E., Lotfi, M., Shafie-khah, M., & Catalão, J. P. S. (2019). Impact of distributed generation on protection and voltage regulation of distribution systems: A review. Renewable and Sustainable Energy Reviews, 105(February), 157–167. https://doi.org/10.1016/j.rser.2019.01.050 REN21. (2018). Renewables 2018 - Global Status Report. REN21. (2020). Renewables 2020 Global status report. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf Richstein, J. C., & Hosseinioun, S. S. (2020). Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves. Applied Energy, 278, 115431. https://doi.org/10.1016/j.apenergy.2020.115431 Ríos, J. R., & Olaya, Y. (2018). A dynamic analysis of strategies for increasing energy efficiency of refrigerators in Colombia. Energy Efficiency, 11(3), 733–754. https://doi.org/10.1007/s12053-017-9601-9 Rochlin, C. (2016). Distributed renewable resources and the utility business model. Electricity Journal, 29(1), 7–12. https://doi.org/10.1016/j.tej.2015.12.001 Rosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. https://doi.org/10.1016/j.coche.2015.08.003 Rouhani, O. M., Niemeier, D., Gao, H. O., & Bel, G. (2016). Cost-benefit analysis of various California renewable portfolio standard targets: Is a 33% RPS optimal? Renewable and Sustainable Energy Reviews, 62, 1122–1132. https://doi.org/10.1016/j.rser.2016.05.049 Roulot, J., & Raineri, R. (2018). The impacts of photovoltaic electricity self-consumption on value transfers between private and public stakeholders in France. Energy Policy, 122(August), 459–473. https://doi.org/10.1016/j.enpol.2018.07.035 Sauter, R., & Watson, J. (2007). Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy, 35(5), 2770–2779. https://doi.org/10.1016/j.enpol.2006.12.006 Scarpa, R., & Willis, K. (2010). Willingness-to-pay for renewable energy: Primary and discretionary choice of British households’ for micro-generation technologies. Energy Economics, 32(1), 129–136. https://doi.org/10.1016/j.eneco.2009.06.004 Schleich, J. (2009). Barriers to energy efficiency: A comparison across the German commercial and services sector. Ecological Economics, 68(7), 2150–2159. https://doi.org/10.1016/j.ecolecon.2009.02.008 Seok, J.-E., Kim, J., & Park, H. S. (2021). Regulatory and social dynamics of voluntary agreement adoption: The case of voluntary energy efficiency and GHG reduction agreement in South Korea. Energy Policy, 148, 111903. https://doi.org/10.1016/j.enpol.2020.111903 Sergici, S., Yang, Y., Castaner, M., & Faruqui, A. (2019). Quantifying net energy metering subsidies. The Electricity Journal, 32(8), 106632. https://doi.org/10.1016/j.tej.2019.106632 Shakeri, M., Shayestegan, M., Abunima, H., Reza, S. M. S., Akhtaruzzaman, M., Alamoud, A. R. M., Sopian, K., & Amin, N. (2017). An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy and Buildings, 138, 154–164. https://doi.org/10.1016/j.enbuild.2016.12.026 Shao, S., Pipattanasomporn, M., & Rahman, S. (2012). Grid Integration of Electric Vehicles and Demand Response With Customer Choice. IEEE Transactions on Smart Grid, 3(1), 543–550. https://doi.org/10.1109/TSG.2011.2164949 Sharifi, R., Fathi, S. H., & Vahidinasab, V. (2017). A review on Demand-side tools in electricity market. Renewable and Sustainable Energy Reviews, 72(December 2016), 565–572. https://doi.org/10.1016/j.rser.2017.01.020 Shi, D., Wang, L., & Wang, Z. (2019). What affects individual energy conservation behavior: Personal habits, external conditions or values? An empirical study based on a survey of college students. Energy Policy, 128(March 2018), 150–161. https://doi.org/10.1016/j.enpol.2018.12.061 Sioshansi, F. (2019). Introduction. In Consumer, Prosumer, Prosumager: How service innovations will disrupt the utility business model (1st ed., pp. xxxix–lxii). Elsevier. https://doi.org/10.1016/B978-0-12-816835-6.09982-4 Sioshansi, F. P. (1995). Demand-side management. The third wave. Energy Policy, 23(2), 111–114. https://doi.org/10.1016/0301-4215(95)91414-8 Sioshansi, F. P. (2016). California’s ‘Duck Curve’ Arrives Well Ahead of Schedule. The Electricity Journal, 29(6), 71–72. https://doi.org/10.1016/j.tej.2016.07.010 Sodimac Colombia. (2019). ¿Qué considerar para elegir un bombillo? Tipos de Bombillas y Cómo Elegirlas. https://www.homecenter.com.co/homecenter-co/guias-de-compra/como-elegir-bombillos SolarPower Europe. (2017). Global market outlook for solar power 2017-2021. http://www.solarpowereurope.org/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1499969894&hash=f4c23507226495e60734bf7a4c6e4f3ac426de3c&file=fileadmin/user_upload/documents/GMO/GMO_2017-2021_v2.pdf SolarPower Europe. (2018). Global market outlook (Issue February). http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf Solnørdal, M. T., & Thyholdt, S. B. (2017). Drivers for energy efficiency: An empirical analysis of Norwegian manufacturing firms. Energy Procedia, 142, 2802–2808. https://doi.org/10.1016/j.egypro.2017.12.425 Sousa, J. C., Neves, L. P., & Jorge, H. M. (2012). Assessing the relevance of load profiling information in electrical load forecasting based on neural network models. International Journal of Electrical Power & Energy Systems, 40(1), 85–93. https://doi.org/10.1016/j.ijepes.2012.02.008 SSPD. (2020). Tarifas. Superintendencia de Servicios Públicos Domiciliarios - Boletín Tarifario 2019. https://www.superservicios.gov.co/servicios-vigilados/energia-gas-combustible/energia/tarifas Staddon, S. C., Cycil, C., Goulden, M., Leygue, C., & Spence, A. (2016). Intervening to change behaviour and save energy in the workplace: A systematic review of available evidence. Energy Research & Social Science, 17, 30–51. https://doi.org/10.1016/j.erss.2016.03.027 Stede, J., Arnold, K., Dufter, C., Holtz, G., von Roon, S., & Richstein, J. C. (2020). The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy, 147, 111893. https://doi.org/10.1016/j.enpol.2020.111893 Sterman, J. D. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World. McGraw-Hill Higher Education. Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030 SUI. (2019). Consolidado de energía. Sistema Único de Información de Servicios Públicos Domiciliarios. http://www.sui.gov.co/web/energia/reportes/comerciales/consolidado-energia SUI. (2020). Indicadores sobre el servicio, reportes comerciales, financieros, administrativos y técnico operativos e información sobre la cadena de valor del servicio de Energía. Detalle de Indicadores En La Bodega de Datos. http://bi.superservicios.gov.co/o3web/browser/showView.jsp?viewDesktop=true&source=SUI_COMERCIAL_ENERGIA/VISTA_FACTURACION_ENERGIA%23_public Suneo. (2020). Medidor Bidireccional. Mercado Libre Colombia. https://articulo.mercadolibre.com.co/MCO-467428027-medidor-bidireccional-iskra3f2f1f-208120v-60hz-protocolos-_JM?matt_tool=45425669&matt_word&gclid=EAIaIQobChMI1oPP7vjS6QIViY3ICh0UjADOEAYYASABEgJjyfD_BwE&quantity=1 Thakur, J., & Chakraborty, B. (2019). Impact of compensation mechanisms for PV generation on residential consumers and shared net metering model for developing nations: A case study of India. Journal of Cleaner Production, 218, 696–707. https://doi.org/10.1016/j.jclepro.2019.01.286 Thollander, P., Backlund, S., Trianni, A., & Cagno, E. (2013). Beyond barriers - A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden. Applied Energy, 111, 636–643. https://doi.org/10.1016/j.apenergy.2013.05.036 Timilsina, G. R., Hochman, G., & Fedets, I. (2016). Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms. Energy, 106, 203–211. https://doi.org/10.1016/j.energy.2016.03.009 Torriti, J., Hassan, M. G., & Leach, M. (2010). Demand response experience in Europe: Policies, programmes and implementation. Energy, 35(4), 1575–1583. https://doi.org/10.1016/j.energy.2009.05.021 Trianni, A., Cagno, E., & Farné, S. (2016). Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537–1551. https://doi.org/10.1016/j.apenergy.2015.02.078 Trianni, A., Cagno, E., & Farnè, S. (2014). An empirical investigation of barriers, drivers and practices for energy efficiency in primary metals manufacturing SMEs. Energy Procedia, 61, 1252–1255. https://doi.org/10.1016/j.egypro.2014.11.1071 Trianni, A., Cagno, E., Thollander, P., & Backlund, S. (2013). Barriers to industrial energy efficiency in foundries: A European comparison. Journal of Cleaner Production, 40, 161–176. https://doi.org/10.1016/j.jclepro.2012.08.040 Troitzsch, K. G. (2013). Historical Introduction. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity (pp. 13–21). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93813-2 Turnheim, B., Berkhout, F., Geels, F., Hof, A., McMeekin, A., Nykvist, B., & van Vuuren, D. (2015). Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change, 35, 239–253. https://doi.org/10.1016/j.gloenvcha.2015.08.010 UNFCCC. (2015). Paris Agreement. In Conference of the Parties on its twenty-first session (Vol. 21932, Issue December). https://doi.org/FCCC/CP/2015/L.9/Rev.1 United Nations. (1998). Kyoto protocol to the United Nations framework (Vol. 7). https://doi.org/10.1111/1467-9388.00150 UPME. (2013). Determinación del potencial de reducción del consumo energético en el sector servicios en Colombia. UPME. (2015a). Estudio sobre la estructura del mercado nacional de equipos sujetos al proyecto de RETIQ, y el comportamiento del mercado frente a la inclusión del etiquetado obligatorio de parámetros de eficiencia energética. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/07/estudio1.pdf UPME. (2015b). Plan de Expansión de Referencia Generación-Transmisión 2014-2028 (p. 765). http://www.upme.gov.co/Docs/Plan_Expansion/2015/Plan_GT_2014-2028.pdf UPME. (2015c). Resolución 281 del 2015. Por la cual se define el límite máximo de potencia de la autogeneración a pequeña escala (p. 2). http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_370895a6f86c4221b2c38ab92ed86360 UPME. (2017). Plan de expansión de referencia generación – transmisión (2017-2031). http://www.upme.gov.co/Docs/Plan_Expansion/2017/Plan_GT_2017_2031.pdf%0A UPME. (2019). Plan energetico nacional 2020-2050. https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx UPME, & CORPOEMA. