Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente

ilustraciones, diagrama

Autores:
Restrepo-Arias, Juan F.
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83849
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83849
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Tecnología agrícola
Agricultural technology
Agricultura Inteligente
Clasificación de imágenes
Inteligencia Artificial
Internet de las Cosas
Smart agriculture
Image classification
Artificial Intelligence
Internet of things
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9a4c6710d7b2dc33d4d628a31669610b
oai_identifier_str oai:repositorio.unal.edu.co:unal/83849
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
dc.title.translated.eng.fl_str_mv Image classification method, using artificial intelligence techniques, integrated into a smart farming IoT platform
title Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
spellingShingle Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Tecnología agrícola
Agricultural technology
Agricultura Inteligente
Clasificación de imágenes
Inteligencia Artificial
Internet de las Cosas
Smart agriculture
Image classification
Artificial Intelligence
Internet of things
title_short Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
title_full Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
title_fullStr Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
title_full_unstemmed Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
title_sort Método de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligente
dc.creator.fl_str_mv Restrepo-Arias, Juan F.
dc.contributor.advisor.none.fl_str_mv Branch Bedoya, John Willian
Awad Aubad, Gabriel
dc.contributor.author.none.fl_str_mv Restrepo-Arias, Juan F.
dc.contributor.researchgroup.spa.fl_str_mv Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.contributor.orcid.spa.fl_str_mv Restrepo Arias, Juan Felipe [0000-0002-9689-1017]
Branch Bedoya, John Willian [0000-0002-0378-028X]
dc.contributor.cvlac.spa.fl_str_mv Restrepo. Felipe [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000487007]
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Tecnología agrícola
Agricultural technology
Agricultura Inteligente
Clasificación de imágenes
Inteligencia Artificial
Internet de las Cosas
Smart agriculture
Image classification
Artificial Intelligence
Internet of things
dc.subject.lemb.spa.fl_str_mv Tecnología agrícola
dc.subject.lemb.eng.fl_str_mv Agricultural technology
dc.subject.proposal.spa.fl_str_mv Agricultura Inteligente
Clasificación de imágenes
Inteligencia Artificial
Internet de las Cosas
Smart agriculture
dc.subject.proposal.eng.fl_str_mv Image classification
Artificial Intelligence
Internet of things
description ilustraciones, diagrama
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-24T14:40:41Z
dc.date.available.none.fl_str_mv 2023-05-24T14:40:41Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83849
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83849
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv L. Trivelli, A. Apicella, F. Chiarello, R. Rana, and A. Tarabella, “From precision agriculture to Industry 4.0 the agrifood sector,” British Food Journal, vol. 121, no. 8, pp. 1730–1743, 2019, doi: 10.1108/BFJ-11-2018-0747.
F. Mazzetto, R. Gallo, and P. Sacco, “Reflections and methodological proposals to treat the concept of ‘information precision’ in smart agriculture practices,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–27, 2020, doi: 10.3390/s20102847.
Y. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,” J Ind Inf Integr, vol. 6, pp. 1–10, 2017, doi: 10.1016/j.jii.2017.04.005.
S. Wolfert, L. Ge, C. Verdouw, and M. J. Bogaardt, “Big Data in Smart Farming – A review,” Agric Syst, vol. 153, pp. 69–80, 2017, doi: 10.1016/j.agsy.2017.01.023. URL:http://dx.doi.org/10.1016/j.agsy.2017.01.023
A. A. R. Madushanki, M. N. Halgamuge, W. A. H. S. Wirasagoda, and A. Syed, “Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 4, pp. 11–28, 2019.
M. L. C. Delos Santos, L. L. Lacatan, and F. G. Balazon, “Cloud-based smart farming for crop production suitability using wireless sensor technology,” Test Engineering and Management, vol. 81, no. 11–12, pp. 5043–5052, 2019.
S. P. Jaiswal, V. S. Bhadoria, A. Agrawal, and H. Ahuja, “Internet of things (Iot) for smart agriculture and farming in developing nations,” International Journal of Scientific and Technology Research, vol. 8, no. 12, pp. 1049–1056, 2019.
S. Terence and G. Purushothaman, “Systematic review of Internet of Things in smart farming,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 6, 2020, doi: 10.1002/ett.3958.
K. Sekaran, M. N. Meqdad, P. Kumar, S. Rajan, and S. Kadry, “Smart agriculture management system using internet of things,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp. 1275–1284, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14029.
S. K. S. K. Verma, M. Rajesh, and R. Vincent, “Smart-farming using internet of things,” J Comput Theor Nanosci, vol. 17, no. 1, pp. 172–176, 2020, doi: 10.1166/jctn.2020.8646.
K. Ravindranath, C. S. Bhargavi, K. Samaikya Reddy, and M. Sai Chandana, “Cloud of things for smart agriculture,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 6, pp. 30–33, 2019.
P. Lashitha Vishnu Priya, N. Sai Harshith, and N. V. K. V. K. Ramesh, “Smart agriculture monitoring system using IoT,” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 308–311, 2018, doi: 10.17148/IJARCCE.2019.8419.
E. Navarro, N. Costa, and A. Pereira, “A systematic review of iot solutions for smart farming,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–29, 2020, doi: 10.3390/s20154231.
M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609.
J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,” Computers and Electronics in Agriculture, vol. 142. 2017. doi: 10.1016/j.compag.2017.09.015.
M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Deep Joint Transmission-Recognition for Power-Constrained Iot Devices,” ArXiv, pp. 1–10, 2020.
H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation —A review,” Information Processing in Agriculture, vol. 7, no. 1, pp. 1–19, 2020, doi: 10.1016/j.inpa.2019.09.006. URL:https://doi.org/10.1016/j.inpa.2019.09.006
A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, “Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning,” IAENG Int J Comput Sci, vol. 49, no. 1, pp. 216–231, 2022.
P. Angin, M. H. Anisi, F. Göksel, C. Gürsoy, and A. Büyükgülcü, “Agrilora: A digital twin framework for smart agriculture,” J Wirel Mob Netw Ubiquitous Comput Dependable Appl, vol. 11, no. 4, pp. 77–96, 2020, doi: 10.22667/JOWUA.2020.12.31.077.
G. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, May 2022, doi: 10.1109/JIOT.2021.3097379.
N. Farooqui, A. Mishra, and R. Mehra, “IOT based Automated Greenhouse Using Machine Learning Approach,” International Journal of Intelligent Systems and Applications in Engineering, vol. 10, no. 2, pp. 226–231, 2022, [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/1522. URL:https://ijisae.org/index.php/IJISAE/article/view/1522
R. Gajjar, N. Gajjar, V. J. Thakor, N. P. Patel, and S. Ruparelia, “Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform,” Visual Computer, 2021, doi: 10.1007/s00371-021-02164-9. URL:https://doi.org/10.1007/s00371-021-02164-9
V. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E. Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4,” Comput Electron Agric, vol. 181, no. January, 2021, doi: 10.1016/j.compag.2020.105951.
M. Ji, J. Yoon, J. Choo, M. Jang, and A. Smith, “LoRa-based Visual Monitoring Scheme for Agriculture IoT,” SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference Proceedings, 2019, doi: 10.1109/SAS.2019.8706100.
N. Islam, B. Ray, and F. Pasandideh, “IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication?,” Proceedings - 2020 IEEE International Conference on Smart Internet of Things, SmartIoT 2020, no. October, pp. 270–276, 2020, doi: 10.1109/SmartIoT49966.2020.00048.
K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT,” 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, no. January 2019, pp. 197–202, 2018, doi: 10.1109/PERCOMW.2018.8480255.
A. Carlsson, I. Kuzminykh, R. Franksson, and A. Liljegren, “Measuring a LoRa Network: Performance, Possibilities and Limitations,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11118 LNCS, pp. 116–128, 2018, doi: 10.1007/978-3-030-01168-0_11.
G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoraFarM: A LoRaWAN-based smart farming modular IoT architecture,” Sensors (Switzerland), vol. 20, no. 7, 2020, doi: 10.3390/s20072028.
T. U. Pathan and S. Chakole, “Sensor based smart farming and plant diseases monitoring,” Int J Eng Adv Technol, vol. 8, no. 2, pp. 442–446, 2019.
Y. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A vision-based counting and recognition system for flying insects in intelligent agriculture,” Sensors (Switzerland), vol. 18, no. 5, 2018, doi: 10.3390/s18051489.
I. Sa et al., “WeedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming,” IEEE Robot Autom Lett, vol. 3, no. 1, pp. 588–595, 2018, doi: 10.1109/LRA.2017.2774979.
D. Koc-San, S. Selim, N. Aslan, and B. T. San, “Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform,” Comput Electron Agric, vol. 150, no. February, pp. 289–301, 2018, doi: 10.1016/j.compag.2018.05.001. URL:https://doi.org/10.1016/j.compag.2018.05.001
R. G. R. G. De Luna, E. P. E. P. Dadios, A. A. A. A. Bandala, and R. R. P. R. R. P. Vicerra, “Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading,” Agrivita, vol. 42, no. 1, pp. 24–36, 2020, doi: 10.17503/agrivita.v42i1.2499.
O. E. Apolo-Apolo, J. Martínez-Guanter, G. Egea, P. Raja, and M. Pérez-Ruiz, “Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV,” European Journal of Agronomy, vol. 115, Apr. 2020, doi: 10.1016/j.eja.2020.126030.
H. Yalcin, “Phenology recognition using deep learning: DeepPheno,” 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, pp. 1–4, 2018, doi: 10.1109/SIU.2018.8404165.
A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Comput Electron Agric, vol. 157, no. December 2018, pp. 218–231, 2019, doi: 10.1016/j.compag.2018.12.039.
X. Pham and M. Stack, “How data analytics is transforming agriculture,” Bus Horiz, vol. 61, no. 1, pp. 125–133, 2018, doi: 10.1016/j.bushor.2017.09.011.
A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice of big data analysis in agriculture,” Computers and Electronics in Agriculture, vol. 143. Elsevier B.V., pp. 23–37, Dec. 2017. doi: 10.1016/j.compag.2017.09.037.
O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J, vol. 5, no. 5, pp. 3758–3773, 2018, doi: 10.1109/JIOT.2018.2844296.
W. Feng, W. Ju, A. Li, W. Bao, and J. Zhang, “High-Efficiency Progressive Transmission and Automatic Recognition of Wildlife Monitoring Images with WISNs,” IEEE Access, vol. 7, pp. 161412–161423, 2019, doi: 10.1109/ACCESS.2019.2951596.
S. W. Lee and H. Y. Kim, “An energy-efficient low-memory image compression system for multimedia IoT products,” EURASIP J Image Video Process, vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0333-3.
G. Campobello and A. Segreto, “A low complexity image compression algorithm for IoT multimedia applications,” European Signal Processing Conference, vol. 2019-Septe, pp. 1–5, 2019, doi: 10.23919/EUSIPCO.2019.8902678.
Z. Liu et al., “DeepN-JPEG: A deep neural network favorable JPEG-based image compression framework,” Proc Des Autom Conf, vol. Part F1377, no. 3, pp. 1–6, 2018, doi: 10.1145/3195970.3196022.
M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” The BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.
S. Wolfert, D. Goense, and C. A. G. Sorensen, “A future internet collaboration platform for safe and healthy food from farm to fork,” Annual SRII Global Conference, SRII, no. April, pp. 266–273, 2014, doi: 10.1109/SRII.2014.47.
S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front Plant Sci, vol. 7, no. September, 2016, doi: 10.3389/fpls.2016.01419.
P. Wspanialy and M. Moussa, “A detection and severity estimation system for generic diseases of tomato greenhouse plants,” Comput Electron Agric, vol. 178, no. August, p. 105701, 2020, doi: 10.1016/j.compag.2020.105701. URL:https://doi.org/10.1016/j.compag.2020.105701
D. J. A. Rustia and T. te Lin, “An IoT-based wireless imaging and sensor node system for remote greenhouse pest monitoring,” Chem Eng Trans, vol. 58, no. January, pp. 601–606, 2017, doi: 10.3303/CET1758101.
A. A. Sarangdhar, P. V. R. Pawar, and A. B. Blight, “Machine Learning Regression Technique for using IoT,” International Conference on Electronics, Communication and Aerospace Technology ICECA 2017, pp. 449–454, 2017.
A. Thorat, S. Kumari, and N. D. Valakunde, “An IoT based smart solution for leaf disease detection,” 2017 International Conference on Big Data, IoT and Data Science, BID 2017, vol. 2018-Janua, no. December, pp. 193–198, 2018, doi: 10.1109/BID.2017.8336597.
N. Kitpo and M. Inoue, “Early rice disease detection and position mapping system using drone and IoT architecture,” Proceedings - 12th SEATUC Symposium, SEATUC 2018, no. September 2019, 2018, doi: 10.1109/SEATUC.2018.8788863.
D. Brunelli, A. Albanese, D. Acunto, and M. Nardello, “E nergy N eutral M achine L earning B ased I o T D evice for P est D etection in P recision A griculture,” no. December 2019, pp. 2019–2022, 2019.
R. D. Devi, S. A. Nandhini, R. Hemalatha, and S. Radha, “IoT enabled efficient detection and classification of plant diseases for agricultural applications,” 2019 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2019, pp. 447–451, 2019, doi: 10.1109/WiSPNET45539.2019.9032727.
C. J. Chen, Y. Y. Huang, Y. S. Li, C. Y. Chang, and Y. M. Huang, “An AIoT Based Smart Agricultural System for Pests Detection,” IEEE Access, vol. 8, pp. 180750–180761, 2020, doi: 10.1109/ACCESS.2020.3024891.
S. Zhang, W. Huang, and H. Wang, “Crop disease monitoring and recognizing system by soft computing and image processing models,” Multimed Tools Appl, vol. 79, no. 41–42, pp. 30905–30916, 2020, doi: 10.1007/s11042-020-09577-z.
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4e, 4°. Pearson Education Limited, 2018.
N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 1, pp. 62–66, 1979.
A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems, Second Edition. O’Reilly Media, Inc., 2019. Accessed: Oct. 02, 2022. [Online]. Available: http://oreilly.com/catalog/errata.csp?isbn=9781492032649. URL:http://oreilly.com/catalog/errata.csp?isbn=9781492032649
M. Gehan and N. Fahlgren, “PlantCV.” Missouri, United States., pp. 1–14, 2022.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861. URL:http://arxiv.org/abs/1704.04861
A. Howard et al., “Searching for mobileNetV3,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 1314–1324, 2019, doi: 10.1109/ICCV.2019.00140.
M. Tan and Q. v. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
M. Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 2815–2823, 2019, doi: 10.1109/CVPR.2019.00293.
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360. URL:http://arxiv.org/abs/1602.07360
X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6848–6856, 2018, doi: 10.1109/CVPR.2018.00716.
Á. B. Jiménez, J. L. Lázaro, and J. R. Dorronsoro, “Finding optimal model parameters by deterministic and annealed focused grid search,” Neurocomputing, vol. 72, no. 13–15, pp. 2824–2832, 2009, doi: 10.1016/j.neucom.2008.09.024.
J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter Optimization Yoshua Bengio,” 2012. [Online]. Available: http://scikit-learn.sourceforge.net. URL:http://scikit-learn.sourceforge.net.
J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.
N. M. Aszemi and P. D. D. Dominic, “Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms,” 2019. [Online]. Available: www.ijacsa.thesai.org. URL:www.ijacsa.thesai.org
M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.
A. Tharwat, “Classification assessment methods,” Applied Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi: 10.1016/j.aci.2018.08.003.
“IEEE Standard for Binary Floating-Point Arithmetic Standards Committee of the IEEE Computer Society IEEE Standards Board American National Standards Institute,” 1985.
“The GFLOPS/W of the various machines in the VMW Research Group,” 2022. https://web.eece.maine.edu/~vweaver/group/green_machines.html (accessed Dec. 22, 2022). URL:https://web.eece.maine.edu/~vweaver/group/green_machines.html
S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi: 10.1007/s10796-014-9492-7.
A. Kaloxylos et al., “Farm management systems and the Future Internet era,” Comput Electron Agric, vol. 89, pp. 130–144, 2012, doi: 10.1016/j.compag.2012.09.002.
A. Kaloxylos et al., “The Use of Future Internet Technologies in the Agriculture and Food Sectors: Integrating the Supply Chain,” Procedia Technology, vol. 8, no. Haicta, pp. 51–60, 2013, doi: 10.1016/j.protcy.2013.11.009.
C. Li and B. Niu, “Design of smart agriculture based on big data and Internet of things,” Int J Distrib Sens Netw, vol. 16, no. 5, 2020, doi: 10.1177/1550147720917065.
J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and agriculture data analysis for smart farm,” Comput Electron Agric, vol. 156, pp. 467–474, 2019, doi: 10.1016/j.compag.2018.12.011.
C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi: 10.3390/agronomy9050216.
M. Colezea, G. Musat, F. Pop, C. Negru, A. Dumitrascu, and M. Mocanu, “CLUeFARM: Integrated web-service platform for smart farms,” Comput Electron Agric, vol. 154, pp. 134–154, Nov. 2018, doi: 10.1016/j.compag.2018.08.015.
D. Budaev et al., “Conceptual design of smart farming solution for precise agriculture,” International Journal of Design and Nature and Ecodynamics, vol. 13, no. 3, pp. 307–314, 2018, doi: 10.2495/DNE-V13-N3-307-314.
A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Biosyst Eng, vol. 164, pp. 31–48, 2017, doi: 10.1016/j.biosystemseng.2017.09.007.
M. De Donno, K. Tange, and N. Dragoni, “Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog,” IEEE Access, vol. 7, pp. 150936–150948, 2019, doi: 10.1109/ACCESS.2019.2947652.
IOF - European Union, “IOF-2020 (Internet of Food) REFERENCE ARCHITECTURE FOR INTEROPERABILITY , REPLICABILITY AND REUSE,” EU, 2020.
M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for internet of things: A survey,” IEEE Internet Things J, vol. 3, no. 1, pp. 70–95, 2016, doi: 10.1109/JIOT.2015.2498900.
U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, “Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease,” Comput Electron Agric, vol. 177, no. August, p. 105661, 2020, doi: 10.1016/j.compag.2020.105661. URL:https://doi.org/10.1016/j.compag.2020.105661
S. S. Chouhan, U. P. Singh, and S. Jain, “Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network,” Wirel Pers Commun, vol. 121, no. 3, pp. 1757–1779, 2021, doi: 10.1007/s11277-021-08734-3. URL:https://doi.org/10.1007/s11277-021-08734-3
N. Fatima, S. A. Siddiqui, and A. Ahmad, “IoT-based Smart Greenhouse with Disease Prediction using Deep Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, pp. 113–121, 2021, doi: 10.14569/IJACSA.2021.0120713.
D. Gao, Q. Sun, B. Hu, and S. Zhang, “A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles,” Sensors (Switzerland), vol. 20, no. 5, 2020, doi: 10.3390/s20051487.
P. Joshi, D. Das, V. Udutalapally, M. K. Pradhan, and S. Misra, “RiceBioS: Identification of Biotic Stress in Rice Crops Using Edge-as-a-Service,” IEEE Sens J, vol. 22, no. 5, pp. 4616–4624, 2022, doi: 10.1109/JSEN.2022.3143950.
S. S. Lee, Y. N. Jeong, S. R. Son, and B. K. Lee, “A self-predictable crop yield platform (SCYP) based on crop diseases using deep learning,” Sustainability (Switzerland), vol. 11, no. 13, 2019, doi: 10.3390/su11133637.
A. Mellit, M. Benghanem, O. Herrak, and A. Messalaoui, “Design of a novel remote monitoring system for smart greenhouses using the internet of things and deep convolutional neural networks,” Energies (Basel), vol. 14, no. 16, 2021, doi: 10.3390/en14165045.
M. Mishra, P. Choudhury, and B. Pati, “Modified ride-NN optimizer for the IoT based plant disease detection,” J Ambient Intell Humaniz Comput, vol. 12, no. 1, pp. 691–703, 2021, doi: 10.1007/s12652-020-02051-6. URL:https://doi.org/10.1007/s12652-020-02051-6
G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand, and A. H. Gandomi, “Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System,” IEEE Internet Things J, vol. 8, no. 16, pp. 12847–12854, 2021, doi: 10.1109/JIOT.2021.3072908.
S. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4
A. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, and J. Echazarra, “Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions,” Comput Electron Agric, vol. 167, no. September, p. 105093, 2019, doi: 10.1016/j.compag.2019.105093. URL:https://doi.org/10.1016/j.compag.2019.105093
B. S. Rishiikeshwer, T. A. Shriram, J. S. Raju, M. Hari, B. Santhi, and G. R. Brindha, “Farmer-friendly mobile application for automated leaf disease detection of real-time augmented data set using convolution neural networks,” Journal of Computer Science, vol. 16, no. 2, pp. 158–166, 2020, doi: 10.3844/JCSSP.2020.158.166.
S. Ramesh and B. Rajaram, “Iot based crop disease identification system using optimization techniques,” ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 4, pp. 1392–1395, 2018.
R. Rathinam, P. Kasinathan, U. Govindarajan, V. K. Ramachandaramurthy, U. Subramaniam, and S. Garrido, “Cybernetics approaches in intelligent systems for crops disease detection with the aid of IoT,” International Journal of Intelligent Systems, vol. 36, no. 11, pp. 6550–6580, 2021, doi: 10.1002/int.22560.
K. K. Sarma, K. K. Das, V. Mishra, S. Bhuiya, and D. Kaplun, “Learning Aided System for Agriculture Monitoring Designed Using Image Processing and IoT-CNN,” IEEE Access, vol. 10, pp. 41525–41536, 2022, doi: 10.1109/ACCESS.2022.3167061.
V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “SCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture,” IEEE Sens J, vol. 21, no. 16, pp. 17525–17538, 2021, doi: 10.1109/JSEN.2020.3032438.
Z. Zinonos, S. Gkelios, A. F. Khalifeh, D. G. Hadjimitsis, Y. S. Boutalis, and S. A. Chatzichristofis, “Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology,” IEEE Access, vol. 10, pp. 122–133, 2022, doi: 10.1109/ACCESS.2021.3138050.
I. Dasgupta, J. Saha, P. Venkatasubbu, and P. Ramasubramanian, “AI Crop Predictor and Weed Detector Using Wireless Technologies: A Smart Application for Farmers,” Arab J Sci Eng, vol. 45, no. 12, pp. 11115–11127, 2020, doi: 10.1007/s13369-020-04928-2. URL:https://doi.org/10.1007/s13369-020-04928-2
A. Coletta, N. Bartolini, G. Maselli, A. Kehs, P. McCloskey, and D. P. Hughes, “Optimal Deployment in Crowdsensing for Plant Disease Diagnosis in Developing Countries,” IEEE Internet Things J, vol. 9, no. 9, pp. 6359–6373, 2022, doi: 10.1109/JIOT.2020.3002332.
J. G. M. Esgario, P. B. C. de Castro, L. M. Tassis, and R. A. Krohling, “An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning,” Information Processing in Agriculture, vol. 9, no. 1, pp. 38–47, 2022, doi: 10.1016/j.inpa.2021.01.004.
R. Kamath, M. Balachandra, and S. Prabhu, “Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study,” IEEE Access, vol. 7, pp. 45110–45122, 2019, doi: 10.1109/ACCESS.2019.2908846.
A. Albanese, M. Nardello, and D. Brunelli, “Automated Pest Detection with DNN on the Edge for Precision Agriculture,” IEEE J Emerg Sel Top Circuits Syst, vol. 11, no. 3, pp. 458–467, 2021, doi: 10.1109/JETCAS.2021.3101740.
V. Attada and S. Katta, “A methodology for automatic detection and classification of pests using optimized SVM in greenhouse crops,” Int J Eng Adv Technol, vol. 8, no. 6, pp. 1485–1491, 2019, doi: 10.35940/ijeat.F8133.088619.
M. E. Karar, F. Alsunaydi, S. Albusaymi, and S. Alotaibi, “A new mobile application of agricultural pests recognition using deep learning in cloud computing system,” Alexandria Engineering Journal, vol. 60, no. 5, pp. 4423–4432, 2021, doi: 10.1016/j.aej.2021.03.009. URL:https://doi.org/10.1016/j.aej.2021.03.009
M. A. Lopez, J. M. Lombardo, M. López, D. Álvarez, S. Velasco, and S. Terrón, “Traceable Ecosystem and Strategic Framework for the Creation of an Integrated Pest Management System for Intensive Farming,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 3, p. 47, 2020, doi: 10.9781/ijimai.2020.08.004.
B. Ramalingam et al., “Remote insects trap monitoring system using deep learning framework and iot,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–17, 2020, doi: 10.3390/s20185280.
I. Salehin et al., “IFSG: Intelligence agriculture crop-pest detection system using IoT automation system,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 2, pp. 1091–1099, 2021, doi: 10.11591/ijeecs.v24.i2.pp1091-1099.
M. J. Schrader, P. Smytheman, E. H. Beers, and L. R. Khot, “An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops,” Machines, vol. 10, no. 1, 2022, doi: 10.3390/machines10010052.
P. Thakare and V. Ravi Sankar, “Advanced pest detection strategy using hybrid optimization tuned deep convolutional neural network,” Journal of Engineering, Design and Technology, 2022, doi: 10.1108/JEDT-09-2021-0488.
G. Gagliardi et al., “An internet of things solution for smart agriculture,” Agronomy, vol. 11, no. 11, Nov. 2021, doi: 10.3390/agronomy11112140.
L. Paleari et al., “Estimating plant nitrogen content in tomato using a smartphone,” Field Crops Res, vol. 284, Aug. 2022, doi: 10.1016/j.fcr.2022.108564.
K. R. Prilianti, S. Anam, T. H. P. Brotosudarmo, and A. Suryanto, “Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application,” Journal of Agricultural Engineering, vol. 51, no. 4, pp. 220–228, 2020, doi: 10.4081/jae.2020.1082.
J. Santhosh, P. Balamurugan, G. Arulkumaran, M. Baskar, and R. Velumani, “Image Driven Multi Feature Plant Management with FDE Based Smart Agriculture with Improved Security in Wireless Sensor Networks,” Wirel Pers Commun, no. 0123456789, 2021, doi: 10.1007/s11277-021-08710-x. URL:https://doi.org/10.1007/s11277-021-08710-x
L. K. S. Tolentino et al., “Yield evaluation of brassica rapa, Lactuca Sativa, and brassica Integrifolia using image processing in an IoT-based Aquaponics with temperature-controlled greenhouse,” Agrivita, vol. 42, no. 3, pp. 393–410, 2020, doi: 10.17503/agrivita.v42i3.2600.
S. Park and J. Kim, “Design and implementation of a hydroponic strawberry monitoring and harvesting timing information supporting system based on nano ai-cloud and iot-edge,” Electronics (Switzerland), vol. 10, no. 12, 2021, doi: 10.3390/electronics10121400.
A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, Nov. 2019, doi: 10.3390/info10110348.
Á. L. Perales Gómez, P. E. López-de-Teruel, A. Ruiz, G. García-Mateos, G. Bernabé García, and F. J. García Clemente, “FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming,” Cluster Comput, vol. 25, no. 3, pp. 2163–2178, 2022, doi: 10.1007/s10586-021-03489-9.
R. Chandra et al., “Democratizing Data-Driven Agriculture Using Affordable Hardware,” IEEE Micro, vol. 42, no. 1, pp. 69–77, 2022, doi: 10.1109/MM.2021.3134743.
T. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006. URL:https://doi.org/10.1016/j.suscom.2018.10.006
J. D. Wahl and J. X. Zhang, “Development and power characterization of an IoT network for agricultural imaging applications,” Journal of Advances in Information Technology, vol. 12, no. 3, pp. 214–219, 2021, doi: 10.12720/jait.12.3.214-219.
A. Oliveira et al., “Iot sensing platform as a driver for digital farming in rural africa,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–25, Jun. 2020, doi: 10.3390/s20123511.
P. K. Sethy, S. K. Behera, N. Kannan, S. Narayanan, and C. Pandey, “Smart paddy field monitoring system using deep learning and IoT,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 16–24, Mar. 2021, doi: 10.1177/1063293X21988944.
C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, May 2019, doi: 10.3390/agronomy9050216.
E. A. Abioye et al., “IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment,” Information Processing in Agriculture, vol. 8, no. 2, pp. 270–283, Jun. 2021, doi: 10.1016/j.inpa.2020.05.004.
S. AlZu’bi, B. Hawashin, M. Mujahed, Y. Jararweh, and B. B. Gupta, “An efficient employment of internet of multimedia things in smart and future agriculture,” Multimed Tools Appl, vol. 78, no. 20, pp. 29581–29605, Oct. 2019, doi: 10.1007/s11042-019-7367-0.
S. R. Barkunan, V. Bhanumathi, and J. Sethuram, “Smart sensor for automatic drip irrigation system for paddy cultivation,” Computers and Electrical Engineering, vol. 73, pp. 180–193, Jan. 2019, doi: 10.1016/j.compeleceng.2018.11.013.
A. Mateo-Aroca, G. García-Mateos, A. Ruiz-Canales, J. M. Molina-García-Pardo, and J. M. Molina-Martínez, “Remote image capture system to improve aerial supervision for precision irrigation in agriculture,” Water (Switzerland), vol. 11, no. 2, Feb. 2019, doi: 10.3390/w11020255.
P. Ramya, T. R. Annapoorneswari, G. V. Bindu, N. V. Meghana, and U. Roshni, “Solar powered automated irrigation system with plant health indication using iot,” International Journal of Recent Technology and Engineering, vol. 8, no. 2 Special Issue 11, pp. 60–64, Sep. 2019, doi: 10.35940/ijrte.B1011.0982S1119.
L. Wang et al., “A Smart Droplet Detection Approach with Vision Sensing Technique for Agricultural Aviation Application,” IEEE Sens J, vol. 21, no. 16, pp. 17508–17516, Aug. 2021, doi: 10.1109/JSEN.2021.3056957.
D. Adami, M. O. Ojo, and S. Giordano, “Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI,” IEEE Access, vol. 9, pp. 132125–132139, 2021, doi: 10.1109/ACCESS.2021.3114503.
S. Angadi and R. Katagall, “Agrivigilance: A Security System For Intrusion Detection In Agriculture Using Raspberry Pi And Opencv,” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 8, no. 11, 2019, [Online]. Available: www.ijstr.org. URL:www.ijstr.org
V. Nithin, S. Mishra, P. Devarubiny, and S. Muthulakshmi, “Iot enabled farming assist and security using machine learning,” ARPN Journal of Engineering and Applied Sciences, vol. 14, no. 9, pp. 1809–1819, 2019.
A. V. Prabu, G. S. Kumar, S. Rajasoundaran, P. P. Malla, S. Routray, and A. Mukherjee, “Internet of things-based deeply proficient monitoring and protection system for crop field,” Expert Syst, vol. 39, no. 5, Jun. 2022, doi: 10.1111/exsy.12876.
M. R. Ramli, P. T. Daely, D.-S. Kim, and J. M. Lee, “IoT-based adaptive network mechanism for reliable smart farm system,” Comput Electron Agric, vol. 170, 2020, doi: 10.1016/j.compag.2020.105287.
S. K. Behera, P. K. Sethy, S. K. Sahoo, S. Panigrahi, and S. C. Rajpoot, “On-tree fruit monitoring system using IoT and image analysis,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 6–15, Mar. 2021, doi: 10.1177/1063293X20988395.
S. Kamal et al., “IOT Automation with Segmentation Techniques for Detection of Plant Seedlings in Agriculture,” Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/6466555.
V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, “Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application,” IEEE Access, vol. 8, pp. 9102–9114, 2020, doi: 10.1109/ACCESS.2020.2964608.
T. Misra et al., “Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes from Visual Images of Wheat Plants,” IEEE Access, vol. 9, pp. 76235–76247, 2021, doi: 10.1109/ACCESS.2021.3080836.
L. Parra, J. Marin, S. Yousfi, G. Rincón, P. V. Mauri, and J. Lloret, “Edge detection for weed recognition in lawns,” Comput Electron Agric, vol. 176, no. August, 2020, doi: 10.1016/j.compag.2020.105684.
S. K. Valicharla, “Weed Recognition in Agriculture : A Mask R-CNN Approach Weed Recognition in Agriculture : A Mask R-CNN Approach,” 2021.
A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Comput Electron Agric, vol. 158, pp. 226–240, 2019, doi: 10.1016/j.compag.2019.02.005.
S. Bargoti and J. Underwood, “Deep fruit detection in orchards,” Proc IEEE Int Conf Robot Autom, pp. 3626–3633, 2017, doi: 10.1109/ICRA.2017.7989417.
A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO,’” Precis Agric, no. 0123456789, 2019, doi: 10.1007/s11119-019-09642-0. URL:https://doi.org/10.1007/s11119-019-09642-0
E. Bellocchio, G. Costante, S. Cascianelli, M. L. Fravolini, and P. Valigi, “Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach,” IEEE Robot Autom Lett, vol. 5, no. 2, pp. 1079–1086, 2020, doi: 10.1109/LRA.2020.2966398.
I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A fruit detection system using deep neural networks,” Sensors (Switzerland), vol. 16, no. 8, 2016, doi: 10.3390/s16081222.
S. Bargoti and J. P. Underwood, “Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards,” J Field Robot, vol. 34, no. 6, pp. 1039–1060, 2017, doi: 10.1002/rob.21699.
U. O. Dorj, M. Lee, and S. seok Yun, “An yield estimation in citrus orchards via fruit detection and counting using image processing,” Comput Electron Agric, vol. 140, pp. 103–112, Aug. 2017, doi: 10.1016/j.compag.2017.05.019.
J. Lu, W. S. Lee, H. Gan, and X. Hu, “Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis,” Biosyst Eng, vol. 171, pp. 78–90, 2018, doi: 10.1016/j.biosystemseng.2018.04.009. URL:https://doi.org/10.1016/j.biosystemseng.2018.04.009
P. Sindhu and G. Indirani, “IOT with cloud based smart farming for citrus fruit disease classification using optimized convolutional neural networks,” International Journal on Emerging Technologies, vol. 11, no. 2, pp. 52–56, 2020.
P. Marques et al., “UAV-Based Automatic Detection and Monitoring of Chestnut Trees,” Remote Sens (Basel), vol. 11, no. 7, p. 855, 2019, doi: 10.3390/rs11070855.
A. Gupta, J. Byrne, D. Moloney, S. Watson, and H. Yin, “Automatic Tree Annotation in LiDAR Data,” no. Gistam, pp. 36–41, 2018, doi: 10.5220/0006668000360041.
W. S. Qureshi, A. Payne, K. B. Walsh, R. Linker, O. Cohen, and M. N. Dailey, “Machine vision for counting fruit on mango tree canopies,” Precis Agric, vol. 18, no. 2, pp. 224–244, 2017, doi: 10.1007/s11119-016-9458-5.
M. Zortea, M. M. G. Macedo, A. B. Mattos, B. C. Ruga, and B. H. Gemignani, “Automatic Citrus Tree Detection from UAV Images based on Convolutional Neural Networks,” Drones, vol. 2, no. 4, p. 39, 2018.
A. Khan et al., “Remote Sensing: An Automated Methodology for Olive Tree Detection and Counting in Satellite Images,” IEEE Access, vol. 6, pp. 77816–77828, 2018, doi: 10.1109/ACCESS.2018.2884199.
M. Balsi, S. Esposito, P. Fallavollita, and C. Nardinocchi, “Single-tree detection in high-density LiDAR data from UAV-based survey,” Eur J Remote Sens, vol. 51, no. 1, pp. 679–692, 2018, doi: 10.1080/22797254.2018.1474722.
W. Li, H. Fu, L. Yu, and A. Cracknell, “Deep learning based oil palm tree detection and counting for high-resolution remote sensing images,” Remote Sens (Basel), vol. 9, no. 1, 2017, doi: 10.3390/rs9010022.
N. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar, “Young and mature oil palm tree detection and counting using convolutional neural network deep learning method,” Int J Remote Sens, vol. 40, no. 19, pp. 7500–7515, 2019, doi: 10.1080/01431161.2019.1569282. URL:https://doi.org/10.1080/01431161.2019.1569282
H. Jiang, S. Chen, D. Li, C. Wang, and J. Yang, “Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method,” Remote Sens (Basel), vol. 9, no. 7, p. 721, 2017, doi: 10.3390/rs9070721.
A. Kelman, “Plant Disease,” 2017. https://www.britannica.com/science/plant-disease (accessed Jun. 26, 2022). URL:https://www.britannica.com/science/plant-disease
A. Kamilaris, F. Gao, and F. X. Prenafeta-bold, “Agri-IoT : A Semantic Framework for Internet of Things-enabled Smart Farming Applications,” no. October 2017, 2016, doi: 10.1109/WF-IoT.2016.7845467.
G. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, 2022, doi: 10.1109/JIOT.2021.3097379.
A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, 2019, doi: 10.3390/info10110348.
T. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006.
S. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4
FAO, “New standards to curb the global spread of plant pests and diseases,” 2019. https://www.fao.org/news/story/en/item/1187738/icode/ (accessed Jun. 26, 2022). URL:https://www.fao.org/news/story/en/item/1187738/icode/
V. K. Vishnoi, K. Kumar, and B. Kumar, Plant disease detection using computational intelligence and image processing, vol. 128, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s41348-020-00368-0.
S. Panno et al., “A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin,” Agronomy, vol. 11, no. 11, pp. 1–45, 2021, doi: 10.3390/agronomy11112188.
C. S. Hlaing and S. M. Maung Zaw, “Tomato Plant Diseases Classification Using Statistical Texture Feature and Color Feature,” in Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Sep. 2018, pp. 439–444. doi: 10.1109/ICIS.2018.8466483.
N. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar, and M. R. Anjum, “Leaf Image-Based Plant Disease Identification Using Color and Texture Features,” Wirel Pers Commun, vol. 121, no. 2, pp. 1139–1168, Nov. 2021, doi: 10.1007/s11277-021-09054-2.
Anjna, M. Sood, and P. K. Singh, “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,” in Procedia Computer Science, 2020, vol. 167, pp. 1056–1065. doi: 10.1016/j.procs.2020.03.404.
J. L. Raheja, S. Kumar, and A. Chaudhary, “Fabric defect detection based on GLCM and Gabor filter: A comparison,” Optik (Stuttg), vol. 124, no. 23, pp. 6469–6474, 2013, doi: 10.1016/j.ijleo.2013.05.004. URL:http://dx.doi.org/10.1016/j.ijleo.2013.05.004
X. Liu and C. Aldrich, “Deep Learning Approaches to Image Texture Analysis in Material Processing,” Metals (Basel), vol. 12, no. 2, 2022, doi: 10.3390/met12020355.
L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering, vol. 3, no. 3, pp. 542–558, Sep. 2021, doi: 10.3390/agriengineering3030035.
M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of Efficient CNN model for Tomato crop disease identification,” Sustainable Computing: Informatics and Systems, vol. 28, Dec. 2020, doi: 10.1016/j.suscom.2020.100407.
A. Hidayatuloh, M. Nursalman, and E. Nugraha, Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model; Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model. 2018.
M. Kaur and R. Bhatia, "Development Of An Improved Tomato Leaf Disease Detection And Classification Method," 2019 IEEE Conference on Information and Communication Technology, Allahabad, India, 2019, pp. 1-5, doi: 10.1109/CICT48419.2019.9066230.
M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network,” in Procedia Computer Science, 2020, vol. 167, pp. 293–301. doi: 10.1016/j.procs.2020.03.225.
M. M. Gunarathna and R. M. K. T. Rathnayaka, “Experimental determination of CNN hyper-parameters for tomato disease detection using leaf images,” in ICAC 2020 - 2nd International Conference on Advancements in Computing, Proceedings, Dec. 2020, pp. 464–469. doi: 10.1109/ICAC51239.2020.9357284.
H. Hong, J. Lin, and F. Huang, “Tomato Disease Detection and Classification by Deep Learning,” in Proceedings - 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2020, Jun. 2020, pp. 25–29. doi: 10.1109/ICBAIE49996.2020.00012.
D. Jiang, F. Li, Y. Yang and S. Yu, "A Tomato Leaf Diseases Classification Method Based on Deep Learning," 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 1446-1450, doi: 10.1109/CCDC49329.2020.9164457.
M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers,” Plants, vol. 9, no. 10, pp. 1–17, Oct. 2020, doi: 10.3390/plants9101319.
H. Kibriya, R. Rafique, W. Ahmad, and S. M. Adnan, “Tomato Leaf Disease Detection Using Convolution Neural Network,” in Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021, Jan. 2021, pp. 346–351. doi: 10.1109/IBCAST51254.2021.9393311.
H. I. Peyal, S. M. Shahriar, A. Sultana, I. Jahan, and M. H. Mondol, “Detection of tomato leaf diseases using transfer learning architectures: A comparative analysis,” Jul. 2021. doi: 10.1109/ACMI53878.2021.9528199.
R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi, “Performance of deep learning vs machine learning in plant leaf disease detection,” Microprocess Microsyst, vol. 80, Feb. 2021, doi: 10.1016/j.micpro.2020.103615.
H. Younis, M. Z. Khan, M. U. G. Khan, and H. Mukhtar, “Robust Optimization of MobileNet for Plant Disease Classification with Fine Tuned Parameters,” in 2021 International Conference on Artificial Intelligence, ICAI 2021, Apr. 2021, pp. 146–151. doi: 10.1109/ICAI52203.2021.9445261.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS,” no. 2017, pp. 1–11, 2019, [Online]. Available: http://arxiv.org/abs/1912.06059. URL:http://arxiv.org/abs/1912.06059
H. Alibrahim and S. A. Ludwig, “Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization,” in 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings, 2021, pp. 1551–1559. doi: 10.1109/CEC45853.2021.9504761.
J. González, “Still optimizing in the dark ? Bayesian optimization for model configuration and experimental design,” 2016.- University of Sheffield, Sheffield, UK February 18, 2016. Groningen, The Netherlands. URL: http://javiergonzalezh.github.io/presentations/talk_groningen2016.pdf
E. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms,” Proceedings - International Conference on Image Processing, ICIP, vol. 2017-Septe, no. September, pp. 3924–3928, 2018, doi: 10.1109/ICIP.2017.8297018.
L. Tani, D. Rand, C. Veelken, and M. Kadastik, “Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics,” European Physical Journal C, vol. 81, no. 2, pp. 1–9, 2021, doi: 10.1140/epjc/s10052-021-08950-y. URL:https://doi.org/10.1140/epjc/s10052-021-08950-y
J. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl, “Explaining Hyperparameter Optimization via Partial Dependence Plots,” Adv Neural Inf Process Syst, vol. 3, no. NeurIPS, pp. 2280–2291, 2021.
C. Molnar, “Interpretable Machine Learning A Guide for Making Black Box Models Explainable,” 2019. [Online]. Available: http://leanpub.com/interpretable-machine-learning. URL:http://leanpub.com/interpretable-machine-learning
S. Sadowski and P. Spachos, “Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities,” Comput Electron Agric, vol. 172, no. September 2019, p. 105338, 2020, doi: 10.1016/j.compag.2020.105338. URL:https://doi.org/10.1016/j.compag.2020.105338
P. Savvidis and G. A. Papakostas, “Remote Crop Sensing with IoT and AI on the Edge,” in 2021 IEEE World AI IoT Congress, AIIoT 2021, May 2021, pp. 48–54. doi: 10.1109/AIIoT52608.2021.9454237.
C.-C. Wei, P.-Y. Su, and S.-T. Chen, “Comparison of the LoRa Image Transmission Efficiency Based on Different Encoding Methods,” International Journal of Information and Electronics Engineering, vol. 10, no. 1, pp. 1–4, Mar. 2020, doi: 10.18178/IJIEE.2020.10.1.712. URL:http://www.ijiee.org/index.php?m=content&c=index&a=show&catid=89&id=823
A. H. Jebril, A. Sali, A. Ismail, and M. F. A. Rasid, “Overcoming limitations of LoRa physical layer in image transmission,” Sensors (Switzerland), vol. 18, no. 10, Oct. 2018, doi: 10.3390/s18103257.
Semtech Corporation, “LoRa and LoRaWAN: A Technical Overview,” 2019. Accessed: Oct. 14, 2022. [Online]. Available: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/. URL:https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and T. Watteyne, “Understanding the limits of LoRaWAN,” Jul. 2016, doi: 10.1109/MCOM.2017.1600613. URL:http://arxiv.org/abs/1607.08011
Pycom, “Lopy4-Datasheet, version 1.1,” 2020. https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf (accessed Oct. 15, 2022). URL:https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf
sensirion company, “Datasheet_SHT1x_V5_C1,” 2011. https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdf (accessed Oct. 15, 2022). URL:https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdf
Silicon Labs, “Si1145/46/47 P ROXIMITY/ UV/AMBIENT LIGHT SENSOR IC,” 2013. https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf (accessed Oct. 15, 2022). URL:https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf
“Raspberry Pi 4,” 2020. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed Jul. 05, 2022). URL:https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
“MG-811 ETC sensors,” 2020. https://datasheetspdf.com/datasheet/MG811.html (accessed Jun. 04, 2022). URL:https://datasheetspdf.com/datasheet/MG811.html
“Rika sensors - RK500-03 EC / Salinity Sensor,” 2021. https://www.rikasensor.com/rk500-03-ec-salinity-sensor.html (accessed Jul. 07, 2022). URL:https://www.rikasensor.com/rk500-03-ec-salinity-sensor.html
“THAOYU electronics - G1" Water Flow Sensor,” 2021. https://www.hotmcu.com/g1-water-flow-sensor-p-312.html (accessed Jun. 01, 2022). URL:https://www.hotmcu.com/g1-water-flow-sensor-p-312.html
“DFROBOT sensors - camera DSJ Raspberry NVIDIA.” https://www.dfrobot.com/product-2089.html (accessed Dec. 04, 2022). URL:https://www.dfrobot.com/product-2089.html
“DFROBOT sensors - Weather Station Kit with Anemometer/Wind Vane/Rain Bucket,” 2021. https://www.dfrobot.com/product-1308.html (accessed Dec. 03, 2022). URL:https://www.dfrobot.com/product-1308.html
L. Dragino Technology Co., “Datasheet_DLOS8N_LoRaWAN_Gateway,” 2020. https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.html (accessed Jul. 02, 2022). URL:https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.html
“The Things Network -TTN.” https://www.thethingsnetwork.org/ (accessed Feb. 01, 2022). URL:https://www.thethingsnetwork.org/
“Ubidots - Industrial IoT.” https://ubidots.com/ (accessed Apr. 01, 2022). URL:https://ubidots.com/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83849/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83849/2/71756752.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83849/3/71756752.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
d454656b5d4661b026a0a8a1f2a8e4b3
25b4218fdef3afe6337382e72021dff5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089415355531264
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Branch Bedoya, John Willian8373bc4285cc9e2e59e8f540f737e1db600Awad Aubad, Gabriel07cb0803e188649cb488cc638deed5a1600Restrepo-Arias, Juan F.ca76523fb1667cccecdda2d08f8d92b0600Gidia: Grupo de Investigación YyDesarrollo en Inteligencia ArtificialRestrepo Arias, Juan Felipe [0000-0002-9689-1017]Branch Bedoya, John Willian [0000-0002-0378-028X]Restrepo. Felipe [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000487007]2023-05-24T14:40:41Z2023-05-24T14:40:41Z2023https://repositorio.unal.edu.co/handle/unal/83849Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramaLa mayor parte de las variables que se miden en un cultivo agrícola solo pueden ser detectadas de manera visual, por ejemplo, el inventario de plantas y frutos, el desarrollo y las etapas fenológicas de un cultivo o la presencia de plagas y enfermedades. La llegada de las tecnologías de la Industria 4.0 a la agricultura, le ha dado la posibilidad a este dominio de resolver muchos de sus problemas. Una de las herramientas que actualmente vienen siendo implementadas son las plataformas basadas en el Internet de las Cosas (IoT por sus siglas en inglés), mejor conocidas como plataformas de Agricultura Inteligente. Sin embargo, muchas veces las explotaciones agrícolas cubren áreas muy grandes y/o remotas, en las cuales no es fácil acceder a recursos de energía o conectividad. Por lo tanto, implementar tecnologías como las ofrecidas por la Industria 4.0 algunas veces se convierte en un desafío. Este trabajo de investigación tiene como objetivo principal aportar en la solución de este tipo de problemas, al proponer un método de clasificación de imágenes integrado a una plataforma de agricultura inteligente, que busca reducir el costo computacional del proceso de clasificación de imágenes digitales, aplicado en un contexto rural con dispositivos que tienen limitaciones en su capacidad de cómputo local. La primera parte de esta investigación se enfoca en la revisión de trabajos previos, con el fin de reconocer cuales son las estrategias arquitectónicas que otros investigadores han propuesto para resolver esta problemática, y en qué tipo de aplicaciones se han enfocado. Con base en esta revisión se seleccionó una arquitectura IoT de referencia, que posteriormente fue usada en la implementación de la solución. Esta arquitectura se basó en el uso de la tecnología de comunicación LoRa (Long Range), especialmente creada para trabajar en contextos con limitaciones de conectividad y energía. Luego se seleccionó el caso de aplicación de la clasificación de enfermedades en plantas, por ser uno de los que más impacto tiene en la economía y