Estimation of quality of experience (QoE) in e-Health ecosystems

This article proposes a framework to design and implement e- Health interventions in a comprehensive manner. We draw on complexity science to study the interplay of the ecosystem, the behavior and interactions among its agents. We provide a platform to estimate the Quality of Experience (QoE) to ass...

Full description

Autores:
Rojas-Mendizabal, Veronica Alexandra
Serrano-Santoyo, Arturo
Conte-Galvan, Roberto
Villarreal-Reyes, Salvador
Rivera-Rodriguez, Raul
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67570
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67570
http://bdigital.unal.edu.co/68599/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
QoE
QoS
complexity science
e-health
fuzzy logic
QoE
QoS
ciencia de la complejidad
e-salud
lógica difusa
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This article proposes a framework to design and implement e- Health interventions in a comprehensive manner. We draw on complexity science to study the interplay of the ecosystem, the behavior and interactions among its agents. We provide a platform to estimate the Quality of Experience (QoE) to assess the relationship between technology and human factors involved in e-Health projects. Our aim is to estimate QoE in e-Health ecosystems from the perspective of complexity by adopting a methodology that uses fuzzy logic to study the behavior of the ecosystem’s agents. We apply the proposed framework to a remote diagnosis case by means of an ultrasound probe through a satellite link. Despite the ambiguities for determining QoE, the experiment demonstrates the applicability of the framework and allows to stressing the importance of human factors in the implementation of e-Health projects.