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia a partir de la caracterización del consumo energético para sus diferentes procesos, usos y equipos de uso final. http://www1.upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/Informe_Final_Volumen_2.pdf van den Broek, K. L., & Walker, I. (2019). Exploring the perceptions of drivers of energy behaviour. Energy Policy, 129(September 2018), 1297–1305. https://doi.org/10.1016/j.enpol.2019.03.033 van der Kam, M. J., Meelen, A. A. H., van Sark, W. G. J. H. M., & Alkemade, F. (2018). Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition. Energy Research and Social Science, 46(March), 68–85. https://doi.org/10.1016/j.erss.2018.06.003 van Doren, D., Giezen, M., Driessen, P. P. J., & Runhaar, H. A. C. (2016). Scaling-up energy conservation initiatives: Barriers and local strategies. Sustainable Cities and Society, 26, 227–239. https://doi.org/10.1016/j.scs.2016.06.009 Villca-pozo, M., & Gonzales-bustos, J. P. (2019). Tax incentives to modernize the energy efficiency of the housing in Spain. Energy Policy, 128(April 2018), 530–538. https://doi.org/10.1016/j.enpol.2019.01.031 Viva solar Colombia. (2020). Paquetes completos. Wang, J., Yang, F., Zhang, X., & Zhou, Q. (2018). Barriers and drivers for enterprise energy efficiency: An exploratory study for industrial transfer in the Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 200, 866–879. https://doi.org/10.1016/j.jclepro.2018.07.327 Wang, T., Li, X., Liao, P. C., & Fang, D. (2016). Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers. Energy, 103, 588–597. https://doi.org/10.1016/j.energy.2016.03.039 Wang, W., Yu, N., & Johnson, R. (2017). A model for commercial adoption of photovoltaic systems in California. Journal of Renewable and Sustainable Energy, 9(2), 025904. https://doi.org/10.1063/1.4979899 Warren, P. (2014). A review of demand-side management policy in the UK. Renewable and Sustainable Energy Reviews, 29, 941–951. https://doi.org/10.1016/j.rser.2013.09.009 Warren, P. (2017). Transferability of demand-side policies between countries. Energy Policy, 109(April), 757–766. https://doi.org/10.1016/j.enpol.2017.07.032 Watts, D., Valdés, M. F., Jara, D., & Watson, A. (2015). Potential residential PV development in Chile : The effect of Net Metering and Net Billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037–1051. https://doi.org/10.1016/j.rser.2014.07.201 Widén, J. (2014). Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Applied Energy, 126, 199–212. https://doi.org/10.1016/j.apenergy.2014.04.008 Wiese, C., Larsen, A., & Pade, L.-L. (2018). Interaction effects of energy efficiency policies: a review. Energy Efficiency, 11(8), 2137–2156. https://doi.org/10.1007/s12053-018-9659-z Wirth, S. (2014). Communities matter: Institutional preconditions for community renewable energy. Energy Policy, 70, 236–246. https://doi.org/10.1016/j.enpol.2014.03.021 Wohlfarth, K., Klobasa, M., & Gutknecht, R. (2020). Demand response in the service sector – Theoretical, technical and practical potentials. Applied Energy, 258, 114089. https://doi.org/10.1016/j.apenergy.2019.114089 Wong-Parodi, G., Krishnamurti, T., Gluck, J., & Agarwal, Y. (2019). Encouraging energy conservation at work: A field study testing social norm feedback and awareness of monitoring. Energy Policy, 130(July 2018), 197–205. https://doi.org/10.1016/j.enpol.2019.03.028 World Bank. (2019). International financial statistics and data files. Inflation, Consumer Prices (Annual %) - Colombia. https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?fbclid=IwAR1T3oY42xcltyyVwUb3leENPEGlfaUuFyrIgauigFt7Kgra-fCGnGZbzG4&locations=CO Wu, T., Yang, S., & Tan, J. (2020). Impacts of government R&D subsidies on venture capital and renewable energy investment -- an empirical study in China. Resources Policy, 68, 101715. https://doi.org/10.1016/j.resourpol.2020.101715 Xie, C., Bai, M., & Wang, X. (2018). Accessing provincial energy efficiencies in China’s transport sector. Energy Policy, 123(September), 525–532. https://doi.org/10.1016/j.enpol.2018.09.032 Xin-gang, Z., & Yu-qiao, Z. (2021). Analysis of the effectiveness of Renewable Portfolio Standards: A perspective of shared mental model. Journal of Cleaner Production, 278, 124276. https://doi.org/10.1016/j.jclepro.2020.124276 Xm. (2017a). Información consumo horario año 2016 por códico CIIU. Xm. (2017b). Portal BI - Información Inteligente. Históricos - Demanda Comercial. http://portalbissrs.xm.com.co/dmnd/Paginas/Historicos/Historicos.aspx Xm. (2019a). Capacidad efectiva neta. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/21-capacidad-efectiva-neta.html Xm. (2019b). Variables de la operación del SIN. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/14-variables-de-la-operacion-del-sin.html Xm. (2020, February 6). En Colombia factor de emisión de CO2 por generación eléctrica del sistema interconectado: 164.38 gramos de CO2 por kilovatio hora. Comunicados. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383#:~:text=En Colombia Factor de emisión,de CO2 por kilovatio hora Yilmaz, S., Weber, S., & Patel, M. K. (2019). Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes. Energy Policy, 133(July), 110909. https://doi.org/10.1016/j.enpol.2019.110909 Young, S., Bruce, A., & MacGill, I. (2019). Potential impacts of residential PV and battery storage on Australia’s electricity networks under different tariffs. Energy Policy, 128(December 2018), 616–627. https://doi.org/10.1016/j.enpol.2019.01.005 Yu, H., Hong, B., Luan, W., Huang, B., & Semero, Y. K. (2018). Study on business models of distributed generation in China. Global Energy Interconnection, 1(2), 162–171. https://doi.org/10.14171/j.2096-5117.gei.2018.02.008 Zafar, R., Mahmood, A., Razzaq, S., Ali, W., Naeem, U., & Shehzad, K. (2018). Prosumer based energy management and sharing in smart grid. Renewable and Sustainable Energy Reviews, 82(April 2017), 1675–1684. https://doi.org/10.1016/j.rser.2017.07.018 Zapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(July), 183–191. https://doi.org/10.1016/j.seta.2018.10.008 Zhang, Q., & Grossmann, I. E. (2016). Enterprise-wide optimization for industrial demand side management: Fundamentals, advances, and perspectives. Chemical Engineering Research and Design, 116, 114–131. https://doi.org/10.1016/j.cherd.2016.10.006 Zhang, Yan, Bai, X., Mills, F. P., & Pezzey, J. C. V. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings, 172, 279–294. https://doi.org/10.1016/j.enbuild.2018.05.017 Zhang, Yu, Song, J., & Hamori, S. (2011). Impact of subsidy policies on diffusion of photovoltaic power generation. Energy Policy, 39(4), 1958–1964. https://doi.org/10.1016/j.enpol.2011.01.021 Zhang, Yurong, & Wang, Y. (2013). Barriers’ and policies’ analysis of China’s building energy efficiency. Energy Policy, 62(2013), 768–773. https://doi.org/10.1016/j.enpol.2013.06.128 Zheng, S., Lam, C. M., Hsu, S. C., & Ren, J. (2018). Evaluating efficiency of energy conservation measures in energy service companies in China. Energy Policy, 122(August), 580–591. https://doi.org/10.1016/j.enpol.2018.08.011 Zou, H., Du, H., Brown, M. A., & Mao, G. (2017). Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy, 134, 256–268. https://doi.org/10.1016/j.energy.2017.05.192 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
234 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79637/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79637/4/1152684901.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79637/5/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79637/6/1152684901.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 e452b47b15a1920bedcb44d1daa5c9d2 4460e5956bc1d1639be9ae6146a50347 aea083e27df543b7c97bc54c9fe4fffd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089618220384256 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Cardona, Carlos Jaimee77c35ea37c7b92041b06767ea4b4d60Dyner Rezonzew, Isaac37f351f07076cf2cc2dd5012ad2d6626Jiménez Zapata, Maritzaaf092bf56228b8740cb50c0f59accdf6Grupo de Sistemas Energéticos2021-06-16T14:50:15Z2021-06-16T14:50:15Z2021https://repositorio.unal.edu.co/handle/unal/79637Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Los compromisos internacionales para la consecución de objetivos renovables sumados a la consciencia ambiental, el compromiso social, y la disminución de costos de nuevas tecnologías, han permitido la consolidación de una transformación en el sector eléctrico, de la que se vislumbran importantes cambios para los participantes del mercado. Dentro de estos cambios sobresalen las nuevas alternativas tecnológicas que se ofrecen para los diferentes sectores de demanda de electricidad, permitiéndoles hacer una gestión activa de su consumo a través de mecanismos de participación como la microgeneración, la eficiencia energética, la conservación y la respuesta de la demanda. Ante este nuevo escenario, surge la incertidumbre de los impactos en el mercado procedentes de la participación activa de los sectores de demanda residencial y no residencial. Esta tesis desarrolla una plataforma para la evaluación de políticas orientadas a la gestión de la demanda de electricidad que permita identificar si es posible reforzar los comportamientos favorables al mercado y mitigar los comportamientos desfavorables, ante la inminente modificación de la participación de la demanda en el mercado eléctrico colombiano.Commitments to reach international renewable targets added to environmental awareness, social acceptance and technological cost reductions, allows the current technological transformation for the electricity sector, which empowers significant changes for the demand side. Demand-side changes include new technological alternatives to the different sectors of electricity demand, allowing them to actively manage their consumption through participation mechanisms such as micro-generation, energy efficiency, conservation and demand response. Given this new scenario, uncertainty about market effects arises. This thesis provides a framework for the assessment of demand-side management policies to identify if possible to strengthen market-friendly behaviour and mitigate unfavourable ones, in the face of the imminent change in demand-side participation in the Colombian electricity market.DoctoradoDoctor en IngenieríaInvestigación de OperacionesMercados de Energía234 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín330 - Economía::333 - Economía