productividad de los agricultores, para lo cual se generó un conjunto de datos de imágenes digitales, basado en el conjunto de datos (dataset). PlantVillage, uno de los más usados en investigaciones de este tipo. Posteriormente, con base en los resultados que otros investigadores han obtenido en el entrenamiento de algoritmos de Inteligencia Artificial con el conjunto de datos seleccionado, se hizo una preselección de métodos basados en redes neuronales convolucionales que combinan dos características: (1) un desempeño con exactitud en la clasificación por encima del 90 % y (2) un numero de parámetros de entrenamiento menor de cinco millones. El método seleccionado fue MobileNet, con los siguientes resultados de desempeño: exactitud (Accuracy) del 96,31 %, precisión (Precision) del 95,55 %, sensibilidad (Recall) del 95,93 %, F1—score del 95,72 %, con 3.762.056 de parámetros y un tamaño de 28,7 MB. Finalmente, el método seleccionado fue evaluado en tres escenarios de reducción de su arquitectura, para conocer su robustez al tener que adaptarse a condiciones con limitadas capacidades de cómputo. Para la evaluación se implementó una plataforma de agricultura inteligente en condiciones reales de trabajo, en dos unidades productivas de cultivo de tomate bajo invernadero, obteniendo métricas por encima del 90 % en todos los casos. (Texto tomado de la fuente)Most of the variables measured in an agricultural crop can only be detected visually, for example, the inventory of plants and fruits, the development and phenological stages of a crop, or the presence of pests and diseases. The arrival of industry 4.0 technologies in agriculture has allowed this domain to solve many of its problems. One of the tools currently being implemented is the platforms based on the Internet of Things (IoT), better known as smart agriculture platforms. However, farms often cover very large and/or remote areas where it is not easy to access energy resources or connectivity. Therefore, implementing technologies like those offered by Industry 4.0 sometimes becomes challenging. Therefore, the main objective of this research is to contribute to the solution of this type of problem by proposing an image classification method integrated into a smart agriculture platform. The proposed method seeks to reduce the computational cost of the digital image classification process applied in a rural context with devices that have limitations in their local computing capacity. The very first part of this research focuses on reviewing previous works to recognize the architectural strategies that other researchers have proposed to solve this problem and what type of applications they have focused on. Based on this review, a reference IoT architecture was selected and later used in implementing the solution. This architecture was based on LoRa (Long Range) communication technology, specially created to work in contexts with connectivity and energy limitations. Then, the case of application of the disease classification in plants was selected, as it is one of those that have the greatest impact on the economy and productivity of farmers. Next, a data set of digital images was generated based on the dataset PlantVillage, one of the most used in research of this type. Subsequently, based on the results from previous research works whit plant village dataset, a preselection of methods based on convolutional neural networks was made that combine two characteristics: (1) accurate performance in the classification above 90 % and (2) the number of training parameters less than five million. The selected method was MobileNet, with the following performance results: 96,31 % accuracy, 95,55 % precision, 95,93 % recall, and 95,72 % F1-score, with 3,762,056 parameters and a size of 28.7 MB. Finally, the selected method was evaluated in three reduction scenarios of its architecture to know its robustness when adapting to conditions with limited computing capabilities. For the evaluation, a smart agriculture platform was implemented in real working conditions in two productive units of greenhouse tomato cultivation, obtaining metrics above 90 % in all cases.DoctoradoDoctor en IngenieríaAgricultura inteligenteÁrea Curricular de Ingeniería de Sistemas e Informáticax, 147 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::003 - Sistemas630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesTecnología agrícolaAgricultural technologyAgricultura InteligenteClasificación de imágenesInteligencia ArtificialInternet de las CosasSmart agricultureImage classificationArtificial IntelligenceInternet of thingsMétodo de clasificación de imágenes, empleando técnicas de inteligencia artificial, integrado a una plataforma IoT de agricultura inteligenteImage classification method, using artificial intelligence techniques, integrated into a smart farming IoT platformTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaL. Trivelli, A. Apicella, F. Chiarello, R. Rana, and A. Tarabella, “From precision agriculture to Industry 4.0 the agrifood sector,” British Food Journal, vol. 121, no. 8, pp. 1730–1743, 2019, doi: 10.1108/BFJ-11-2018-0747.F. Mazzetto, R. Gallo, and P. Sacco, “Reflections and methodological proposals to treat the concept of ‘information precision’ in smart agriculture practices,” Sensors (Switzerland), vol. 20, no. 10, pp. 1–27, 2020, doi: 10.3390/s20102847.Y. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,” J Ind Inf Integr, vol. 6, pp. 1–10, 2017, doi: 10.1016/j.jii.2017.04.005.S. Wolfert, L. Ge, C. Verdouw, and M. J. Bogaardt, “Big Data in Smart Farming – A review,” Agric Syst, vol. 153, pp. 69–80, 2017, doi: 10.1016/j.agsy.2017.01.023. URL:http://dx.doi.org/10.1016/j.agsy.2017.01.023A. A. R. Madushanki, M. N. Halgamuge, W. A. H. S. Wirasagoda, and A. Syed, “Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 4, pp. 11–28, 2019.M. L. C. Delos Santos, L. L. Lacatan, and F. G. Balazon, “Cloud-based smart farming for crop production suitability using wireless sensor technology,” Test Engineering and Management, vol. 81, no. 11–12, pp. 5043–5052, 2019.S. P. Jaiswal, V. S. Bhadoria, A. Agrawal, and H. Ahuja, “Internet of things (Iot) for smart agriculture and farming in developing nations,” International Journal of Scientific and Technology Research, vol. 8, no. 12, pp. 1049–1056, 2019.S. Terence and G. Purushothaman, “Systematic review of Internet of Things in smart farming,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 6, 2020, doi: 10.1002/ett.3958.K. Sekaran, M. N. Meqdad, P. Kumar, S. Rajan, and S. Kadry, “Smart agriculture management system using internet of things,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp. 1275–1284, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14029.S. K. S. K. Verma, M. Rajesh, and R. Vincent, “Smart-farming using internet of things,” J Comput Theor Nanosci, vol. 17, no. 1, pp. 172–176, 2020, doi: 10.1166/jctn.2020.8646.K. Ravindranath, C. S. Bhargavi, K. Samaikya Reddy, and M. Sai Chandana, “Cloud of things for smart agriculture,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 6, pp. 30–33, 2019.P. Lashitha Vishnu Priya, N. Sai Harshith, and N. V. K. V. K. Ramesh, “Smart agriculture monitoring system using IoT,” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 308–311, 2018, doi: 10.17148/IJARCCE.2019.8419.E. Navarro, N. Costa, and A. Pereira, “A systematic review of iot solutions for smart farming,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–29, 2020, doi: 10.3390/s20154231.M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609.J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,” Computers and Electronics in Agriculture, vol. 142. 2017. doi: 10.1016/j.compag.2017.09.015.M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Deep Joint Transmission-Recognition for Power-Constrained Iot Devices,” ArXiv, pp. 1–10, 2020.H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation —A review,” Information Processing in Agriculture, vol. 7, no. 1, pp. 1–19, 2020, doi: 10.1016/j.inpa.2019.09.006. URL:https://doi.org/10.1016/j.inpa.2019.09.006A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, “Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning,” IAENG Int J Comput Sci, vol. 49, no. 1, pp. 216–231, 2022.P. Angin, M. H. Anisi, F. Göksel, C. Gürsoy, and A. Büyükgülcü, “Agrilora: A digital twin framework for smart agriculture,” J Wirel Mob Netw Ubiquitous Comput Dependable Appl, vol. 11, no. 4, pp. 77–96, 2020, doi: 10.22667/JOWUA.2020.12.31.077.G. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, May 2022, doi: 10.1109/JIOT.2021.3097379.N. Farooqui, A. Mishra, and R. Mehra, “IOT based Automated Greenhouse Using Machine Learning Approach,” International Journal of Intelligent Systems and Applications in Engineering, vol. 10, no. 2, pp. 226–231, 2022, [Online]. Available: https://ijisae.org/index.php/IJISAE/article/view/1522. URL:https://ijisae.org/index.php/IJISAE/article/view/1522R. Gajjar, N. Gajjar, V. J. Thakor, N. P. Patel, and S. Ruparelia, “Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform,” Visual Computer, 2021, doi: 10.1007/s00371-021-02164-9. URL:https://doi.org/10.1007/s00371-021-02164-9V. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E. Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4,” Comput Electron Agric, vol. 181, no. January, 2021, doi: 10.1016/j.compag.2020.105951.M. Ji, J. Yoon, J. Choo, M. Jang, and A. Smith, “LoRa-based Visual Monitoring Scheme for Agriculture IoT,” SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference Proceedings, 2019, doi: 10.1109/SAS.2019.8706100.N. Islam, B. Ray, and F. Pasandideh, “IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication?,” Proceedings - 2020 IEEE International Conference on Smart Internet of Things, SmartIoT 2020, no. October, pp. 270–276, 2020, doi: 10.1109/SmartIoT49966.2020.00048.K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT,” 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, no. January 2019, pp. 197–202, 2018, doi: 10.1109/PERCOMW.2018.8480255.A. Carlsson, I. Kuzminykh, R. Franksson, and A. Liljegren, “Measuring a LoRa Network: Performance, Possibilities and Limitations,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11118 LNCS, pp. 116–128, 2018, doi: 10.1007/978-3-030-01168-0_11.G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoraFarM: A LoRaWAN-based smart farming modular IoT architecture,” Sensors (Switzerland), vol. 20, no. 7, 2020, doi: 10.3390/s20072028.T. U. Pathan and S. Chakole, “Sensor based smart farming and plant diseases monitoring,” Int J Eng Adv Technol, vol. 8, no. 2, pp. 442–446, 2019.Y. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A vision-based counting and recognition system for flying insects in intelligent agriculture,” Sensors (Switzerland), vol. 18, no. 5, 2018, doi: 10.3390/s18051489.I. Sa et al., “WeedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming,” IEEE Robot Autom Lett, vol. 3, no. 1, pp. 588–595, 2018, doi: 10.1109/LRA.2017.2774979.D. Koc-San, S. Selim, N. Aslan, and B. T. San, “Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform,” Comput Electron Agric, vol. 150, no. February, pp. 289–301, 2018, doi: 10.1016/j.compag.2018.05.001. URL:https://doi.org/10.1016/j.compag.2018.05.001R. G. R. G. De Luna, E. P. E. P. Dadios, A. A. A. A. Bandala, and R. R. P. R. R. P. Vicerra, “Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading,” Agrivita, vol. 42, no. 1, pp. 24–36, 2020, doi: 10.17503/agrivita.v42i1.2499.O. E. Apolo-Apolo, J. Martínez-Guanter, G. Egea, P. Raja, and M. Pérez-Ruiz, “Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV,” European Journal of Agronomy, vol. 115, Apr. 2020, doi: 10.1016/j.eja.2020.126030.H. Yalcin, “Phenology recognition using deep learning: DeepPheno,” 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, pp. 1–4, 2018, doi: 10.1109/SIU.2018.8404165.A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Comput Electron Agric, vol. 157, no. December 2018, pp. 218–231, 2019, doi: 10.1016/j.compag.2018.12.039.X. Pham and M. Stack, “How data analytics is transforming agriculture,” Bus Horiz, vol. 61, no. 1, pp. 125–133, 2018, doi: 10.1016/j.bushor.2017.09.011.A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice of big data analysis in agriculture,” Computers and Electronics in Agriculture, vol. 143. Elsevier B.V., pp. 23–37, Dec. 2017. doi: 10.1016/j.compag.2017.09.037.O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J, vol. 5, no. 5, pp. 3758–3773, 2018, doi: 10.1109/JIOT.2018.2844296.W. Feng, W. Ju, A. Li, W. Bao, and J. Zhang, “High-Efficiency Progressive Transmission and Automatic Recognition of Wildlife Monitoring Images with WISNs,” IEEE Access, vol. 7, pp. 161412–161423, 2019, doi: 10.1109/ACCESS.2019.2951596.S. W. Lee and H. Y. Kim, “An energy-efficient low-memory image compression system for multimedia IoT products,” EURASIP J Image Video Process, vol. 2018, no. 1, 2018, doi: 10.1186/s13640-018-0333-3.G. Campobello and A. Segreto, “A low complexity image compression algorithm for IoT multimedia applications,” European Signal Processing Conference, vol. 2019-Septe, pp. 1–5, 2019, doi: 10.23919/EUSIPCO.2019.8902678.Z. Liu et al., “DeepN-JPEG: A deep neural network favorable JPEG-based image compression framework,” Proc Des Autom Conf, vol. Part F1377, no. 3, pp. 1–6, 2018, doi: 10.1145/3195970.3196022.M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” The BMJ, vol. 372, 2021, doi: 10.1136/bmj.n71.S. Wolfert, D. Goense, and C. A. G. Sorensen, “A future internet collaboration platform for safe and healthy food from farm to fork,” Annual SRII Global Conference, SRII, no. April, pp. 266–273, 2014, doi: 10.1109/SRII.2014.47.S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front Plant Sci, vol. 7, no. September, 2016, doi: 10.3389/fpls.2016.01419.P. Wspanialy and M. Moussa, “A detection and severity estimation system for generic diseases of tomato greenhouse plants,” Comput Electron Agric, vol. 178, no. August, p. 105701, 2020, doi: 10.1016/j.compag.2020.105701. URL:https://doi.org/10.1016/j.compag.2020.105701D. J. A. Rustia and T. te Lin, “An IoT-based wireless imaging and sensor node system for remote greenhouse pest monitoring,” Chem Eng Trans, vol. 58, no. January, pp. 601–606, 2017, doi: 10.3303/CET1758101.A. A. Sarangdhar, P. V. R. Pawar, and A. B. Blight, “Machine Learning Regression Technique for using IoT,” International Conference on Electronics, Communication and Aerospace Technology ICECA 2017, pp. 449–454, 2017.A. Thorat, S. Kumari, and N. D. Valakunde, “An IoT based smart solution for leaf disease detection,” 2017 International Conference on Big Data, IoT and Data Science, BID 2017, vol. 2018-Janua, no. December, pp. 193–198, 2018, doi: 10.1109/BID.2017.8336597.N. Kitpo and M. Inoue, “Early rice disease detection and position mapping system using drone and IoT architecture,” Proceedings - 12th SEATUC Symposium, SEATUC 2018, no. September 2019, 2018, doi: 10.1109/SEATUC.2018.8788863.D. Brunelli, A. Albanese, D. Acunto, and M. Nardello, “E nergy N eutral M achine L earning B ased I o T D evice for P est D etection in P recision A griculture,” no. December 2019, pp. 2019–2022, 2019.R. D. Devi, S. A. Nandhini, R. Hemalatha, and S. Radha, “IoT enabled efficient detection and classification of plant diseases for agricultural applications,” 2019 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2019, pp. 447–451, 2019, doi: 10.1109/WiSPNET45539.2019.9032727.C. J. Chen, Y. Y. Huang, Y. S. Li, C. Y. Chang, and Y. M. Huang, “An AIoT Based Smart Agricultural System for Pests Detection,” IEEE Access, vol. 8, pp. 180750–180761, 2020, doi: 10.1109/ACCESS.2020.3024891.S. Zhang, W. Huang, and H. Wang, “Crop disease monitoring and recognizing system by soft computing and image processing models,” Multimed Tools Appl, vol. 79, no. 41–42, pp. 30905–30916, 2020, doi: 10.1007/s11042-020-09577-z.R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4e, 4°. Pearson Education Limited, 2018.N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 1, pp. 62–66, 1979.A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : concepts, tools, and techniques to build intelligent systems, Second Edition. O’Reilly Media, Inc., 2019. Accessed: Oct. 02, 2022. [Online]. Available: http://oreilly.com/catalog/errata.csp?isbn=9781492032649. URL:http://oreilly.com/catalog/errata.csp?isbn=9781492032649M. Gehan and N. Fahlgren, “PlantCV.” Missouri, United States., pp. 1–14, 2022.A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861. URL:http://arxiv.org/abs/1704.04861A. Howard et al., “Searching for mobileNetV3,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 1314–1324, 2019, doi: 10.1109/ICCV.2019.00140.M. Tan and Q. v. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.M. Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 2815–2823, 2019, doi: 10.1109/CVPR.2019.00293.F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360. URL:http://arxiv.org/abs/1602.07360X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6848–6856, 2018, doi: 10.1109/CVPR.2018.00716.Á. B. Jiménez, J. L. Lázaro, and J. R. Dorronsoro, “Finding optimal model parameters by deterministic and annealed focused grid search,” Neurocomputing, vol. 72, no. 13–15, pp. 2824–2832, 2009, doi: 10.1016/j.neucom.2008.09.024.J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter Optimization Yoshua Bengio,” 2012. [Online]. Available: http://scikit-learn.sourceforge.net. URL:http://scikit-learn.sourceforge.net.J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.N. M. Aszemi and P. D. D. Dominic, “Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms,” 2019. [Online]. Available: www.ijacsa.thesai.org. URL:www.ijacsa.thesai.orgM. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.A. Tharwat, “Classification assessment methods,” Applied Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi: 10.1016/j.aci.2018.08.003.“IEEE Standard for Binary Floating-Point Arithmetic Standards Committee of the IEEE Computer Society IEEE Standards Board American National Standards Institute,” 1985.“The GFLOPS/W of the various machines in the VMW Research Group,” 2022. https://web.eece.maine.edu/~vweaver/group/green_machines.html (accessed Dec. 22, 2022). URL:https://web.eece.maine.edu/~vweaver/group/green_machines.htmlS. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi: 10.1007/s10796-014-9492-7.A. Kaloxylos et al., “Farm management systems and the Future Internet era,” Comput Electron Agric, vol. 89, pp. 130–144, 2012, doi: 10.1016/j.compag.2012.09.002.A. Kaloxylos et al., “The Use of Future Internet Technologies in the Agriculture and Food Sectors: Integrating the Supply Chain,” Procedia Technology, vol. 8, no. Haicta, pp. 51–60, 2013, doi: 10.1016/j.protcy.2013.11.009.C. Li and B. Niu, “Design of smart agriculture based on big data and Internet of things,” Int J Distrib Sens Netw, vol. 16, no. 5, 2020, doi: 10.1177/1550147720917065.J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and agriculture data analysis for smart farm,” Comput Electron Agric, vol. 156, pp. 467–474, 2019, doi: 10.1016/j.compag.2018.12.011.C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi: 10.3390/agronomy9050216.M. Colezea, G. Musat, F. Pop, C. Negru, A. Dumitrascu, and M. Mocanu, “CLUeFARM: Integrated web-service platform for smart farms,” Comput Electron Agric, vol. 154, pp. 134–154, Nov. 2018, doi: 10.1016/j.compag.2018.08.015.D. Budaev et al., “Conceptual design of smart farming solution for precise agriculture,” International Journal of Design and Nature and Ecodynamics, vol. 13, no. 3, pp. 307–314, 2018, doi: 10.2495/DNE-V13-N3-307-314.A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Biosyst Eng, vol. 164, pp. 31–48, 2017, doi: 10.1016/j.biosystemseng.2017.09.007.M. De Donno, K. Tange, and N. Dragoni, “Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog,” IEEE Access, vol. 7, pp. 150936–150948, 2019, doi: 10.1109/ACCESS.2019.2947652.IOF - European Union, “IOF-2020 (Internet of Food) REFERENCE ARCHITECTURE FOR INTEROPERABILITY , REPLICABILITY AND REUSE,” EU, 2020.M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for internet of things: A survey,” IEEE Internet Things J, vol. 3, no. 1, pp. 70–95, 2016, doi: 10.1109/JIOT.2015.2498900.U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, “Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease,” Comput Electron Agric, vol. 177, no. August, p. 105661, 2020, doi: 10.1016/j.compag.2020.105661. URL:https://doi.org/10.1016/j.compag.2020.105661S. S. Chouhan, U. P. Singh, and S. Jain, “Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function Network,” Wirel Pers Commun, vol. 121, no. 3, pp. 1757–1779, 2021, doi: 10.1007/s11277-021-08734-3. URL:https://doi.org/10.1007/s11277-021-08734-3N. Fatima, S. A. Siddiqui, and A. Ahmad, “IoT-based Smart Greenhouse with Disease Prediction using Deep Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, pp. 113–121, 2021, doi: 10.14569/IJACSA.2021.0120713.D. Gao, Q. Sun, B. Hu, and S. Zhang, “A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles,” Sensors (Switzerland), vol. 20, no. 5, 2020, doi: 10.3390/s20051487.P. Joshi, D. Das, V. Udutalapally, M. K. Pradhan, and S. Misra, “RiceBioS: Identification of Biotic Stress in Rice Crops Using Edge-as-a-Service,” IEEE Sens J, vol. 22, no. 5, pp. 4616–4624, 2022, doi: 10.1109/JSEN.2022.3143950.S. S. Lee, Y. N. Jeong, S. R. Son, and B. K. Lee, “A self-predictable crop yield platform (SCYP) based on crop diseases using deep learning,” Sustainability (Switzerland), vol. 11, no. 13, 2019, doi: 10.3390/su11133637.A. Mellit, M. Benghanem, O. Herrak, and A. Messalaoui, “Design of a novel remote monitoring system for smart greenhouses using the internet of things and deep convolutional neural networks,” Energies (Basel), vol. 14, no. 16, 2021, doi: 10.3390/en14165045.M. Mishra, P. Choudhury, and B. Pati, “Modified ride-NN optimizer for the IoT based plant disease detection,” J Ambient Intell Humaniz Comput, vol. 12, no. 1, pp. 691–703, 2021, doi: 10.1007/s12652-020-02051-6. URL:https://doi.org/10.1007/s12652-020-02051-6G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand, and A. H. Gandomi, “Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System,” IEEE Internet Things J, vol. 8, no. 16, pp. 12847–12854, 2021, doi: 10.1109/JIOT.2021.3072908.S. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4A. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, and J. Echazarra, “Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions,” Comput Electron Agric, vol. 167, no. September, p. 105093, 2019, doi: 10.1016/j.compag.2019.105093. URL:https://doi.org/10.1016/j.compag.2019.105093B. S. Rishiikeshwer, T. A. Shriram, J. S. Raju, M. Hari, B. Santhi, and G. R. Brindha, “Farmer-friendly mobile application for automated leaf disease detection of real-time augmented data set using convolution neural networks,” Journal of Computer Science, vol. 16, no. 2, pp. 158–166, 2020, doi: 10.3844/JCSSP.2020.158.166.S. Ramesh and B. Rajaram, “Iot based crop disease identification system using optimization techniques,” ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 4, pp. 1392–1395, 2018.R. Rathinam, P. Kasinathan, U. Govindarajan, V. K. Ramachandaramurthy, U. Subramaniam, and S. Garrido, “Cybernetics approaches in intelligent systems for crops disease detection with the aid of IoT,” International Journal of Intelligent Systems, vol. 36, no. 11, pp. 6550–6580, 2021, doi: 10.1002/int.22560.K. K. Sarma, K. K. Das, V. Mishra, S. Bhuiya, and D. Kaplun, “Learning Aided System for Agriculture Monitoring Designed Using Image Processing and IoT-CNN,” IEEE Access, vol. 10, pp. 41525–41536, 2022, doi: 10.1109/ACCESS.2022.3167061.V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “SCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture,” IEEE Sens J, vol. 21, no. 16, pp. 17525–17538, 2021, doi: 10.1109/JSEN.2020.3032438.Z. Zinonos, S. Gkelios, A. F. Khalifeh, D. G. Hadjimitsis, Y. S. Boutalis, and S. A. Chatzichristofis, “Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology,” IEEE Access, vol. 10, pp. 122–133, 2022, doi: 10.1109/ACCESS.2021.3138050.I. Dasgupta, J. Saha, P. Venkatasubbu, and P. Ramasubramanian, “AI Crop Predictor and Weed Detector Using Wireless Technologies: A Smart Application for Farmers,” Arab J Sci Eng, vol. 45, no. 12, pp. 11115–11127, 2020, doi: 10.1007/s13369-020-04928-2. URL:https://doi.org/10.1007/s13369-020-04928-2A. Coletta, N. Bartolini, G. Maselli, A. Kehs, P. McCloskey, and D. P. Hughes, “Optimal Deployment in Crowdsensing for Plant Disease Diagnosis in Developing Countries,” IEEE Internet Things J, vol. 9, no. 9, pp. 6359–6373, 2022, doi: 10.1109/JIOT.2020.3002332.J. G. M. Esgario, P. B. C. de Castro, L. M. Tassis, and R. A. Krohling, “An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning,” Information Processing in Agriculture, vol. 9, no. 1, pp. 38–47, 2022, doi: 10.1016/j.inpa.2021.01.004.R. Kamath, M. Balachandra, and S. Prabhu, “Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study,” IEEE Access, vol. 7, pp. 45110–45122, 2019, doi: 10.1109/ACCESS.2019.2908846.A. Albanese, M. Nardello, and D. Brunelli, “Automated Pest Detection with DNN on the Edge for Precision Agriculture,” IEEE J Emerg Sel Top Circuits Syst, vol. 11, no. 3, pp. 458–467, 2021, doi: 10.1109/JETCAS.2021.3101740.V. Attada and S. Katta, “A methodology for automatic detection and classification of pests using optimized SVM in greenhouse crops,” Int J Eng Adv Technol, vol. 8, no. 6, pp. 1485–1491, 2019, doi: 10.35940/ijeat.F8133.088619.M. E. Karar, F. Alsunaydi, S. Albusaymi, and S. Alotaibi, “A new mobile application of agricultural pests recognition using deep learning in cloud computing system,” Alexandria Engineering Journal, vol. 60, no. 5, pp. 4423–4432, 2021, doi: 10.1016/j.aej.2021.03.009. URL:https://doi.org/10.1016/j.aej.2021.03.009M. A. Lopez, J. M. Lombardo, M. López, D. Álvarez, S. Velasco, and S. Terrón, “Traceable Ecosystem and Strategic Framework for the Creation of an Integrated Pest Management System for Intensive Farming,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 3, p. 47, 2020, doi: 10.9781/ijimai.2020.08.004.B. Ramalingam et al., “Remote insects trap monitoring system using deep learning framework and iot,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–17, 2020, doi: 10.3390/s20185280.I. Salehin et al., “IFSG: Intelligence agriculture crop-pest detection system using IoT automation system,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 2, pp. 1091–1099, 2021, doi: 10.11591/ijeecs.v24.i2.pp1091-1099.M. J. Schrader, P. Smytheman, E. H. Beers, and L. R. Khot, “An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops,” Machines, vol. 10, no. 1, 2022, doi: 10.3390/machines10010052.P. Thakare and V. Ravi Sankar, “Advanced pest detection strategy using hybrid optimization tuned deep convolutional neural network,” Journal of Engineering, Design and Technology, 2022, doi: 10.1108/JEDT-09-2021-0488.G. Gagliardi et al., “An internet of things solution for smart agriculture,” Agronomy, vol. 11, no. 11, Nov. 2021, doi: 10.3390/agronomy11112140.L. Paleari et al., “Estimating plant nitrogen content in tomato using a smartphone,” Field Crops Res, vol. 284, Aug. 2022, doi: 10.1016/j.fcr.2022.108564.K. R. Prilianti, S. Anam, T. H. P. Brotosudarmo, and A. Suryanto, “Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application,” Journal of Agricultural Engineering, vol. 51, no. 4, pp. 220–228, 2020, doi: 10.4081/jae.2020.1082.J. Santhosh, P. Balamurugan, G. Arulkumaran, M. Baskar, and R. Velumani, “Image Driven Multi Feature Plant Management with FDE Based Smart Agriculture with Improved Security in Wireless Sensor Networks,” Wirel Pers Commun, no. 0123456789, 2021, doi: 10.1007/s11277-021-08710-x. URL:https://doi.org/10.1007/s11277-021-08710-xL. K. S. Tolentino et al., “Yield evaluation of brassica rapa, Lactuca Sativa, and brassica Integrifolia using image processing in an IoT-based Aquaponics with temperature-controlled greenhouse,” Agrivita, vol. 42, no. 3, pp. 393–410, 2020, doi: 10.17503/agrivita.v42i3.2600.S. Park and J. Kim, “Design and implementation of a hydroponic strawberry monitoring and harvesting timing information supporting system based on nano ai-cloud and iot-edge,” Electronics (Switzerland), vol. 10, no. 12, 2021, doi: 10.3390/electronics10121400.A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, Nov. 2019, doi: 10.3390/info10110348.Á. L. Perales Gómez, P. E. López-de-Teruel, A. Ruiz, G. García-Mateos, G. Bernabé García, and F. J. García Clemente, “FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming,” Cluster Comput, vol. 25, no. 3, pp. 2163–2178, 2022, doi: 10.1007/s10586-021-03489-9.R. Chandra et al., “Democratizing Data-Driven Agriculture Using Affordable Hardware,” IEEE Micro, vol. 42, no. 1, pp. 69–77, 2022, doi: 10.1109/MM.2021.3134743.T. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006. URL:https://doi.org/10.1016/j.suscom.2018.10.006J. D. Wahl and J. X. Zhang, “Development and power characterization of an IoT network for agricultural imaging applications,” Journal of Advances in Information Technology, vol. 12, no. 3, pp. 214–219, 2021, doi: 10.12720/jait.12.3.214-219.A. Oliveira et al., “Iot sensing platform as a driver for digital farming in rural africa,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–25, Jun. 2020, doi: 10.3390/s20123511.P. K. Sethy, S. K. Behera, N. Kannan, S. Narayanan, and C. Pandey, “Smart paddy field monitoring system using deep learning and IoT,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 16–24, Mar. 2021, doi: 10.1177/1063293X21988944.C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, May 2019, doi: 10.3390/agronomy9050216.E. A. Abioye et al., “IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment,” Information Processing in Agriculture, vol. 8, no. 2, pp. 270–283, Jun. 2021, doi: 10.1016/j.inpa.2020.05.004.S. AlZu’bi, B. Hawashin, M. Mujahed, Y. Jararweh, and B. B. Gupta, “An efficient employment of internet of multimedia things in smart and future agriculture,” Multimed Tools Appl, vol. 78, no. 20, pp. 29581–29605, Oct. 2019, doi: 10.1007/s11042-019-7367-0.S. R. Barkunan, V. Bhanumathi, and J. Sethuram, “Smart sensor for automatic drip irrigation system for paddy cultivation,” Computers and Electrical Engineering, vol. 73, pp. 180–193, Jan. 2019, doi: 10.1016/j.compeleceng.2018.11.013.A. Mateo-Aroca, G. García-Mateos, A. Ruiz-Canales, J. M. Molina-García-Pardo, and J. M. Molina-Martínez, “Remote image capture system to improve aerial supervision for precision irrigation in agriculture,” Water (Switzerland), vol. 11, no. 2, Feb. 2019, doi: 10.3390/w11020255.P. Ramya, T. R. Annapoorneswari, G. V. Bindu, N. V. Meghana, and U. Roshni, “Solar powered automated irrigation system with plant health indication using iot,” International Journal of Recent Technology and Engineering, vol. 8, no. 2 Special Issue 11, pp. 60–64, Sep. 2019, doi: 10.35940/ijrte.B1011.0982S1119.L. Wang et al., “A Smart Droplet Detection Approach with Vision Sensing Technique for Agricultural Aviation Application,” IEEE Sens J, vol. 21, no. 16, pp. 17508–17516, Aug. 2021, doi: 10.1109/JSEN.2021.3056957.D. Adami, M. O. Ojo, and S. Giordano, “Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI,” IEEE Access, vol. 9, pp. 132125–132139, 2021, doi: 10.1109/ACCESS.2021.3114503.S. Angadi and R. Katagall, “Agrivigilance: A Security System For Intrusion Detection In Agriculture Using Raspberry Pi And Opencv,” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 8, no. 11, 2019, [Online]. Available: www.ijstr.org. URL:www.ijstr.orgV. Nithin, S. Mishra, P. Devarubiny, and S. Muthulakshmi, “Iot enabled farming assist and security using machine learning,” ARPN Journal of Engineering and Applied Sciences, vol. 14, no. 9, pp. 1809–1819, 2019.A. V. Prabu, G. S. Kumar, S. Rajasoundaran, P. P. Malla, S. Routray, and A. Mukherjee, “Internet of things-based deeply proficient monitoring and protection system for crop field,” Expert Syst, vol. 39, no. 5, Jun. 2022, doi: 10.1111/exsy.12876.M. R. Ramli, P. T. Daely, D.-S. Kim, and J. M. Lee, “IoT-based adaptive network mechanism for reliable smart farm system,” Comput Electron Agric, vol. 170, 2020, doi: 10.1016/j.compag.2020.105287.S. K. Behera, P. K. Sethy, S. K. Sahoo, S. Panigrahi, and S. C. Rajpoot, “On-tree fruit monitoring system using IoT and image analysis,” Concurr Eng Res Appl, vol. 29, no. 1, pp. 6–15, Mar. 2021, doi: 10.1177/1063293X20988395.S. Kamal et al., “IOT Automation with Segmentation Techniques for Detection of Plant Seedlings in Agriculture,” Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/6466555.V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, “Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application,” IEEE Access, vol. 8, pp. 9102–9114, 2020, doi: 10.1109/ACCESS.2020.2964608.T. Misra et al., “Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes from Visual Images of Wheat Plants,” IEEE Access, vol. 9, pp. 76235–76247, 2021, doi: 10.1109/ACCESS.2021.3080836.L. Parra, J. Marin, S. Yousfi, G. Rincón, P. V. Mauri, and J. Lloret, “Edge detection for weed recognition in lawns,” Comput Electron Agric, vol. 176, no. August, 2020, doi: 10.1016/j.compag.2020.105684.S. K. Valicharla, “Weed Recognition in Agriculture : A Mask R-CNN Approach Weed Recognition in Agriculture : A Mask R-CNN Approach,” 2021.A. Wang, W. Zhang, and X. Wei, “A review on weed detection using ground-based machine vision and image processing techniques,” Comput Electron Agric, vol. 158, pp. 226–240, 2019, doi: 10.1016/j.compag.2019.02.005.S. Bargoti and J. Underwood, “Deep fruit detection in orchards,” Proc IEEE Int Conf Robot Autom, pp. 3626–3633, 2017, doi: 10.1109/ICRA.2017.7989417.A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO,’” Precis Agric, no. 0123456789, 2019, doi: 10.1007/s11119-019-09642-0. URL:https://doi.org/10.1007/s11119-019-09642-0E. Bellocchio, G. Costante, S. Cascianelli, M. L. Fravolini, and P. Valigi, “Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach,” IEEE Robot Autom Lett, vol. 5, no. 2, pp. 1079–1086, 2020, doi: 10.1109/LRA.2020.2966398.I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A fruit detection system using deep neural networks,” Sensors (Switzerland), vol. 16, no. 8, 2016, doi: 10.3390/s16081222.S. Bargoti and J. P. Underwood, “Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards,” J Field Robot, vol. 34, no. 6, pp. 1039–1060, 2017, doi: 10.1002/rob.21699.U. O. Dorj, M. Lee, and S. seok Yun, “An yield estimation in citrus orchards via fruit detection and counting using image processing,” Comput Electron Agric, vol. 140, pp. 103–112, Aug. 2017, doi: 10.1016/j.compag.2017.05.019.J. Lu, W. S. Lee, H. Gan, and X. Hu, “Immature citrus fruit detection based on local binary pattern feature and hierarchical contour analysis,” Biosyst Eng, vol. 171, pp. 78–90, 2018, doi: 10.1016/j.biosystemseng.2018.04.009. URL:https://doi.org/10.1016/j.biosystemseng.2018.04.009P. Sindhu and G. Indirani, “IOT with cloud based smart farming for citrus fruit disease classification using optimized convolutional neural networks,” International Journal on Emerging Technologies, vol. 11, no. 2, pp. 52–56, 2020.P. Marques et al., “UAV-Based Automatic Detection and Monitoring of Chestnut Trees,” Remote Sens (Basel), vol. 11, no. 7, p. 855, 2019, doi: 10.3390/rs11070855.A. Gupta, J. Byrne, D. Moloney, S. Watson, and H. Yin, “Automatic Tree Annotation in LiDAR Data,” no. Gistam, pp. 36–41, 2018, doi: 10.5220/0006668000360041.W. S. Qureshi, A. Payne, K. B. Walsh, R. Linker, O. Cohen, and M. N. Dailey, “Machine vision for counting fruit on mango tree canopies,” Precis Agric, vol. 18, no. 2, pp. 224–244, 2017, doi: 10.1007/s11119-016-9458-5.M. Zortea, M. M. G. Macedo, A. B. Mattos, B. C. Ruga, and B. H. Gemignani, “Automatic Citrus Tree Detection from UAV Images based on Convolutional Neural Networks,” Drones, vol. 2, no. 4, p. 39, 2018.A. Khan et al., “Remote Sensing: An Automated Methodology for Olive Tree Detection and Counting in Satellite Images,” IEEE Access, vol. 6, pp. 77816–77828, 2018, doi: 10.1109/ACCESS.2018.2884199.M. Balsi, S. Esposito, P. Fallavollita, and C. Nardinocchi, “Single-tree detection in high-density LiDAR data from UAV-based survey,” Eur J Remote Sens, vol. 51, no. 1, pp. 679–692, 2018, doi: 10.1080/22797254.2018.1474722.W. Li, H. Fu, L. Yu, and A. Cracknell, “Deep learning based oil palm tree detection and counting for high-resolution remote sensing images,” Remote Sens (Basel), vol. 9, no. 1, 2017, doi: 10.3390/rs9010022.N. A. Mubin, E. Nadarajoo, H. Z. M. Shafri, and A. Hamedianfar, “Young and mature oil palm tree detection and counting using convolutional neural network deep learning method,” Int J Remote Sens, vol. 40, no. 19, pp. 7500–7515, 2019, doi: 10.1080/01431161.2019.1569282. URL:https://doi.org/10.1080/01431161.2019.1569282H. Jiang, S. Chen, D. Li, C. Wang, and J. Yang, “Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method,” Remote Sens (Basel), vol. 9, no. 7, p. 721, 2017, doi: 10.3390/rs9070721.A. Kelman, “Plant Disease,” 2017. https://www.britannica.com/science/plant-disease (accessed Jun. 26, 2022). URL:https://www.britannica.com/science/plant-diseaseA. Kamilaris, F. Gao, and F. X. Prenafeta-bold, “Agri-IoT : A Semantic Framework for Internet of Things-enabled Smart Farming Applications,” no. October 2017, 2016, doi: 10.1109/WF-IoT.2016.7845467.G. Delnevo, R. Girau, C. Ceccarini, and C. Prandi, “A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture,” IEEE Internet Things J, vol. 9, no. 10, pp. 7243–7250, 2022, doi: 10.1109/JIOT.2021.3097379.A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information (Switzerland), vol. 10, no. 11, 2019, doi: 10.3390/info10110348.T. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustainable Computing: Informatics and Systems, vol. 28, p. 100285, 2020, doi: 10.1016/j.suscom.2018.10.006.S. Aasha Nandhini, R. Hemalatha, S. Radha, and K. Indumathi, “Web Enabled Plant Disease Detection System for Agricultural Applications Using WMSN,” Wirel Pers Commun, vol. 102, no. 2, pp. 725–740, 2018, doi: 10.1007/s11277-017-5092-4. URL:https://doi.org/10.1007/s11277-017-5092-4FAO, “New standards to curb the global spread of plant pests and diseases,” 2019. https://www.fao.org/news/story/en/item/1187738/icode/ (accessed Jun. 26, 2022). URL:https://www.fao.org/news/story/en/item/1187738/icode/V. K. Vishnoi, K. Kumar, and B. Kumar, Plant disease detection using computational intelligence and image processing, vol. 128, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s41348-020-00368-0.S. Panno et al., “A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin,” Agronomy, vol. 11, no. 11, pp. 1–45, 2021, doi: 10.3390/agronomy11112188.C. S. Hlaing and S. M. Maung Zaw, “Tomato Plant Diseases Classification Using Statistical Texture Feature and Color Feature,” in Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Sep. 2018, pp. 439–444. doi: 10.1109/ICIS.2018.8466483.N. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar, and M. R. Anjum, “Leaf Image-Based Plant Disease Identification Using Color and Texture Features,” Wirel Pers Commun, vol. 121, no. 2, pp. 1139–1168, Nov. 2021, doi: 10.1007/s11277-021-09054-2.Anjna, M. Sood, and P. K. Singh, “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,” in Procedia Computer Science, 2020, vol. 167, pp. 1056–1065. doi: 10.1016/j.procs.2020.03.404.J. L. Raheja, S. Kumar, and A. Chaudhary, “Fabric defect detection based on GLCM and Gabor filter: A comparison,” Optik (Stuttg), vol. 124, no. 23, pp. 6469–6474, 2013, doi: 10.1016/j.ijleo.2013.05.004. URL:http://dx.doi.org/10.1016/j.ijleo.2013.05.004X. Liu and C. Aldrich, “Deep Learning Approaches to Image Texture Analysis in Material Processing,” Metals (Basel), vol. 12, no. 2, 2022, doi: 10.3390/met12020355.L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering, vol. 3, no. 3, pp. 542–558, Sep. 2021, doi: 10.3390/agriengineering3030035.M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of Efficient CNN model for Tomato crop disease identification,” Sustainable Computing: Informatics and Systems, vol. 28, Dec. 2020, doi: 10.1016/j.suscom.2020.100407.A. Hidayatuloh, M. Nursalman, and E. Nugraha, Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model; Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model. 2018.M. Kaur and R. Bhatia, "Development Of An Improved Tomato Leaf Disease Detection And Classification Method," 2019 IEEE Conference on Information and Communication Technology, Allahabad, India, 2019, pp. 1-5, doi: 10.1109/CICT48419.2019.9066230.M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network,” in Procedia Computer Science, 2020, vol. 167, pp. 293–301. doi: 10.1016/j.procs.2020.03.225.M. M. Gunarathna and R. M. K. T. Rathnayaka, “Experimental determination of CNN hyper-parameters for tomato disease detection using leaf images,” in ICAC 2020 - 2nd International Conference on Advancements in Computing, Proceedings, Dec. 2020, pp. 464–469. doi: 10.1109/ICAC51239.2020.9357284.H. Hong, J. Lin, and F. Huang, “Tomato Disease Detection and Classification by Deep Learning,” in Proceedings - 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2020, Jun. 2020, pp. 25–29. doi: 10.1109/ICBAIE49996.2020.00012.D. Jiang, F. Li, Y. Yang and S. Yu, "A Tomato Leaf Diseases Classification Method Based on Deep Learning," 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 1446-1450, doi: 10.1109/CCDC49329.2020.9164457.M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers,” Plants, vol. 9, no. 10, pp. 1–17, Oct. 2020, doi: 10.3390/plants9101319.H. Kibriya, R. Rafique, W. Ahmad, and S. M. Adnan, “Tomato Leaf Disease Detection Using Convolution Neural Network,” in Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021, Jan. 2021, pp. 346–351. doi: 10.1109/IBCAST51254.2021.9393311.H. I. Peyal, S. M. Shahriar, A. Sultana, I. Jahan, and M. H. Mondol, “Detection of tomato leaf diseases using transfer learning architectures: A comparative analysis,” Jul. 2021. doi: 10.1109/ACMI53878.2021.9528199.R. Sujatha, J. M. Chatterjee, N. Z. Jhanjhi, and S. N. Brohi, “Performance of deep learning vs machine learning in plant leaf disease detection,” Microprocess Microsyst, vol. 80, Feb. 2021, doi: 10.1016/j.micpro.2020.103615.H. Younis, M. Z. Khan, M. U. G. Khan, and H. Mukhtar, “Robust Optimization of MobileNet for Plant Disease Classification with Fine Tuned Parameters,” in 2021 International Conference on Artificial Intelligence, ICAI 2021, Apr. 2021, pp. 146–151. doi: 10.1109/ICAI52203.2021.9445261.M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS,” no. 2017, pp. 1–11, 2019, [Online]. Available: http://arxiv.org/abs/1912.06059. URL:http://arxiv.org/abs/1912.06059H. Alibrahim and S. A. Ludwig, “Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization,” in 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings, 2021, pp. 1551–1559. doi: 10.1109/CEC45853.2021.9504761.J. González, “Still optimizing in the dark ? Bayesian optimization for model configuration and experimental design,” 2016.- University of Sheffield, Sheffield, UK February 18, 2016. Groningen, The Netherlands. URL: http://javiergonzalezh.github.io/presentations/talk_groningen2016.pdfE. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms,” Proceedings - International Conference on Image Processing, ICIP, vol. 2017-Septe, no. September, pp. 3924–3928, 2018, doi: 10.1109/ICIP.2017.8297018.L. Tani, D. Rand, C. Veelken, and M. Kadastik, “Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics,” European Physical Journal C, vol. 81, no. 2, pp. 1–9, 2021, doi: 10.1140/epjc/s10052-021-08950-y. URL:https://doi.org/10.1140/epjc/s10052-021-08950-yJ. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl, “Explaining Hyperparameter Optimization via Partial Dependence Plots,” Adv Neural Inf Process Syst, vol. 3, no. NeurIPS, pp. 2280–2291, 2021.C. Molnar, “Interpretable Machine Learning A Guide for Making Black Box Models Explainable,” 2019. [Online]. Available: http://leanpub.com/interpretable-machine-learning. URL:http://leanpub.com/interpretable-machine-learningS. Sadowski and P. Spachos, “Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities,” Comput Electron Agric, vol. 172, no. September 2019, p. 105338, 2020, doi: 10.1016/j.compag.2020.105338. URL:https://doi.org/10.1016/j.compag.2020.105338P. Savvidis and G. A. Papakostas, “Remote Crop Sensing with IoT and AI on the Edge,” in 2021 IEEE World AI IoT Congress, AIIoT 2021, May 2021, pp. 48–54. doi: 10.1109/AIIoT52608.2021.9454237.C.-C. Wei, P.-Y. Su, and S.-T. Chen, “Comparison of the LoRa Image Transmission Efficiency Based on Different Encoding Methods,” International Journal of Information and Electronics Engineering, vol. 10, no. 1, pp. 1–4, Mar. 2020, doi: 10.18178/IJIEE.2020.10.1.712. URL:http://www.ijiee.org/index.php?m=content&c=index&a=show&catid=89&id=823A. H. Jebril, A. Sali, A. Ismail, and M. F. A. Rasid, “Overcoming limitations of LoRa physical layer in image transmission,” Sensors (Switzerland), vol. 18, no. 10, Oct. 2018, doi: 10.3390/s18103257.Semtech Corporation, “LoRa and LoRaWAN: A Technical Overview,” 2019. Accessed: Oct. 14, 2022. [Online]. Available: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/. URL:https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and T. Watteyne, “Understanding the limits of LoRaWAN,” Jul. 2016, doi: 10.1109/MCOM.2017.1600613. URL:http://arxiv.org/abs/1607.08011Pycom, “Lopy4-Datasheet, version 1.1,” 2020. https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdf (accessed Oct. 15, 2022). URL:https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_LoPy4_v2.pdfsensirion company, “Datasheet_SHT1x_V5_C1,” 2011. https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdf (accessed Oct. 15, 2022). URL:https://www.mouser.it/datasheet/2/682/Sensirion_Humidity_Sensors_SHT1x_Datasheet-1539071.pdfSilicon Labs, “Si1145/46/47 P ROXIMITY/ UV/AMBIENT LIGHT SENSOR IC,” 2013. https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf (accessed Oct. 15, 2022). URL:https://cdn-shop.adafruit.com/datasheets/Si1145-46-47.pdf“Raspberry Pi 4,” 2020. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed Jul. 05, 2022). URL:https://www.raspberrypi.com/products/raspberry-pi-4-model-b/“MG-811 ETC sensors,” 2020. https://datasheetspdf.com/datasheet/MG811.html (accessed Jun. 04, 2022). URL:https://datasheetspdf.com/datasheet/MG811.html“Rika sensors - RK500-03 EC / Salinity Sensor,” 2021. https://www.rikasensor.com/rk500-03-ec-salinity-sensor.html (accessed Jul. 07, 2022). URL:https://www.rikasensor.com/rk500-03-ec-salinity-sensor.html“THAOYU electronics - G1" Water Flow Sensor,” 2021. https://www.hotmcu.com/g1-water-flow-sensor-p-312.html (accessed Jun. 01, 2022). URL:https://www.hotmcu.com/g1-water-flow-sensor-p-312.html“DFROBOT sensors - camera DSJ Raspberry NVIDIA.” https://www.dfrobot.com/product-2089.html (accessed Dec. 04, 2022). URL:https://www.dfrobot.com/product-2089.html“DFROBOT sensors - Weather Station Kit with Anemometer/Wind Vane/Rain Bucket,” 2021. https://www.dfrobot.com/product-1308.html (accessed Dec. 03, 2022). URL:https://www.dfrobot.com/product-1308.htmlL. Dragino Technology Co., “Datasheet_DLOS8N_LoRaWAN_Gateway,” 2020. https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.html (accessed Jul. 02, 2022). URL:https://www.dragino.com/products/lora-lorawan-gateway/item/225-dlos8n.html“The Things Network -TTN.” https://www.thethingsnetwork.org/ (accessed Feb. 01, 2022). URL:https://www.thethingsnetwork.org/“Ubidots - Industrial IoT.” https://ubidots.com/ (accessed Apr. 01, 2022). URL:https://ubidots.com/EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83849/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL71756752.2023.pdf71756752.2023.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf4692337https://repositorio.unal.edu.co/bitstream/unal/83849/2/71756752.2023.pdfd454656b5d4661b026a0a8a1f2a8e4b3MD52THUMBNAIL71756752.2023.pdf.jpg71756752.2023.pdf.jpgGenerated Thumbnailimage/jpeg4053https://repositorio.unal.edu.co/bitstream/unal/83849/3/71756752.2023.pdf.jpg25b4218fdef3afe6337382e72021dff5MD53unal/83849oai:repositorio.unal.edu.co:unal/838492023-08-05 23:04:03.141Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=