de la tierra y de la energía000 - Ciencias de la computación, información y obras generales::003 - SistemasDemanda de energía eléctricaConsumo de energíaCurva de CargaEficiencia EnergéticaGestión de la DemandaMercado EléctricoMicrogeneraciónParticipación de la DemandaRespuesta de la DemandaConservaciónConservationDemand-Side ManagementDemand ResponseEnergy EfficiencyElectricity MarketLoad CurveMicrogenerationLa transformación de la participación de la demanda en los mercados eléctricosTransformation of demand-side participation in the electricity marketsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDN/AABB. (2017). Lista de precios productos de automatización y control. https://new.abb.com/docs/librariesprovider78/colombia-ecuador-docs/2-lp-productos-de-automatizacion-y-control.pdf?sfvrsn=b8938c12_2ABB Group. (2013). Eficiencia en motores nuevos desarrollos y tecnologías ABB IE4 Super Premium y SynRM 1E4. https://new.abb.com/docs/librariesprovider78/chile-documentos/jornadas-tecnicas-2013---presentaciones/3-josé-simpson---eficiencia-en-motores-nuevos-desarrollos-y-tecnologías-abb.pdf?sfvrsn=2Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. https://doi.org/10.1016/j.rser.2010.09.003Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273–291. https://doi.org/10.1016/j.jenvp.2005.08.002Abreu, J., Wingartz, N., & Hardy, N. (2019). New trends in solar: a comparative study assessing the attitudes towards the adoption of rooftop PV. Energy Policy, 128(December 2018), 347–363. https://doi.org/10.1016/j.enpol.2018.12.038Aelenei, D., Lopes, R. A., Aelenei, L., & Gonçalves, H. (2019). Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renewable Energy, 137, 189–197. https://doi.org/10.1016/j.renene.2018.07.140Aghaei, J., & Alizadeh, M. I. (2013). Demand response in smart electricity grids equipped with renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 18, 64–72. https://doi.org/10.1016/j.rser.2012.09.019Agterbosch, S., Meertens, R. M., & Vermeulen, W. J. V. (2009). The relative importance of social and institutional conditions in the planning of wind power projects. Renewable and Sustainable Energy Reviews, 13(2), 393–405. https://doi.org/10.1016/j.rser.2007.10.010Ahmad, S., Mat Tahar, R., Muhammad-Sukki, F., Munir, A. B., & Abdul Rahim, R. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29–37. https://doi.org/10.1016/j.rser.2015.11.034Alam, M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2019). Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society, 44(September 2018), 56–69. https://doi.org/10.1016/j.scs.2018.09.022Andersson, E., Karlsson, M., Thollander, P., & Paramonova, S. (2018). Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program. Renewable and Sustainable Energy Reviews, 93(May), 165–177. https://doi.org/10.1016/j.rser.2018.05.037Andor, M. A., & Fels, K. M. (2018). Behavioral economics and energy conservation – A systematic review of non-price interventions and their causal effects. Ecological Economics, 148, 178–210. https://doi.org/10.1016/j.ecolecon.2018.01.018Ankamah-Yeboah, I., & Rehdanz, K. (2014). Explaining the variation in the value of building energy efficiency certificates: A quantitative meta-analysis. Kiel Working Paper 1949. https://www.econstor.eu/handle/10419/100700Annala, S., Lukkarinen, J., Primmer, E., Honkapuro, S., Ollikka, K., Sunila, K., & Ahonen, T. (2018). Regulation as an enabler of demand response in electricity markets and power systems. Journal of Cleaner Production, 195, 1139–1148. https://doi.org/10.1016/j.jclepro.2018.05.276Anukoolthamchote, P. C., Assané, D., & Konan, D. E. (2020). Net electricity load profiles: Shape and variability considering customer-mix at transformers on the island of Oahu, Hawai’i. Energy Policy, 147, 111732. https://doi.org/10.1016/j.enpol.2020.111732Apeaning, R. W., & Thollander, P. (2013). Barriers to and driving forces for industrial energy efficiency improvements in African industries - A case study of Ghana’s largest industrial area. Journal of Cleaner Production, 53, 204–213. https://doi.org/10.1016/j.jclepro.2013.04.003Arango, S., Franco, C., Olaya, Y., Naranjo, M., Alcaráz, S., & Gutiérrez, F. (2012). Análisis de diseño de esquemas de subsidios en los servicios públicos colombianos por medio de economía experimental y simulación (1st ed.). Universidad Nacional de Colombia (Medellín).Argun, I. D., Kayakutlu, G., Ozgozen, N. Y., & Daim, T. U. (2021). Models for Energy Efficiency Obligation Systems through different perspectives. Technology in Society, 64, 101436. https://doi.org/10.1016/j.techsoc.2020.101436Avancini, D. B., Rodrigues, J. J. P. C., Martins, S. G. B., Rabêlo, R. A. L., Al-Muhtadi, J., & Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702–715. https://doi.org/10.1016/j.jclepro.2019.01.229Baatz, B., Relf, G., & Nowak, S. (2018). The role of energy efficiency in a distributed energy future. The Electricity Journal, 31(10), 13–16. https://doi.org/10.1016/j.tej.2018.11.004Balasubramanian, S., & Balachandra, P. (2021). Characterising Electricity Demand through Load Curve Clustering: A Case of Karnataka Electricity System in India. Computers & Chemical Engineering, 107316. https://doi.org/10.1016/j.compchemeng.2021.107316Balcombe, P., Rigby, D., & Azapagic, A. (2013). Motivations and barriers associated with adopting microgeneration energy technologies in the UK. Renewable and Sustainable Energy Reviews, 22, 655–666. https://doi.org/10.1016/j.rser.2013.02.012Balcombe, P., Rigby, D., & Azapagic, A. (2014). Investigating the importance of motivations and barriers related to microgeneration uptake in the UK. Applied Energy, 130, 403–418. https://doi.org/10.1016/j.apenergy.2014.05.047Balcombe, P., Rigby, D., & Azapagic, A. (2015). Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, 139, 245–259. https://doi.org/10.1016/j.apenergy.2014.11.034Banco de la República de Colombia. (2019). Tasas de captación semanales y mensuales. https://www.banrep.gov.co/esBanco de la República de Colombia. (2020). Banco de la República | Colombia. Producto Interno Bruto (PIB). https://www.banrep.gov.co/es/estadisticas/producto-interno-bruto-pibBarlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4Basher, S. A., Masini, A., & Aflaki, S. (2015). Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment. Renewable and Sustainable Energy Reviews, 52, 1680–1692. https://doi.org/10.1016/j.rser.2015.08.028Bass, F. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.Baur, L., & M, M. U. (2018). Diffusion of photovoltaic technology in Germany: A sustainable success or an illusion driven by guaranteed feed-in tariffs? Energy, 150, 289–298. https://doi.org/10.1016/j.energy.2018.02.104Bedoya, L. (2017). Efectos del desarrollo tecnológico de las baterías en el Sistema Interconectado Nacional de Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60848Behm, C., Nolting, L., & Praktiknjo, A. (2020). How to model European electricity load profiles using artificial neural networks. Applied Energy, 277, 115564. https://doi.org/10.1016/j.apenergy.2020.115564Bergaentzlé, C., Clastres, C., & Khalfallah, H. (2014). Demand-side management and European environmental and energy goals: An optimal complementary approach. Energy Policy, 67, 858–869. https://doi.org/10.1016/j.enpol.2013.12.008Bergman, N., & Eyre, N. (2011). What role for microgeneration in a shift to a low carbon domestic energy sector in the UK? Energy Efficiency, 4(3), 335–353. https://doi.org/10.1007/s12053-011-9107-9Blaser, F. (2009). Diagnóstico de Electrodomésticos y de Aparatos Electrónicos de Consumo. https://quimicos.minambiente.gov.co/images/RAEE/documentos_raee/8_EMPA-ANDI_Diagnostico_Electrodomesticos_y_Aparatos_Electronicos_de_Consumo.pdfBolwig, S., Bazbauers, G., Klitkou, A., Lund, P. D., Blumberga, A., Gravelsins, A., & Blumberga, D. (2019). Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 101(June 2018), 440–452. https://doi.org/10.1016/j.rser.2018.11.019Borchers, A. M., Xiarchos, I., & Beckman, J. (2014). Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach. Energy Policy, 69, 106–115. https://doi.org/10.1016/j.enpol.2014.02.014Boßmann, T., & Eser, E. J. (2016). Model-based assessment of demand-response measures - A comprehensive literature review. Renewable and Sustainable Energy Reviews, 57, 1637–1656. https://doi.org/10.1016/j.rser.2015.12.031Breyer, C., Azzuni, A., & Breyer, C. (2018). Energy security and energy storage technologies. Energy Procedia, 155, 237–258. https://doi.org/10.1016/j.egypro.2018.11.053Brown, M., & Watkins, T. (2016). The “green premium” for environmentally certified homes: a meta-analysis and exploration.Brunke, J. C., Johansson, M., & Thollander, P. (2014). Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Journal of Cleaner Production, 84(1), 509–525. https://doi.org/10.1016/j.jclepro.2014.04.078Bryant, S. T., Straker, K., & Wrigley, C. (2018). The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, 195, 1032–1046. https://doi.org/10.1016/j.jclepro.2018.05.233Bugden, D., & Stedman, R. (2019). A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research and Social Science, 47(August 2018), 137–145. https://doi.org/10.1016/j.erss.2018.08.025Cagno, E., & Trianni, A. (2013). Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises. Applied Energy, 104, 276–285. https://doi.org/10.1016/j.apenergy.2012.10.053Cagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. https://doi.org/10.1016/j.jclepro.2014.06.057Cardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case. Journal of Cleaner Production, 112, 3759–3773. https://doi.org/10.1016/j.jclepro.2015.08.089Cardenas, L., Zapata, M., Franco, C. J., & Dyner, I. (2017). Assessing the combined effect of the diffusion of solar rooftop generation, energy conservation and efficient appliances in households. Journal of Cleaner Production, 162, 491–503. https://doi.org/10.1016/j.jclepro.2017.06.068Castaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179Castaneda, M., Jimenez, M., Zapata, S., Franco, C. J., & Dyner, I. (2017). Myths and facts of the utility death spiral. Energy Policy, 110, 105–116. https://doi.org/10.1016/j.enpol.2017.07.063Castaneda, M., Zapata, S., Cherni, J., Aristizabal, A. J., & Dyner, I. (2020). The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector. Renewable Energy, 155, 1432–1443. https://doi.org/10.1016/j.renene.2020.04.051Christoph, H., Lena, S., Berger, C., Joachim, U., Hahnel, J., & Wüstenhagen, R. (2018). Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms. Energy Policy, 118(April), 596–602. https://doi.org/10.1016/j.enpol.2018.04.005Claudy, M. C., Michelsen, C., & O’Driscoll, A. (2011). The diffusion of microgeneration technologies – assessing the influence of perceived product characteristics on home owners’ willingness to pay. Energy Policy, 39(3), 1459–1469. https://doi.org/10.1016/j.enpol.2010.12.018Claudy, M. C., Michelsen, C., O’Driscoll, A., & Mullen, M. R. (2010). Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland. Renewable and Sustainable Energy Reviews, 14(7), 2154–2160. https://doi.org/10.1016/j.rser.2010.03.028Congreso de la República de Colombia. (1994a). Ley 142 de 1994. Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones.Congreso de la República de Colombia. (1994b). Ley 143 de 1994. Por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia ener (Issue 41, p. 64). http://www.minminas.gov.co/documents/10180/667537/Ley_143_1994.pdf/c2cfbda4-fe12-470e-9d30-67286b9ad17eCongreso de la República de Colombia. (2014). Ley 1715. Por la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional (pp. 1–26). http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdfCooremans, C., & Schönenberger, A. (2019). Energy management: a key driver of energy-efficiency investment? Journal of Cleaner Production, 221–231. https://doi.org/10.1016/j.jclepro.2019.04.333Costello, K. W., & Hemphill, R. C. (2014). Electric Utilities’ ‘Death Spiral’: Hyperbole or Reality? The Electricity Journal, 27(10), 7–26. https://doi.org/10.1016/j.tej.2014.09.011Crago, C. L., & Chernyakhovskiy, I. (2017). Are policy incentives for solar power effective? Evidence from residential installations in the Northeast. Journal of Environmental Economics and Management, 81, 132–151. https://doi.org/10.1016/j.jeem.2016.09.008CREG. (2006). Resolución 071 de 2006. Por la cual se adopta la metodología para la remuneración del cargo por confiabilidad en el mercado mayorista de energía. http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2006-Creg071-2006Resolución 056 de 2007, (2007). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolución-2007-CREG056-2007#.Resolución 097 de 2008, (2008). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/d1dba6c9018b37ce0525785a007a709b?OpenDocumentCREG. (2015). Resolución 024 de 2015. Por la cual se regula la actividad de autogeneración a gran escala en el sistema interconectado nacional (SIN) y se dictan otras disposiciones. (p. 9). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/67513914c35d6b8c05257e2d007cf0b0/$FILE/Creg024-2015.pdfCREG. (2017). Resolución 121 de 2017. Por la cual se ordena hacer público el proyecto de resolución “Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el sistema interconectado nacional”. (p. 21). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/b5341fbcfab96db80525819b006d42fa/$FILE/Creg121-2017.pdfCREG. (2018a). Documento CREG 077 de 2018. Infraestructura de medición avanzada - Anexo de la circular 054 de 2018. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/3413698103ff1fde052582e5007b5317/$FILE/Circular054-2018 Anexo.pdfCREG. (2018b). Resolución 030 de 2018. Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el Sistema Interconectado Nacional. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191?OpenDocumentCurtius, H. C. (2018). The adoption of building-integrated photovoltaics: barriers and facilitators. Renewable Energy, 126, 783–790. https://doi.org/10.1016/j.renene.2018.04.001D’Agostino, D., Cuniberti, B., & Bertoldi, P. (2017). Energy consumption and efficiency technology measures in European non-residential buildings. Energy and Buildings, 153, 72–86. https://doi.org/10.1016/j.enbuild.2017.07.062DANE. (2012). Clasificación industrial internacional uniforme de todas las actividades económicas. Revisión 4 adaptada para Colombia. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdfDANE. (2019). Encuesta nacional de calidad de vida (ECV) 2018. Anexos. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2018DANE. (2020). Censo nacional de población y vivienda 2018 Colombia. Principales Resultados Viviendas, Hogares y Personas - VIHOPE-. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018Darby, S. (2006). The effectiveness of feedback on energy consumption. In A Review for DEFRA of the Literature on Metering, Billing and direct Displays. https://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdfDefeuilley, C. (2019). Energy transition and the future(s) of the electricity sector. Utilities Policy, 57(March), 97–105. https://doi.org/10.1016/j.jup.2019.03.002Delmas, M. A., Fischlein, M., & Asensio, O. I. (2013). Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012. Energy Policy, 61, 729–739. https://doi.org/10.1016/j.enpol.2013.05.109Denholm, P., Drury, E., & Margolis, R. (2009). The Solar Deployment System (SolarDS) Model: Documentation and Sample Results. In National Renewable Energy Laboratory (NREL) (Issue September). http://www.nrel.gov/docs/fy10osti/45832.pdfder Veen, R. A. C., & De Vries, L. J. (2009). The impact of microgeneration upon the Dutch balancing market. Energy Policy, 37(7), 2788–2797. https://doi.org/10.1016/j.enpol.2009.03.015Dharshing, S. (2017). Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Research & Social Science, 23, 113–124. https://doi.org/10.1016/j.erss.2016.10.012Divshali, P. H., & Choi, B. J. (2016). Electrical market management considering power system constraints in smart distribution grids. Energies, 9(6), 1–30. https://doi.org/10.3390/en9060405Dong, C., Zhou, R., & Li, J. (2021). Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China. Applied Energy, 281, 116007. https://doi.org/10.1016/j.apenergy.2020.116007Duan, H.-B., Zhu, L., & Fan, Y. (2014). A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology. Technological Forecasting and Social Change, 83, 156–169. https://doi.org/10.1016/j.techfore.2013.07.005Dufo-López, R., & Bernal-Agustín, J. L. (2015). A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684–694. https://doi.org/10.1016/j.energy.2015.03.031Dyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2), 136–144.Dyner, I., & Franco, C. J. (2004). Consumers’ bounded rationality: the case of competitive energy markets. Systems Research and Behavioral Science, 21(4), 373–389. https://doi.org/10.1002/sres.644Earle, R., Kahn, E. P., & Macan, E. (2009). Measuring the capacity impacts of demand response. The Electricity Journal, 22(6), 47–58. https://doi.org/10.1016/j.tej.2009.05.014easy. (2020a). Bombillo Ahorrador 3U 20W E27 6500K Luz Fría Pack X4 Nex. https://www.easy.com.co/p/bombillo-ahorrador-3u-20w-e27-6500k-luz-fria-pack-x4-nex/easy. (2020b). Bombillo Led A60 12W E27 1050Lm Luz Fría Evergreen. https://www.easy.com.co/p/bombillo-led-a60-12w-e27-1050lm-luz-fria-evergreen/Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322Ehrhardt-Martinez, K., Donelly, K. A., & Laitner, J. A. (2010). Advanced metering initiatives and residential feedback programas: a meta-review for household electricity-saving ppportunities. https://www.aceee.org/sites/default/files/publications/researchreports/e105.pdfEid, C., Reneses Guillén, J., Frías Marín, P., & Hakvoort, R. (2014). The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, 244–254. https://doi.org/10.1016/j.enpol.2014.09.011Enersic, & DNP. (2017). Energy demand situation in Colombia.Engelken, M., Römer, B., Drescher, M., Welpe, I. M., & Picot, A. (2016). Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renewable and Sustainable Energy Reviews, 60, 795–809. https://doi.org/10.1016/j.rser.2015.12.163Falabella. (2020). Neveras. https://www.falabella.com.co/falabella-co/category/cat1040982/NeverasFischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. https://doi.org/10.1007/s12053-008-9009-7Fizaine, F., Voye, P., & Baumont, C. (2018). Does the literature support a high willingness to pay for green label buildings? An answer with treatment of publication bias. Revue d’économie Politique, 128(5), 1013. https://doi.org/10.3917/redp.285.1013Fleiter, T., Schleich, J., & Ravivanpong, P. (2012). Adoption of energy-efficiency measures in SMEs-An empirical analysis based on energy audit data from Germany. Energy Policy, 51, 863–875. https://doi.org/10.1016/j.enpol.2012.09.041Gao, Y., Zhou, X., Mu, Q., & Zhu, J. (2019). Evaluation on the short-term power supply capacity of an active distribution system based on multiple scenarios considering uncertainties. In Smart Power Distribution Systems (pp. 467–502). Elsevier. https://doi.org/10.1016/B978-0-12-812154-2.00020-1Gaspar, R., Antunes, D., Faria, A., & Meiszner, A. (2017). Sufficiency before efficiency: Consumers’ profiling and barriers/facilitators of energy efficient behaviours. Journal of Cleaner Production, 165, 134–142. https://doi.org/10.1016/j.jclepro.2017.07.075Gautier, A., Hoet, B., Jacqmin, J., & Driessche, S. Van. (2019). Self-consumption choice of residential PV owners under net-metering. Energy Policy, 128(October 2018), 648–653. https://doi.org/10.1016/j.enpol.2019.01.055Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K., & Sovacool, B. K. (2018). Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Research and Social Science, 40(June 2017), 23–35. https://doi.org/10.1016/j.erss.2017.11.003Gelazanskas, L., & Gamage, K. A. A. (2014). Demand side management in smart grid: A review and proposals for future direction. Sustainable Cities and Society, 11, 22–30. https://doi.org/10.1016/j.scs.2013.11.001Gellings, C. W. (1985). The concept of demand side management for electric utilities. Proceedings of the IEEE, 10, 1468–1470.Genus, A. (2012). Changing the rules? Institutional innovation and the diffusion of microgeneration. Technology Analysis & Strategic Mangement, September 2014, 37–41. https://doi.org/10.1080/09537325.2012.705122Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the Social Scientist (Second). Mc Graw-Hill Education.Giraldo, N. R. (2018). Evaluación de políticas para la autogestión de la electricidad en el sector comercial no regulado en Colombia : caso supermercados [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/76195/1038412033.2018.pdf?sequence=1&isAllowed=yGood, N. (2019). Using behavioural economic theory in modelling of demand response. Applied Energy, 239, 107–116. https://doi.org/10.1016/j.apenergy.2019.01.158Good, N., Ellis, K. A., & Mancarella, P. (2017). Review and classification of barriers and enablers of demand response in the smart grid. Renewable and Sustainable Energy Reviews, 72(November 2016), 57–72. https://doi.org/10.1016/j.rser.2017.01.043Guidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technological Forecasting and Social Change, 77(2), 279–296. https://doi.org/10.1016/j.techfore.2009.07.003Gulagi, A., Bogdanov, D., & Breyer, C. (2017). The demand for storage technologies in energy transition pathways towards 100% renewable energy for India. Energy Procedia, 135, 37–50. https://doi.org/10.1016/j.egypro.2017.09.485Guo, P., Li, V. O. K., & Lam, J. C. K. (2017). Smart demand response in China: Challenges and drivers. Energy Policy, 107, 1–10. https://doi.org/10.1016/j.enpol.2017.04.019Gupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society, 31, 244–259. https://doi.org/10.1016/j.scs.2017.02.005Gutiérrez-Pedrero, M. J., Tarancón, M. Á., del Río, P., & Alcántara, V. (2018). Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe. Applied Energy, 211(June 2017), 743–754. https://doi.org/10.1016/j.apenergy.2017.10.115Hackbarth, A., & Löbbe, S. (2020). Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading. Energy Policy, 138, 111238. https://doi.org/10.1016/j.enpol.2020.111238Haider, H. T., See, O. H., & Elmenreich, W. (2016). A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews, 59, 166–178. https://doi.org/10.1016/j.rser.2016.01.016Hamwi, M., & Lizarralde, I. (2017). A review of business models towards service-oriented electricity systems. Procedia CIRP, 64, 109–114. https://doi.org/10.1016/j.procir.2017.03.032Hanna, R., Leach, M., & Torriti, J. (2018). Microgeneration: The installer perspective. Renewable Energy, 116(September 2012), 458–469. https://doi.org/10.1016/j.renene.2017.09.023Hassan, M. T., Burek, S., & Asif, M. (2017). Barriers to industrial energy efficiency improvement - manufacturing SMEs of Pakistan. Energy Procedia, 113, 135–142. https://doi.org/10.1016/j.egypro.2017.04.040Hayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: The importance of household segmentation. Energy Research & Social Science, 3, 30–45. https://doi.org/10.1016/j.erss.2014.07.002Hayward, J. A., & Graham, P. W. (2013). A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies. Energy Economics, 40, 537–548. https://doi.org/10.1016/j.eneco.2013.08.010Helm, C., & Mier, M. (2019). On the efficient market diffusion of intermittent renewable energies. Energy Economics, 80, 812–830. https://doi.org/10.1016/j.eneco.2019.01.017Herrera, B., Amell, A., Chejne, F., Cacua, K., Manrique, R., Henao, W., & Vallejo, G. (2017). Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia. Energy, 140, 1047–1058. https://doi.org/10.1016/j.energy.2017.09.041Hesselink, L. X. W., & Chappin, E. J. L. (2019). Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99(July 2018), 29–41. https://doi.org/10.1016/j.rser.2018.09.031Hochman, G., & Timilsina, G. R. (2017). Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis. Energy Economics, 63, 22–30. https://doi.org/10.1016/j.eneco.2017.01.013Hohmeyer, O. H., & Bohm, S. (2015). Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies. Wiley Interdisciplinary Reviews: Energy and Environment, 4(1), 74–97. https://doi.org/10.1002/wene.128Homecenter. (2020a). Aires Acondicionados. https://www.homecenter.com.co/homecenter-co/category/cat10388/Aires-acondicionadosHomecenter. (2020b). Lámpara Led Panel 60x60cm 48w Ilumax. https://www.homecenter.com.co/homecenter-co/product/233841/?cid=494566&=INTERNAHomecenter. (2020c). Neveras y Nevecones. https://www.homecenter.com.co/homecenter-co/category/cat10850/Neveras-y-NeveconesHomecenter. (2020d). Tubo Fluorescente T8 2784 Lúmenes 32w Luz Blanca. https://www.homecenter.com.co/homecenter-co/product/208806/tubo-fluorescente-t8-2784-lumenes-32w-luz-blancaHonsberg, C., & Bowden, S. (2014). Calculation of Solar Insolation. Photovoltaic Education Network. http://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolationHorbach, J., & Rammer, C. (2018). Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy, 121(June), 404–414. https://doi.org/10.1016/j.enpol.2018.06.042Hou, Q., Zhang, N., Du, E., Miao, M., Peng, F., & Kang, C. (2019). Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 242, 205–215. https://doi.org/10.1016/j.apenergy.2019.03.067Huang, Y., Tian, H., & Wang, L. (2015). Demand response for home energy management system. International Journal of Electrical Power and Energy Systems, 73, 448–455. https://doi.org/10.1016/j.ijepes.2015.05.032Hughes, J. E., & Podolefsky, M. (2015). Getting green with solar subsidies: evidence from the California solar initiative. Journal of the Association of Environmental and Resource Economists, 2(2), 235–275. https://doi.org/10.1086/681131Huh, S.-Y., & Lee, C.-Y. (2014). Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy, 69, 248–257. https://doi.org/10.1016/j.enpol.2014.02.028Hurtado Munoz, L. A., Huijben, J. C. C. M., Verhees, B., & Verbong, G. P. J. (2014). The power of grid parity: A discursive approach. Technological Forecasting and Social Change, 87, 179–190. https://doi.org/10.1016/j.techfore.2013.12.012Huuki, H., Karhinen, S., Kopsakangas-Savolainen, M., & Svento, R. (2020). Flexible demand and supply as enablers of variable energy integration. Journal of Cleaner Production, 258, 120574. https://doi.org/10.1016/j.jclepro.2020.120574Hyysalo, S., Johnson, M., & Juntunen, J. K. (2017). The diffusion of consumer innovation in sustainable energy technologies. Journal of Cleaner Production, 162, S70–S82. https://doi.org/10.1016/j.jclepro.2016.09.045IDEAM, & UPME. (2019). Atlas de radiación solar. http://atlas.ideam.gov.co/presentacion/IEA. (2018). Electricity information: overview. https://webstore.iea.org/download/direct/2261?fileName=Electricity_Information_ 2018_Overview.pdfIEA. (2020). World energy investment 2020. https://www.iea.org/reports/world-energy-investment-2020IRENA. (2017). REthinking Energy 2017. In ASHRAE Journal (Vol. 55, Issue July). http://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdfIRENA. (2018). Global energy transformation: A roadmap to 2050. In Global Energy Transformation. A Roadmap to 2050. http://irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050%0Awww.irena.orgIRENA. (2020). RE Technology patents reports. http://inspire.irena.org/Pages/patents/Patents-Search.aspxIslam, J., Hu, Y., Haltas, I., Balta-ozkan, N., Jr, G., & Varga, L. (2018). Reducing industrial energy demand in the UK : A review of energy efficiency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94(July), 1153–1178. https://doi.org/10.1016/j.rser.2018.06.040Islam, T. (2014). Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy, 65, 340–350. https://doi.org/10.1016/j.enpol.2013.10.004Iwai, N., Kurahashi, N., Kishita, Y., Yamaguchi, Y., Shimoda, Y., Fukushige, S., & Umeda, Y. (2014). Scenario analysis of regional electricity demand in the residential and commercial sectors - Influence of diffusion of photovoltaic systems and electric vehicles into power grids -. Procedia CIRP, 15, 319–324. https://doi.org/10.1016/j.procir.2014.06.076Jacksohn, A., Grösche, P., Rehdanz, K., & Schröder, C. (2019). Drivers of renewable technology adoption in the household sector. Energy Economics, 81, 216–226. https://doi.org/10.1016/j.eneco.2019.04.001Janda, K. (2018). Slovak electricity market and the price merit order effect of photovoltaics. Energy Policy, 122(August 2018), 551–562. https://doi.org/10.1016/j.enpol.2018.07.021Jang, D., Eom, J., Jae Park, M., & Jeung Rho, J. (2016). Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers. Energy Policy, 88, 11–26. https://doi.org/10.1016/j.enpol.2015.09.029Jayaweera, N., Jayasinghe, C. L., & Weerasinghe, S. N. (2018). Local factors affecting the spatial diffusion of residential photovoltaic adoption in Sri Lanka. 119(April), 59–67. https://doi.org/10.1016/j.enpol.2018.04.017Jiang, B., Farid, A. M., & Youcef-Toumi, K. (2015). Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches. Applied Energy, 156, 642–654. https://doi.org/10.1016/j.apenergy.2015.07.014Jiménez, M., Cadavid, L., & Franco, C. (2014). Scenarios of photovoltaic grid parity in Colombia. Dyna, 188(81), 237–245. https://doi.org/10.15446/dyna.v81n188.42165Jimenez, M., Franco, C. J., & Dyner, I. (2016). Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, 111. https://doi.org/10.1016/j.energy.2016.06.051Kangas, H. L., Lazarevic, D., & Kivimaa, P. (2018). Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies. Energy Policy, 114(November 2017), 63–76. https://doi.org/10.1016/j.enpol.2017.11.060Karakaya, E., Hidalgo, A., & Nuur, C. (2015). Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany. Renewable and Sustainable Energy Reviews, 43, 1090–1098. https://doi.org/10.1016/j.rser.2014.11.077Karlin, B., Zinger, J. F., & Ford, R. (2015). The effects of feedback on energy conservation: A meta-analysis. Psychological Bulletin, 141(6), 1205–1227. https://doi.org/10.1037/a0039650Kaya, İ., Çolak, M., & Terzi, F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207–228. https://doi.org/10.1016/j.esr.2019.03.003Keiner, D., Ram, M., Barbosa, L. D. S. N. S., Bogdanov, D., & Breyer, C. (2019). Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy, 185, 406–423. https://doi.org/10.1016/j.solener.2019.04.081Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. https://doi.org/10.1016/j.rser.2015.10.117Konidari, P., & Mavrakis, D. (2007). A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy, 35(12), 6235–6257. https://doi.org/10.1016/j.enpol.2007.07.007Kostka, G., Moslener, U., & Andreas, J. (2013). Barriers to increasing energy efficiency: Evidence from small-and medium-sized enterprises in China. Journal of Cleaner Production, 57(2013), 59–68. https://doi.org/10.1016/j.jclepro.2013.06.025Krajačić, G., Duić, N., Tsikalakis, A., Zoulias, M., Caralis, G., Panteri, E., & Carvalho, M. da G. (2011). Feed-in tariffs for promotion of energy storage technologies. Energy Policy, 39(3), 1410–1425. https://doi.org/10.1016/j.enpol.2010.12.013Kubli, M., Loock, M., & Wüstenhagen, R. (2018). The flexible prosumer: Measuring the willingness to co-create distributed flexibility. Energy Policy, 114(August 2017), 540–548. https://doi.org/10.1016/j.enpol.2017.12.044Kurdgelashvili, L., Shih, C. H., Yang, F., & Garg, M. (2019). An empirical analysis of county-level residential PV adoption in California. Technological Forecasting and Social Change, 139(November 2018), 321–333. https://doi.org/10.1016/j.techfore.2018.11.021La Viña, A. G., Tan, J. M., Guanzon, T. I. M., Caleda, M. J., & Ang, L. (2017). Navigating a trilemma: Energy security, equity, and sustainability in the Philippines’ low-carbon transition. Energy Research & Social Science, October, 0–1. https://doi.org/10.1016/j.erss.2017.10.039Labandeira, X., Labeaga, J. M., Linares, P., & López-Otero, X. (2020). The impacts of energy efficiency policies: Meta-analysis. Energy Policy, 147(September 2019), 111790. https://doi.org/10.1016/j.enpol.2020.111790Langlois-Bertrand, S., Benhaddadi, M., Jegen, M., & Pineau, P. O. (2015). Political-institutional barriers to energy efficiency. Energy Strategy Reviews, 8, 30–38. https://doi.org/10.1016/j.esr.2015.08.001Laws, N. D., Epps, B. P., Peterson, S. O., Laser, M. S., & Wanjiru, G. K. (2017). On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage. Applied Energy, 185, 627–641. https://doi.org/10.1016/j.apenergy.2016.10.123Lazard. (2016). Lazard’s levelised cost of energy analysis (version 10.0) (Issue December). https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdfLazzeroni, P., Olivero, S., Repetto, M., Stirano, F., & Vallet, M. (2019). Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study. Energy, 175, 704–721. https://doi.org/10.1016/j.energy.2019.03.113Leepa, C., & Unfried, M. (2013). Effects of a cut-off in feed-in tariffs on photovoltaic capacity: Evidence from Germany. Energy Policy, 56, 536–542. https://doi.org/10.1016/j.enpol.2013.01.018Leisen, R., Steffen, B., & Weber, C. (2019). Regulatory risk and the resilience of new sustainable business models in the energy sector. Journal of Cleaner Production, 219, 865–878. https://doi.org/10.1016/j.jclepro.2019.01.330Li, H., Wang, Z., Hong, T., Parker, A., & Neukomm, M. (2021). Characterizing patterns and variability of building electric load profiles in time and frequency domains. Applied Energy, 291, 116721. https://doi.org/10.1016/j.apenergy.2021.116721Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/j.energy.2018.06.049Liu, H., Du, K., & Li, J. (2019). An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China’s industrial energy demand. Energy Economics, 80, 720–730. https://doi.org/10.1016/j.eneco.2019.02.012Loorbach, D., & Wijsman, K. (2013). Business transition management: Exploring a new role for business in sustainability transitions. Journal of Cleaner Production, 45, 20–28. https://doi.org/10.1016/j.jclepro.2012.11.002Luo, X., Hong, T., Chen, Y., & Piette, M. A. (2017). Electric load shape benchmarking for small- and medium-sized commercial buildings. Applied Energy, 204, 715–725. https://doi.org/10.1016/j.apenergy.2017.07.108Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings : A review. Applied Energy, 142, 80–94. https://doi.org/10.1016/j.apenergy.2014.12.028Malinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy ef fi ciency in industry : EU and national policies in Italy and the UK. Energy, 172, 255–269. https://doi.org/10.1016/j.energy.2019.01.130Manrique, R., Vásquez, D., Vallejo, G., Chejne, F., Amell, A. A., & Herrera, B. (2018). Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia. Energy, 143, 575–584. https://doi.org/10.1016/j.energy.2017.11.023Maribu, K. M., Firestone, R. M., Marnay, C., & Siddiqui, A. S. (2007). Distributed energy resources market diffusion model. Energy Policy, 35(9), 4471–4484. https://doi.org/10.1016/j.enpol.2007.03.005Martins, J. F., Pronto, A. G., Delgado-Gomes, V., & Sanduleac, M. (2019). Smart meters and advanced metering infrastructure. In Pathways to a Smarter Power System (pp. 89–114). https://doi.org/10.1016/B978-0-08-102592-5.00004-1Maticka, M. J. (2019). The SWIS DUCK – Value pricing analysis of commercial scale photovoltaic generation in the South West Interconnected System. The Electricity Journal, 32(6), 57–65. https://doi.org/10.1016/j.tej.2019.05.020Matisoff, D. C., & Johnson, E. P. (2017). The comparative effectiveness of residential solar incentives. Energy Policy, 108, 44–54. https://doi.org/10.1016/j.enpol.2017.05.032Mazzeo, D. (2019). Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis. Energy, 168, 310–331. https://doi.org/10.1016/j.energy.2018.11.057McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, 6(2), 387–405. https://doi.org/10.1007/s12053-012-9169-3Meyabadi, A. F., & Deihimi, M. H. (2017). A review of demand-side management: Reconsidering theoretical framework. Renewable and Sustainable Energy Reviews, 80(March), 367–379. https://doi.org/10.1016/j.rser.2017.05.207Mills, B., & Schleich, J. (2012). Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries. Energy Policy, 49, 616–628. https://doi.org/10.1016/j.enpol.2012.07.008Mimouni, K., & Temimi, A. (2018). What drives energy efficiency? New evidence from financial crises. Energy Policy, 122(May), 332–348. https://doi.org/10.1016/j.enpol.2018.07.057MME. (2014). Decreto 2469. Por el cual se establecen los lineamientos de política energética en materia de entrega de excedentes de autogeneración (p. 3). https://www.minenergia.gov.co/documents/10180/23517/36864-Decreto-2469-02Dic2014.pdfMME. (2015a). Anexo general. Reglamento técnico de etiquetado. RETIQ. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/09/ANEXO-RETIQ_Septiembre2015-pdf.pdfMME. (2015b). Resolución 41012 de 2015. Por la cual se expide el Reglamento Técnico de Etiquetado - RETIQ, con fines de Uso Racional de Energía aplicable a algunos equipos de uso final de energía eléctrica y gas combustible, para su comercialización y uso en Colombia (p. 5). https://www.minenergia.gov.co/documents/10180/23517/36731-Resolucion-41012-18Sep2015.pdfMME. (2017). Decreto 348 de 2017. Por el cual se adiciona el Decreto 1073 de 2015, en lo que respecta al establecimiento de los lineamientos de política pública en materia de gestión eficiente de la energía y entrega de excedentes de autogeneración a pequeña escala. http://es.presidencia.gov.co/normativa/normativa/DECRETO 348 DEL 01 DE MARZO DE 2017.pdfMME. (2018). Resolución 40072 de 2018. Por la cual se establecen los mecanismos para implementar la Infraestructura de Medición Avanzada en el servicio público de energía eléctrica. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_d9dbab376fb849659b43f8a1ca96b435MME, & UPME. (2016). Plan de acción indicativo de eficiencia energética 2017-2022. http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdfMorcillo, J. D., Franco, C. J., & Angulo, F. (2017). Delays in electricity market models. Energy Strategy Reviews, 16(February), 24–32. https://doi.org/10.1016/j.esr.2017.02.004Morcillo, J. D., Franco, C. J., & Angulo, F. (2018). Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems. Applied Energy, 216(October 2017), 504–520. https://doi.org/10.1016/j.apenergy.2018.02.104Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research and Social Science, 38(February), 128–137. https://doi.org/10.1016/j.erss.2018.01.018Morton, C., Wilson, C., & Anable, J. (2018). The diffusion of domestic energy efficiency policies: A spatial perspective. Energy Policy, 114(April 2017), 77–88. https://doi.org/10.1016/j.enpol.2017.11.057Moura, P. S., & de Almeida, A. T. (2010). The role of demand-side management in the grid integration of wind power. Applied Energy, 87(8), 2581–2588. https://doi.org/10.1016/j.apenergy.2010.03.019Mudgal, S., Lyons, L., Cohen, F., Lyons, R., & Fedrigo-Fazio, D. (2013). Energy performance certificates in buildings and their impact on transaction prices and rents in selected EU countries (Issue April). http://eur-lex.europa.eu/legal-content/ET/TXT/HTML/?uri=CELEX:32010L0031&from=ENMutingi, M., Mbohwa, C., & Dube, P. (2017). System dynamics archetypes for capacity management of energy systems. Energy Procedia, 141, 199–205. https://doi.org/10.1016/j.egypro.2017.11.038Mutingi, M., Mbohwa, C., & Kommula, V. P. (2017). System dynamics approaches to energy policy modelling and simulation. Energy Procedia, 141, 532–539. https://doi.org/10.1016/j.egypro.2017.11.071Nadel, S. (1992). Utility Demand-Side Management Experience and Potential- A Critical Review. Annual Review of Energy and the Environment, 17(1), 507–535. https://doi.org/10.1146/annurev.eg.17.110192.002451NAHB. (2007). Study of life expectancy of home components (Issue February).OECD/IEA. (2018). World energy outlook 2018: Executive summary. www.iea.org/t&c/OECD. (2020). Perspectivas económicas mundiales: América Latina y el Caribe (Vol. 19). http://pubdocs.worldbank.org/en/657071588788309322/Global-Economic-Prospects-June-2020-Regional-Overview-LAC-SP.pdfOlkkonen, L., Korjonen-Kuusipuro, K., & Grönberg, I. (2017). Redefining a stakeholder relation: Finnish energy “prosumers” as co-producers. Environmental Innovation and Societal Transitions, 24, 57–66. https://doi.org/10.1016/j.eist.2016.10.004Olsthoorn, M., Schleich, J., & Faure, C. (2019). Exploring the diffusion of low-energy houses: An empirical study in the European Union. Energy Policy, 129(March), 1382–1393. https://doi.org/10.1016/j.enpol.2019.03.043Ornaghi, C., Costanza, E., Kittley-Davies, J., Bourikas, L., Aragon, V., & James, P. A. B. (2018). The effect of behavioural interventions on energy conservation in naturally ventilated offices. Energy Economics, 74, 582–591. https://doi.org/10.1016/j.eneco.2018.07.008Palm, J. (2017). Household installation of solar panels - motives and barriers in a 10-year perspective. Not yet Publiched, 113(October 2017), 1–8. https://doi.org/10.1016/j.enpol.2017.10.047Papachristos, G. (2018). System dynamics modelling and simulation for sociotechnical transitions research. Environmental Innovation and Societal Transitions, September, 1–14. https://doi.org/10.1016/j.eist.2018.10.001Parrish, B., Heptonstall, P., Gross, R., & Sovacool, B. K. (2020). A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy, 138, 111221. https://doi.org/10.1016/j.enpol.2019.111221Partain, L. D., & Fraas, L. M. (2010). Solar Cell Electricity Market History, Public Policy, Projected Future, and Estimated Cost. In Solar Cells and Their Applications (2nd ed., pp. 17–43). Wiley.Paterakis, N. G., Erdinç, O., & Catalão, J. P. S. (2017). An overview of Demand Response: Key-elements and international experience. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 871–891). https://doi.org/10.1016/j.rser.2016.11.167Pereira, P., Dantas, G., Ivan, G., Câmara, L., & Castro, N. J. De. (2019). Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation. Renewable and Sustainable Energy Reviews, 103(April 2018), 30–39. https://doi.org/10.1016/j.rser.2018.12.028Pillot, B., de Siqueira, S., & Dias, J. B. (2018). Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case. Renewable Energy, 127, 974–988. https://doi.org/10.1016/j.renene.2018.05.032Pina, A., Silva, C., & Ferrão, P. (2012). The impact of demand side management strategies in the penetration of renewable electricity. Energy, 41(1), 128–137. https://doi.org/10.1016/j.energy.2011.06.013Pothitou, M., Hanna, R. F., & Chalvatzis, K. J. (2017). ICT entertainment appliances’ impact on domestic electricity consumption. Renewable and Sustainable Energy Reviews, 69, 843–853. https://doi.org/10.1016/j.rser.2016.11.100Qudrat-ullah, H. (2015). Modelling and simulation in service of energy policy. Energy Procedia, 75, 2819–2825. https://doi.org/10.1016/j.egypro.2015.07.558Qudrat-Ullah, H. (2013). Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach. Energy, 59, 285–294. https://doi.org/10.1016/j.energy.2013.07.029Raineri, R., Ríos, S., & Schiele, D. (2006). Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison. Energy Policy, 34(13), 1540–1555. https://doi.org/10.1016/j.enpol.2004.11.015Raineri, Ricardo, Arce, R., Ríos, S., & Salamanca, C. (2008). From a bundled energy-capacity pricing model to an energy–capacity–ancillary services pricing model. Energy Policy, 36(8), 2878–2886. https://doi.org/10.1016/j.enpol.2008.04.006Ramos, A., Gago, A., Labandeira, X., & Linares, P. (2015). The role of information for energy efficiency in the residential sector. Energy Economics, 52, S17–S29. https://doi.org/10.1016/j.eneco.2015.08.022Raugei, M., Hutchinson, A., & Morrey, D. (2018). Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. Journal of Cleaner Production, 201, 1043–1051. https://doi.org/10.1016/j.jclepro.2018.08.107Razavi, S. E., Rahimi, E., Javadi, M. S., Nezhad, A. E., Lotfi, M., Shafie-khah, M., & Catalão, J. P. S. (2019). Impact of distributed generation on protection and voltage regulation of distribution systems: A review. Renewable and Sustainable Energy Reviews, 105(February), 157–167. https://doi.org/10.1016/j.rser.2019.01.050REN21. (2018). Renewables 2018 - Global Status Report.REN21. (2020). Renewables 2020 Global status report. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdfRichstein, J. C., & Hosseinioun, S. S. (2020). Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves. Applied Energy, 278, 115431. https://doi.org/10.1016/j.apenergy.2020.115431Ríos, J. R., & Olaya, Y. (2018). A dynamic analysis of strategies for increasing energy efficiency of refrigerators in Colombia. Energy Efficiency, 11(3), 733–754. https://doi.org/10.1007/s12053-017-9601-9Rochlin, C. (2016). Distributed renewable resources and the utility business model. Electricity Journal, 29(1), 7–12. https://doi.org/10.1016/j.tej.2015.12.001Rosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. https://doi.org/10.1016/j.coche.2015.08.003Rouhani, O. M., Niemeier, D., Gao, H. O., & Bel, G. (2016). Cost-benefit analysis of various California renewable portfolio standard targets: Is a 33% RPS optimal? Renewable and Sustainable Energy Reviews, 62, 1122–1132. https://doi.org/10.1016/j.rser.2016.05.049Roulot, J., & Raineri, R. (2018). The impacts of photovoltaic electricity self-consumption on value transfers between private and public stakeholders in France. Energy Policy, 122(August), 459–473. https://doi.org/10.1016/j.enpol.2018.07.035Sauter, R., & Watson, J. (2007). Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy, 35(5), 2770–2779. https://doi.org/10.1016/j.enpol.2006.12.006Scarpa, R., & Willis, K. (2010). Willingness-to-pay for renewable energy: Primary and discretionary choice of British households’ for micro-generation technologies. Energy Economics, 32(1), 129–136. https://doi.org/10.1016/j.eneco.2009.06.004Schleich, J. (2009). Barriers to energy efficiency: A comparison across the German commercial and services sector. Ecological Economics, 68(7), 2150–2159. https://doi.org/10.1016/j.ecolecon.2009.02.008Seok, J.-E., Kim, J., & Park, H. S. (2021). Regulatory and social dynamics of voluntary agreement adoption: The case of voluntary energy efficiency and GHG reduction agreement in South Korea. Energy Policy, 148, 111903. https://doi.org/10.1016/j.enpol.2020.111903Sergici, S., Yang, Y., Castaner, M., & Faruqui, A. (2019). Quantifying net energy metering subsidies. The Electricity Journal, 32(8), 106632. https://doi.org/10.1016/j.tej.2019.106632Shakeri, M., Shayestegan, M., Abunima, H., Reza, S. M. S., Akhtaruzzaman, M., Alamoud, A. R. M., Sopian, K., & Amin, N. (2017). An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy and Buildings, 138, 154–164. https://doi.org/10.1016/j.enbuild.2016.12.026Shao, S., Pipattanasomporn, M., & Rahman, S. (2012). Grid Integration of Electric Vehicles and Demand Response With Customer Choice. IEEE Transactions on Smart Grid, 3(1), 543–550. https://doi.org/10.1109/TSG.2011.2164949Sharifi, R., Fathi, S. H., & Vahidinasab, V. (2017). A review on Demand-side tools in electricity market. Renewable and Sustainable Energy Reviews, 72(December 2016), 565–572. https://doi.org/10.1016/j.rser.2017.01.020Shi, D., Wang, L., & Wang, Z. (2019). What affects individual energy conservation behavior: Personal habits, external conditions or values? An empirical study based on a survey of college students. Energy Policy, 128(March 2018), 150–161. https://doi.org/10.1016/j.enpol.2018.12.061Sioshansi, F. (2019). Introduction. In Consumer, Prosumer, Prosumager: How service innovations will disrupt the utility business model (1st ed., pp. xxxix–lxii). Elsevier. https://doi.org/10.1016/B978-0-12-816835-6.09982-4Sioshansi, F. P. (1995). Demand-side management. The third wave. Energy Policy, 23(2), 111–114. https://doi.org/10.1016/0301-4215(95)91414-8Sioshansi, F. P. (2016). California’s ‘Duck Curve’ Arrives Well Ahead of Schedule. The Electricity Journal, 29(6), 71–72. https://doi.org/10.1016/j.tej.2016.07.010Sodimac Colombia. (2019). ¿Qué considerar para elegir un bombillo? Tipos de Bombillas y Cómo Elegirlas. https://www.homecenter.com.co/homecenter-co/guias-de-compra/como-elegir-bombillosSolarPower Europe. (2017). Global market outlook for solar power 2017-2021. http://www.solarpowereurope.org/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1499969894&hash=f4c23507226495e60734bf7a4c6e4f3ac426de3c&file=fileadmin/user_upload/documents/GMO/GMO_2017-2021_v2.pdfSolarPower Europe. (2018). Global market outlook (Issue February). http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdfSolnørdal, M. T., & Thyholdt, S. B. (2017). Drivers for energy efficiency: An empirical analysis of Norwegian manufacturing firms. Energy Procedia, 142, 2802–2808. https://doi.org/10.1016/j.egypro.2017.12.425Sousa, J. C., Neves, L. P., & Jorge, H. M. (2012). Assessing the relevance of load profiling information in electrical load forecasting based on neural network models. International Journal of Electrical Power & Energy Systems, 40(1), 85–93. https://doi.org/10.1016/j.ijepes.2012.02.008SSPD. (2020). Tarifas. Superintendencia de Servicios Públicos Domiciliarios - Boletín Tarifario 2019. https://www.superservicios.gov.co/servicios-vigilados/energia-gas-combustible/energia/tarifasStaddon, S. C., Cycil, C., Goulden, M., Leygue, C., & Spence, A. (2016). Intervening to change behaviour and save energy in the workplace: A systematic review of available evidence. Energy Research & Social Science, 17, 30–51. https://doi.org/10.1016/j.erss.2016.03.027Stede, J., Arnold, K., Dufter, C., Holtz, G., von Roon, S., & Richstein, J. C. (2020). The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy, 147, 111893. https://doi.org/10.1016/j.enpol.2020.111893Sterman, J. D. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World. McGraw-Hill Higher Education.Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030SUI. (2019). Consolidado de energía. Sistema Único de Información de Servicios Públicos Domiciliarios. http://www.sui.gov.co/web/energia/reportes/comerciales/consolidado-energiaSUI. (2020). Indicadores sobre el servicio, reportes comerciales, financieros, administrativos y técnico operativos e información sobre la cadena de valor del servicio de Energía. Detalle de Indicadores En La Bodega de Datos. http://bi.superservicios.gov.co/o3web/browser/showView.jsp?viewDesktop=true&source=SUI_COMERCIAL_ENERGIA/VISTA_FACTURACION_ENERGIA%23_publicSuneo. (2020). Medidor Bidireccional. Mercado Libre Colombia. https://articulo.mercadolibre.com.co/MCO-467428027-medidor-bidireccional-iskra3f2f1f-208120v-60hz-protocolos-_JM?matt_tool=45425669&matt_word&gclid=EAIaIQobChMI1oPP7vjS6QIViY3ICh0UjADOEAYYASABEgJjyfD_BwE&quantity=1Thakur, J., & Chakraborty, B. (2019). Impact of compensation mechanisms for PV generation on residential consumers and shared net metering model for developing nations: A case study of India. Journal of Cleaner Production, 218, 696–707. https://doi.org/10.1016/j.jclepro.2019.01.286Thollander, P., Backlund, S., Trianni, A., & Cagno, E. (2013). Beyond barriers - A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden. Applied Energy, 111, 636–643. https://doi.org/10.1016/j.apenergy.2013.05.036Timilsina, G. R., Hochman, G., & Fedets, I. (2016). Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms. Energy, 106, 203–211. https://doi.org/10.1016/j.energy.2016.03.009Torriti, J., Hassan, M. G., & Leach, M. (2010). Demand response experience in Europe: Policies, programmes and implementation. Energy, 35(4), 1575–1583. https://doi.org/10.1016/j.energy.2009.05.021Trianni, A., Cagno, E., & Farné, S. (2016). Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537–1551. https://doi.org/10.1016/j.apenergy.2015.02.078Trianni, A., Cagno, E., & Farnè, S. (2014). An empirical investigation of barriers, drivers and practices for energy efficiency in primary metals manufacturing SMEs. Energy Procedia, 61, 1252–1255. https://doi.org/10.1016/j.egypro.2014.11.1071Trianni, A., Cagno, E., Thollander, P., & Backlund, S. (2013). Barriers to industrial energy efficiency in foundries: A European comparison. Journal of Cleaner Production, 40, 161–176. https://doi.org/10.1016/j.jclepro.2012.08.040Troitzsch, K. G. (2013). Historical Introduction. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity (pp. 13–21). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93813-2Turnheim, B., Berkhout, F., Geels, F., Hof, A., McMeekin, A., Nykvist, B., & van Vuuren, D. (2015). Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change, 35, 239–253. https://doi.org/10.1016/j.gloenvcha.2015.08.010UNFCCC. (2015). Paris Agreement. In Conference of the Parties on its twenty-first session (Vol. 21932, Issue December). https://doi.org/FCCC/CP/2015/L.9/Rev.1United Nations. (1998). Kyoto protocol to the United Nations framework (Vol. 7). https://doi.org/10.1111/1467-9388.00150UPME. (2013). Determinación del potencial de reducción del consumo energético en el sector servicios en Colombia.UPME. (2015a). Estudio sobre la estructura del mercado nacional de equipos sujetos al proyecto de RETIQ, y el comportamiento del mercado frente a la inclusión del etiquetado obligatorio de parámetros de eficiencia energética. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/07/estudio1.pdfUPME. (2015b). Plan de Expansión de Referencia Generación-Transmisión 2014-2028 (p. 765). http://www.upme.gov.co/Docs/Plan_Expansion/2015/Plan_GT_2014-2028.pdfUPME. (2015c). Resolución 281 del 2015. Por la cual se define el límite máximo de potencia de la autogeneración a pequeña escala (p. 2). http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_370895a6f86c4221b2c38ab92ed86360UPME. (2017). Plan de expansión de referencia generación – transmisión (2017-2031). http://www.upme.gov.co/Docs/Plan_Expansion/2017/Plan_GT_2017_2031.pdf%0AUPME. (2019). Plan energetico nacional 2020-2050. https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspxUPME, & CORPOEMA. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia a partir de la caracterización del consumo energético para sus diferentes procesos, usos y equipos de uso final. http://www1.upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/Informe_Final_Volumen_2.pdfvan den Broek, K. L., & Walker, I. (2019). Exploring the perceptions of drivers of energy behaviour. Energy Policy, 129(September 2018), 1297–1305. https://doi.org/10.1016/j.enpol.2019.03.033van der Kam, M. J., Meelen, A. A. H., van Sark, W. G. J. H. M., & Alkemade, F. (2018). Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition. Energy Research and Social Science, 46(March), 68–85. https://doi.org/10.1016/j.erss.2018.06.003van Doren, D., Giezen, M., Driessen, P. P. J., & Runhaar, H. A. C. (2016). Scaling-up energy conservation initiatives: Barriers and local strategies. Sustainable Cities and Society, 26, 227–239. https://doi.org/10.1016/j.scs.2016.06.009Villca-pozo, M., & Gonzales-bustos, J. P. (2019). Tax incentives to modernize the energy efficiency of the housing in Spain. Energy Policy, 128(April 2018), 530–538. https://doi.org/10.1016/j.enpol.2019.01.031Viva solar Colombia. (2020). Paquetes completos.Wang, J., Yang, F., Zhang, X., & Zhou, Q. (2018). Barriers and drivers for enterprise energy efficiency: An exploratory study for industrial transfer in the Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 200, 866–879. https://doi.org/10.1016/j.jclepro.2018.07.327Wang, T., Li, X., Liao, P. C., & Fang, D. (2016). Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers. Energy, 103, 588–597. https://doi.org/10.1016/j.energy.2016.03.039Wang, W., Yu, N., & Johnson, R. (2017). A model for commercial adoption of photovoltaic systems in California. Journal of Renewable and Sustainable Energy, 9(2), 025904. https://doi.org/10.1063/1.4979899Warren, P. (2014). A review of demand-side management policy in the UK. Renewable and Sustainable Energy Reviews, 29, 941–951. https://doi.org/10.1016/j.rser.2013.09.009Warren, P. (2017). Transferability of demand-side policies between countries. Energy Policy, 109(April), 757–766. https://doi.org/10.1016/j.enpol.2017.07.032Watts, D., Valdés, M. F., Jara, D., & Watson, A. (2015). Potential residential PV development in Chile : The effect of Net Metering and Net Billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037–1051. https://doi.org/10.1016/j.rser.2014.07.201Widén, J. (2014). Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Applied Energy, 126, 199–212. https://doi.org/10.1016/j.apenergy.2014.04.008Wiese, C., Larsen, A., & Pade, L.-L. (2018). Interaction effects of energy efficiency policies: a review. Energy Efficiency, 11(8), 2137–2156. https://doi.org/10.1007/s12053-018-9659-zWirth, S. (2014). Communities matter: Institutional preconditions for community renewable energy. Energy Policy, 70, 236–246. https://doi.org/10.1016/j.enpol.2014.03.021Wohlfarth, K., Klobasa, M., & Gutknecht, R. (2020). Demand response in the service sector – Theoretical, technical and practical potentials. Applied Energy, 258, 114089. https://doi.org/10.1016/j.apenergy.2019.114089Wong-Parodi, G., Krishnamurti, T., Gluck, J., & Agarwal, Y. (2019). Encouraging energy conservation at work: A field study testing social norm feedback and awareness of monitoring. Energy Policy, 130(July 2018), 197–205. https://doi.org/10.1016/j.enpol.2019.03.028World Bank. (2019). International financial statistics and data files. Inflation, Consumer Prices (Annual %) - Colombia. https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?fbclid=IwAR1T3oY42xcltyyVwUb3leENPEGlfaUuFyrIgauigFt7Kgra-fCGnGZbzG4&locations=COWu, T., Yang, S., & Tan, J. (2020). Impacts of government R&D subsidies on venture capital and renewable energy investment -- an empirical study in China. Resources Policy, 68, 101715. https://doi.org/10.1016/j.resourpol.2020.101715Xie, C., Bai, M., & Wang, X. (2018). Accessing provincial energy efficiencies in China’s transport sector. Energy Policy, 123(September), 525–532. https://doi.org/10.1016/j.enpol.2018.09.032Xin-gang, Z., & Yu-qiao, Z. (2021). Analysis of the effectiveness of Renewable Portfolio Standards: A perspective of shared mental model. Journal of Cleaner Production, 278, 124276. https://doi.org/10.1016/j.jclepro.2020.124276Xm. (2017a). Información consumo horario año 2016 por códico CIIU.Xm. (2017b). Portal BI - Información Inteligente. Históricos - Demanda Comercial. http://portalbissrs.xm.com.co/dmnd/Paginas/Historicos/Historicos.aspxXm. (2019a). Capacidad efectiva neta. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/21-capacidad-efectiva-neta.htmlXm. (2019b). Variables de la operación del SIN. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/14-variables-de-la-operacion-del-sin.htmlXm. (2020, February 6). En Colombia factor de emisión de CO2 por generación eléctrica del sistema interconectado: 164.38 gramos de CO2 por kilovatio hora. Comunicados. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383#:~:text=En Colombia Factor de emisión,de CO2 por kilovatio horaYilmaz, S., Weber, S., & Patel, M. K. (2019). Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes. Energy Policy, 133(July), 110909. https://doi.org/10.1016/j.enpol.2019.110909Young, S., Bruce, A., & MacGill, I. (2019). Potential impacts of residential PV and battery storage on Australia’s electricity networks under different tariffs. Energy Policy, 128(December 2018), 616–627. https://doi.org/10.1016/j.enpol.2019.01.005Yu, H., Hong, B., Luan, W., Huang, B., & Semero, Y. K. (2018). Study on business models of distributed generation in China. Global Energy Interconnection, 1(2), 162–171. https://doi.org/10.14171/j.2096-5117.gei.2018.02.008Zafar, R., Mahmood, A., Razzaq, S., Ali, W., Naeem, U., & Shehzad, K. (2018). Prosumer based energy management and sharing in smart grid. Renewable and Sustainable Energy Reviews, 82(April 2017), 1675–1684. https://doi.org/10.1016/j.rser.2017.07.018Zapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(July), 183–191. https://doi.org/10.1016/j.seta.2018.10.008Zhang, Q., & Grossmann, I. E. (2016). Enterprise-wide optimization for industrial demand side management: Fundamentals, advances, and perspectives. Chemical Engineering Research and Design, 116, 114–131. https://doi.org/10.1016/j.cherd.2016.10.006Zhang, Yan, Bai, X., Mills, F. P., & Pezzey, J. C. V. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings, 172, 279–294. https://doi.org/10.1016/j.enbuild.2018.05.017Zhang, Yu, Song, J., & Hamori, S. (2011). Impact of subsidy policies on diffusion of photovoltaic power generation. Energy Policy, 39(4), 1958–1964. https://doi.org/10.1016/j.enpol.2011.01.021Zhang, Yurong, & Wang, Y. (2013). Barriers’ and policies’ analysis of China’s building energy efficiency. Energy Policy, 62(2013), 768–773. https://doi.org/10.1016/j.enpol.2013.06.128Zheng, S., Lam, C. M., Hsu, S. C., & Ren, J. (2018). Evaluating efficiency of energy conservation measures in energy service companies in China. Energy Policy, 122(August), 580–591. https://doi.org/10.1016/j.enpol.2018.08.011Zou, H., Du, H., Brown, M. A., & Mao, G. (2017). Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy, 134, 256–268. https://doi.org/10.1016/j.energy.2017.05.192LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79637/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1152684901.2021.pdf1152684901.2021.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf3923050https://repositorio.unal.edu.co/bitstream/unal/79637/4/1152684901.2021.pdfe452b47b15a1920bedcb44d1daa5c9d2MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79637/5/license_rdf4460e5956bc1d1639be9ae6146a50347MD55THUMBNAIL1152684901.2021.pdf.jpg1152684901.2021.pdf.jpgGenerated Thumbnailimage/jpeg4871https://repositorio.unal.edu.co/bitstream/unal/79637/6/1152684901.2021.pdf.jpgaea083e27df543b7c97bc54c9fe4fffdMD56unal/79637oai:repositorio.unal.edu.co:unal/796372023-10-24 10:02:27.285Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |