Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas

fotografías, graficas, tablas

Autores:
Valencia Eraso, Carlos David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85386
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85386
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Poliuretano urea
Aceite de ricino
Ricinoleato de etilenglicol
Elastómeros
Polyurethane Urea
Castor oil
Ethylene glycol ricinoleate
Elastomers
Química
Chemistry
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9a0b6050118236cf86d69110c98bdb0f
oai_identifier_str oai:repositorio.unal.edu.co:unal/85386
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
dc.title.translated.eng.fl_str_mv Polyurethane urea modified with a derivative of castor oil with elastomeric applications
title Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
spellingShingle Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
660 - Ingeniería química
Poliuretano urea
Aceite de ricino
Ricinoleato de etilenglicol
Elastómeros
Polyurethane Urea
Castor oil
Ethylene glycol ricinoleate
Elastomers
Química
Chemistry
title_short Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
title_full Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
title_fullStr Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
title_full_unstemmed Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
title_sort Poliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricas
dc.creator.fl_str_mv Valencia Eraso, Carlos David
dc.contributor.advisor.none.fl_str_mv Cuellar Burgos, Alneira
Mesa Rueda, Fabio Augusto
dc.contributor.author.none.fl_str_mv Valencia Eraso, Carlos David
dc.contributor.researchgroup.spa.fl_str_mv Polímeros y Materiales Compuestos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Poliuretano urea
Aceite de ricino
Ricinoleato de etilenglicol
Elastómeros
Polyurethane Urea
Castor oil
Ethylene glycol ricinoleate
Elastomers
Química
Chemistry
dc.subject.proposal.spa.fl_str_mv Poliuretano urea
Aceite de ricino
Ricinoleato de etilenglicol
Elastómeros
dc.subject.proposal.eng.fl_str_mv Polyurethane Urea
Castor oil
Ethylene glycol ricinoleate
Elastomers
dc.subject.unesco.none.fl_str_mv Química
Chemistry
description fotografías, graficas, tablas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-22T14:28:30Z
dc.date.available.none.fl_str_mv 2024-01-22T14:28:30Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85386
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85386
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, “Polyurethane types, synthesis and applications – a review,” RSC Adv., vol. 6, no. 115, pp. 114453–114482, 2016, doi: 10.1039/C6RA14525F
Harvard Growth Lab’s, “The Atlas of Economic Complexity,” 7.0, 2022. https://atlas.cid.harvard.edu/
American Chemistry Council, “Polyurethane Applications,” 2022. https://www.americanchemistry.com/industry-groups/center-for-the-polyurethanes-industry-cpi/applications-benefits/polyurethane-applications
J. Mattia and P. Painter, “A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol),” Macromolecules, vol. 40, no. 5, pp. 1546–1554, 2007, doi: 10.1021/ma0626362.
M. Lee, M. H. Heo, H. Lee, Y. Kim, and J. Shin, “Tunable Softening and Toughening of Individualized Cellulose Nanofibers-Polyurethane Urea Elastomer Composites,” Carbohydr. Polym., 2016, doi: 10.1016/j.carbpol.2016.12.019.
H. K. Lee and S. W. Ko, “Structure and thermal properties of polyether polyurethaneurea elastomers,” J. Appl. Polym. Sci., vol. 50, no. 7, pp. 1269–1280, 1993, doi: 10.1002/app.1993.070500718.
Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, “Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments,” Polymer (Guildf)., vol. 49, no. 19, pp. 4248–4258, 2008, doi: 10.1016/j.polymer.2008.07.027.
T. A. P. Hai et al., “Renewable polyurethanes from sustainable biological precursors,” Biomacromolecules, vol. 22, no. 5, pp. 1770–1794, 2021, doi: 10.1021/acs.biomac.0c01610.
S. Albeaik, M. Kaltenberg, M. Alsaleh, and C. A. Hidalgo, “Improving the Economic Complexity Index,” pp. 1–21, 2013.
C. Isola et al., “Life cycle assessment of photodegradable polymeric material derived from renewable bioresources,” J. Clean. Prod., 2016, doi: 10.1016/j.jclepro.2016.10.177.
ministerio de agricultura y desarrollo Rural, “Red de información y comunicación del sector agropecuario colombiano,” 2020. https://www.agronet.gov.co/Paginas/inicio.aspx
H. Mutlu and M. A. R. Meier, “Castor oil as a renewable resource for the chemical industry,” Eur. J. Lipid Sci. Technol., vol. 112, no. 1, pp. 10–30, 2010, doi: 10.1002/ejlt.200900138.
S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.
M. Sánchez, R. Castañeda, and M. Castañeda S., “Usos y potencialidad de la Higuerilla (Ricinus communis) en sistemas agroforestales en Colombia,” Pubvet, vol. 10, no. 6, pp. 507–512, 2016, doi: 10.22256/pubvet.v10n6.507-512.
P. Mazo, L. a. Rios, and D. Estenoz, “Síntesis y caracterización de espumas flexibles de poliuretano obtenidas a partir de aceite de castor maleinizado,” Polímeros, vol. 19, no. 2, pp. 149–154, 2009, doi: 10.1590/S0104-14282009000200013.
S. A. Madbouly, Y. Xia, and M. R. Kessler, “Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions,” 2013.
M. M. Conceição, R. A. Candeia, F. C. Silva, A. F. Bezerra, V. J. Fernandes, and A. G. Souza, “Thermoanalytical characterization of castor oil biodiesel,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 964–975, 2007, doi: 10.1016/j.rser.2005.10.001.
A. M. G. Pilonieta, F. J. I, and L. J. C. Riaño, “Poliuretanos degradables a partir de aceite de higuerilla.,” Sci. Tech. Año XIII, vol. 1, no. 36, pp. 1–6, 2007, doi: 10.22517/23447214.4855.
A. Bahadur et al., “Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: A sustained drug release study,” React. Funct. Polym., vol. 119, no. March, pp. 57–63, 2017, doi: 10.1016/j.reactfunctpolym.2017.08.001.
J. Chen, R. Dong, J. Ge, B. Guo, and P. X. Ma, “Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28273–28285, 2015, doi: 10.1021/acsami.5b10829.
R. A. Beck and R. W. Truss, “Effect of chemical structure on the wear behaviour of polyurethane-urea elastomers,” Wear, vol. 218, no. 2, pp. 145–152, 1998, doi: 10.1016/S0043-1648(98)00219-1.
A. Reghunadhan and S. Thomas, Polyurethanes: Structure, Properties, Synthesis, Characterization, and Applications. Elsevier Inc., 2017. doi: 10.1016/B978-0-12-804039-3.00001-4.
E. Delebecq, J. Pascault, and B. Boutevin, “On the Versatility of Urethane: Urea Bonds/Reversibility , Blocked Isocyanate and Non-isocyanate Polyurethane,” Chem. Rev., vol. 113, pp. 80–118, 2013.
D. K. Chattopadhyay and D. C. Webster, “Thermal stability and flame retardancy of polyurethanes,” Prog. Polym. Sci., vol. 34, no. 10, pp. 1068–1133, 2009, doi: 10.1016/j.progpolymsci.2009.06.002.
O. Bayer and G. Farbenindustrie, “Polyurethanes 16.1,” no. 1950, 1988.
A. Brocas, C. Mantzaridis, D. Tunc, and S. Carlotti, “Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization,” Prog. Polym. Sci., 2012, doi: 10.1016/j.progpolymsci.2012.09.007.
A. Domanska and A. Boczkowska, “Biodegradable polyurethanes from crystalline prepolymers,” Polym. Degrad. Stab., vol. 108, pp. 175–181, 2014, doi: 10.1016/j.polymdegradstab.2014.06.017.
D. K. Chattopadhyay and K. V. S. N. Ã. Raju, “Structural engineering of polyurethane coatings for high performance applications,” vol. 32, pp. 352–418, 2007, doi: 10.1016/j.progpolymsci.2006.05.003.
Y. Zhou, G. Yuan, and H. Saihua, “Novel CuCo 2 O 4 / graphitic Carbon Nitride Nanohybrids : Highly Effective Catalysts for Reducing CO Generation and Fire Hazards of Thermoplastic Polyurethane Nanocomposites,” Elsevier B.V., 2015, doi: 10.1016/j.jhazmat.2015.03.041.
J. W. Britain and P. G. Gemeinhardt, “Catalysis of the isocyanate‐hydroxyl reaction,” J. Appl. Polym. Sci., vol. 4, no. 11, pp. 207–211, 1960, doi: 10.1002/app.1960.070041112.
S. Oprea and Æ. O. Potolinca, “Synthesis of cross-linked polyurethane elastomers with fluorescein linkages,” pp. 4181–4187, 2009, doi: 10.1007/s10853-009-3625-2.
J. T. Garrett, J. Runt, and J. S. Lin, “Microphase separation of segmented poly(urethane urea) block copolymers,” Macromolecules, vol. 33, no. 17, pp. 6353–6359, 2000, doi: 10.1021/ma000600i.
P. A. Ourique et al., “Synthesis, properties, and applications of hybrid polyurethane–urea obtained from air-oxidized soybean oil,” Prog. Org. Coatings, vol. 108, no. April, pp. 15–24, 2017, doi: 10.1016/j.porgcoat.2017.04.002.
Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym.Sci., vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.
L. May-Hernández, F. Hernández-Sáncehz, J. L. Gomez Ribelles, and R. Sabater i Serra, “Segmented Poly(urethane-urea) Elastomers Based on Polycaprolactone: Structure and Properties,” J. ofAppliedPolymer Sci., vol. 119, p. 2093, Feb. 2011, doi: 10.1002/app.32929.
A. J. Hsieh, J. A. Orlicki, and R. L. Beyer, “Molecular Design of Novel Poly ( urethane-urea ) Hybrids as Helmet Pads for Ballistic and Blast Trauma Mitigation,” ARL Tech Rep., no. March, 2009.
R. Heath, “Chapter 28 - Isocyanate-Based Polymers: Polyurethanes, Polyureas, Polyisocyanurates, and their Copolymers,” M. B. T.-B. P. M. (Eighth E. Gilbert, Ed. Butterworth-Heinemann, 2017, pp. 799–835. doi: https://doi.org/10.1016/B978-0-323-35824-8.00028-1.
J. C. Ronda, G. Lligadas, and M. Galia, “Review Article Vegetable oils as platform chemicals for polymer synthesis,” pp. 46–58, 2011, doi: 10.1002/ejlt.201000103.
Y. Y. Li, X. Luo, and S. Hu, “Bio-based Polyols and Polyurethanes,” Bio-based Polyols and Polyurethanes, pp. 1–79, 2015, doi: 10.1007/978-3-319-21539-6.
P. Taylor and Z. S. Petrovi, “Polyurethanes from Vegetable Oils Polyurethanes from Vegetable Oils,” no. December 2012, pp. 37–41, 2008, doi: 10.1080/15583720701834224.
V. Ca, G. Lligadas, J. C. Ronda, and M. Galia, “Renewable polymeric materials from vegetable oils : a perspective,” vol. 16, no. 9, pp. 337–343, 2013, doi: 10.1016/j.mattod.2013.08.016.
The chemistry of oils and fats, vol. 2325. 2005. doi: 10.1002/jsfa.2337.
D. S. Ogunniyi, “Castor oil: A vital industrial raw material,” Bioresour. Technol., vol. 97, no. 9, pp. 1086–1091, 2006, doi: 10.1016/j.biortech.2005.03.028.
D. E. Rodríguez Arias and J. S. Duque Nieto, “Plan de negocios para el cultivo de Higuerilla, estudio de caso municipio de Balboa (Risaralda),” UniversidadTecnológica de Pereira, 2010.
M. A. Mdalel and L. S. Esparza Heredia, “Análisis de factibilidad para planta de extracción de aceite de ricino,” Universidad Católica de salta, 2016. [Online]. Available: http://bibliotecavirtualoducal.uc.cl:8081/xmlui/handle/123456789/1423882
S. Tips, J. Ward, W. Collins, and V. Information, Kirk-Othmer Encyclopedia of Chemical Technology 4 th Edition, no. September. 2010.
F. H. Smith and A. U. Ayres, “Vegetable oil refining by the modified soda ash process,” J. Am. Oil Chem. Soc., vol. 33, no. 3, pp. 93–95, 1956, doi: 10.1007/BF02632287.
I. A. Sánchez Medina and K. Huertas Greco, “Obtención y caracterización de biodiesel a partir de aceite de semillas de ricinus communis. (higuerilla) modificadas géneticamente y cultivadas en el eje cafetero,” Universidad Tecnológica de Pereira, 2012.
A. Yeboah et al., “Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties,” Food Sci. Technol., vol. 41, no. December, pp. 399–413, 2021, doi: 10.1590/fst.19620.
Vertellus and O’Shea, “Castor oil and its chemistry,” 2000. [Online]. Available: www.groshea.com
M. F. Valero, J. E. Pulido, Á. Ramírez, and Z. Cheng, “Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol,” Quim. Nova, vol. 31, no. 8, pp. 2076–2082, 2008, doi: 10.1590/S0100-40422008000800031.
S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomater., vol. 10, no. 4, pp. 1692–1704, 2014, doi: 10.1016/j.actbio.2013.08.040.
N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Fabrication and evaluation of acrylated epoxidized castor oil-toughened diglycidyl ether of bisphenol A nanocomposites,” Can. J. Chem. Eng., vol. 93, no. 12, pp. 2107–2116, 2015, doi: 10.1002/cjce.22320.
M. F. Valero et al., “Poliuretanos elastomericos obtenidos a partir de aceitede ricino y almidon de yuca original y modificado con anhidrido propinico: Sinntesis, propiedades fisicoquímicas y fisicomecánicas,” Quim. Nova, vol. 33, no. 4, pp. 850–854, 2010, doi: 10.1590/S0100-40422010000400016.
M. F. Valero and L. E. Díaz, “Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Sinntesis, propiedades mecanicas y termicas y degradación in vitro,” Quim. Nova, vol. 37, no. 9, pp. 1441–1445, 2014, doi: 10.5935/0100-4042.20140228.
S. Pramanik, K. Sagar, B. K. Konwar, and N. Karak, “Synthesis, characterization and properties of a castor oil modified biodegradable poly(ester amide) resin,” Prog. Org. Coatings, vol. 75, no. 4, pp. 569–578, 2012, doi: 10.1016/j.porgcoat.2012.05.009.
V. Cardona et al., “Obtención de monoglicéridos de aceite de ricino empleando glicerina refinada y cruda: estudio de las principales variables del proceso,” 2010.
A. Franco, “Preparation flexible foam polyurethane from modifications palm oil and castor oil,” no. 36, pp. 607–612, 2007.
S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “An insight on castor oil based polyuretahne and nanocomposites: resent trends and development,” Polym. Plast. Technol. Eng., vol. 56, no. January 2016, pp. 1–30, 2017.
G. Castellar, E. Angulo, and B. Cardozo, “Transesterificación de aceites vegetales empleando catalizadores heterogéneos,” Prospect, vol. 12, no. 2, pp. 90–104, 2014, doi: 10.1007/s11746-016-2798-5.
K. Ramezani, S. Rowshanzamir, and M. H. Eikani, “Castor oil transesteri fi cation reaction : A kinetic study and optimization of parameters,” Energy, vol. 35, no. 10, pp. 4142–4148, 2010, doi: 10.1016/j.energy.2010.06.034.
M. Belén Navas, “Estudio de catalizadores heterogéneos en la transesterificación de triglicéridos para obtener biodiesel de segunda generación,” Universidad Nacional de La Plata, 2018.
A. Eladeb, A. Aydi, and I. Alenezi, “Ethanolysis of Waste Cooking oils using KOH Catalyst,” Orient. J. Chem., vol. 37, no. 6, pp. 1344–1349, 2021, doi:10.13005/ojc/370611.
S. Baroutian, M. K. Aroua, A. A. A. Raman, and N. M. N. Sulaiman, “Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil,” Fuel Process. Technol., vol. 91, no. 11, pp. 1378–1385, 2010, doi: 10.1016/j.fuproc.2010.05.009.
C. Cabello, S. Rincon, and A. Zeped, “Types of heterogeneous catalysts used for biodiesel production,” Afinidad, vol. 74, no. 577, pp. 51–59, 2017.
Z. Helwani, M. R. Othman, N. Aziz, J. Kim, and W. J. N. Fernando, “Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review,” Applied Catalysis A: General, vol. 363, no. 1–2. pp. 1–10, 2009. doi: 10.1016/j.apcata.2009.05.021.
M. Becerra, A. Centeno, and S. A. Giraldo, “Búsqueda de catalizadores sólidos básicos para la producción de biodiesel,” Inf. Tecnol., vol. 21, no. 4, pp. 57–66, 2010, doi: 10.1612/inf.tecnol.4361it.09.
M. Kouzu, T. Kasuno, M. Tajika, and Y. Sugimoto, “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” vol. 87, pp. 2798–2806, 2008, doi: 10.1016/j.fuel.2007.10.019.
Y. Meng et al., “Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating,” Polymers (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/polym14091880.
P. Saha, C. Khomlaem, H. Aloui, and B. S. Kim, “Biodegradable polyurethanes based on castor oil and poly (3-hydroxybutyrate),” Polymers (Basel)., vol. 13, no. 9, 2021, doi: 10.3390/polym13091387.
J. Pulido et al., “Síntesis y caracterización de elastómeros de poliuretano a partir de poliol-suspensiones de aceite de higuerilla y almidón de yuca Synthesis and characterization of polyurethane elastomers from polyol-suspensions of castor oil and yucca starch,” Rev. Fac. Ing. Univ. Antioquia Colomb., vol. 39, no. Marzo, pp. 100–111, 2007.
S. Oprea, “Synthesis and properties of polyurethane elastomers with castor oil as crosslinker,” JAOCS, J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 313–320, 2010, doi: 10.1007/s11746-009-1501-5.
J. Chen, D. Hu, Y. Li, F. Meng, J. Zhu, and J. Zeng, “Castor oil derived poly ( urethane urea ) networks with reprocessibility and enhanced mechanical properties,” Polymer (Guildf)., vol. 143, pp. 79–86, 2018, doi: 10.1016/j.polymer.2018.04.013.
T. Guan et al., “Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors,” Macromolecules, vol. 55, no. 13, pp. 5816–5825, Jul. 2022, doi: 10.1021/acs.macromol.2c00492.
N. Bhosale, A. Shaik, and S. K. Mandal, “Synthesis and characterization of castor oil based hybrid polymers and their polyurethane-urea/silica coatings,” RSC Adv., vol. 5, no. 125, pp. 103625–103635, 2015, doi: 10.1039/c5ra20356b.
T. A. da Silva, L. P. Ramos, S. F. Zawadzki, and R. V. Barbosa, “Application of Taguchi design to produce polyols based on castor oil derivatives with diethylene glycol,” Mediterr. J. Chem., vol. 4, no. 2, pp. 93–99, 2015, doi: 10.13171/mjc.4.2.2015.11.04.15.35/barbosa.
J. Yamanis and M. Adelman, “Transesterification of dmt with ethylene glycol catalyzed by amberlyst 15,” Can. J. Chem. Eng., vol. 53, no. 5, pp. 536–540, 1975, doi: 10.1002/cjce.5450530513.
G. Mendow, N. S. Veizaga, and C. A. Querini, “Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst,” Bioresour. Technol., vol. 102, no. 11, pp. 6385–6391, 2011, doi: 10.1016/j.biortech.2011.01.072.
P. Mazo and L. Galeano, “Esterificación de los ácidos grasos libres (FFA) del aceite crudo de palma. Calentamiento convencional vs microondas,” Sci. Tech., vol. XIII, no. 35, pp. 461–465, 2007, [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/5481
I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “Biodiesel separation and purification: A review,” Renew. Energy, vol. 36, no. 2, pp. 437–443, 2011, doi: 10.1016/j.renene.2010.07.019.
A. Cambiella, J. M. Benito, C. Pazos, and J. Coca, “Centrifugal separation efficiency in the treatment of waste emulsified oils,” Chem. Eng. Res. Des., vol. 84, no. 1 A, pp. 69–76, 2006, doi: 10.1205/cherd.05130.
J. Fang, S. H. Ye, V. Shankarraman, Y. Huang, X. Mo, and W. R. Wagner, “Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine,” Acta Biomater., vol. 10, no. 11, pp. 4639–4649, 2014, doi: 10.1016/j.actbio.2014.08.008.
H. Shirasaka, S. I. Inoue, K. Asai, and H. Okamoto, “Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment,” Macromolecules, vol. 33, no. 7, pp. 2776–2778, 2000, doi: 10.1021/ma9917904.
S. Guoliang, D. Youjia, X. U. Tiejun, F. U. Chengbi, and C. Yuannan, “Study on synthesis technology of ethylene glycol potassium,” Ind. Catal., vol. 19, no. 12, pp. 71–73, 2011, doi: 10.3969/j.issn.1008-1143.2011.12.015.
M. Di Serio, R. Tesser, A. Dimiccoli, and E. Santacesaria, “Kinetics of ethoxylation and propoxylation of ethylene glycol catalyzed by KOH,” Ind. Eng. Chem. Res., vol. 41, no. 21, pp. 5196–5206, 2002, doi: 10.1021/ie020082v.
Charles M. Hansen, Hansen Solubility Parameters A User’s Handbook, 2nd ed. Boca Raton, 2007. doi: https://doi.org/10.1201/9781420006834.
S. Zhang, C. Campagne, and F. Salaün, “Influence of solvent selection in the electrospraying process of polycaprolactone,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030402.
R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, and I. Smirnova, “On the road to biopolymer aerogels—dealing with the solvent,” Gels, vol. 1, no. 2, pp. 291–313, 2015, doi: 10.3390/gels1020291.
J. Bus, F. Groeneweg, and F. Voorst Vader, “Effect of hydrogen bonding on water in oil emulsion properties,” in Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk, vol. 130, 2008, pp. 122–130. doi: 10.1007/bfb0118250.
J. Ma, Y. Yang, X. Li, H. Sui, and L. He, “Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing,” Fuel, vol. 297, no. January, p. 120763, 2021, doi: 10.1016/j.fuel.2021.120763.
A. U. Hahn and K. L. Mittal, “Mechanism of demulsification of oil-in-water emulsion in the centrifuge,” Colloid Polym. Sci. Kolloid-Zeitschrift Zeitschrift für Polym., vol. 257, no. 9, pp. 959–967, 1979, doi: 10.1007/BF01520721.
R. N. Mukherjea, K. K. Saha, and S. K. Sanyal, “Plasticizing Effect of Acetylated Castor Oil on Castor Oil- Based , Moisture-Cured Polyurethane Film,” J. Am. Oil Chem. Soc., vol. 29, no. 9, pp. 653–656, 1978.
R. P. Wool, “4 - POLYMERS AND COMPOSITE RESINS FROM PLANT OILS,” R. P. Wool and X. S. B. T.-B.-B. P. and C. Sun, Eds. Burlington: Academic Press, 2005, pp. 56–113. doi: https://doi.org/10.1016/B978-012763952-9/50005-8.
S. N. Naik, D. K. Saxena, B. R. Dole, and S. K. Khare, “Chapter 21 - Potential and Perspective of Castor Biorefinery,” T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, and S. K. B. T.-W. B. Khanal, Eds. Elsevier, 2018, pp. 623–656. doi: https://doi.org/10.1016/B978-0-444-63992-9.00021-5.
I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016, doi: 10.1016/j.ejpe.2015.06.007.
H. Li, S. Niu, and C. Lu, “Pyrolysis Characteristics of Castor Oil through Thermogravimetric Coupled with Fourier Transform Infrared Spectroscopy,” in Procedia Engineering, 2017, vol. 205, pp. 3705–3710. doi: 10.1016/j.proeng.2017.10.292.
G. Dwivedi and M. P. Sharma, “Experimental investigation on thermal stability of Pongamia Biodiesel by thermogravimetric analysis,” Egypt. J. Pet., vol. 25, no. 1, pp. 33–38, 2016, doi: 10.1016/j.ejpe.2015.06.008.
H. Li, S. Niu, C. Lu, and Y. Wang, “Comprehensive Investigation of the Thermal Degradation Characteristics of Biodiesel and Its Feedstock Oil through TGA-FTIR,” Energy and Fuels, vol. 29, no. 8, pp. 5145–5153, 2015, doi: 10.1021/acs.energyfuels.5b01054.
I. S. Ristić et al., “Thermal stability of polyurethane materials based on castor oil as polyol component,” J. Therm. Anal. Calorim., vol. 111, no. 2, pp. 1083–1091, 2013, doi: 10.1007/s10973-012-2497-x.
P. Chand, C. V. Reddy, J. G. Verkade, and T. Wang, “Novel Characterization Method of Biodiesel Produced from Soybean Oil using Thermogravimetric Analysis David Grewell (corresponding author) Written for presentation at the,” Asabe, vol. 0300, no. 08, pp. 1–5, 2008.
S. V. Araújo, B. S. Rocha, F. M. T. Luna, E. M. Rola, D. C. S. Azevedo, and C. L. Cavalcante, “FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods,” Fuel Process. Technol., vol. 92, no. 5, pp. 1152–1155, 2011, doi: 10.1016/j.fuproc.2010.12.026.
F. N. Habib, S. S. Kordestani, F. Afshar-Taromi, and Z. Shariatinia, “A novel topical tissue adhesive composed of urethane prepolymer modified with chitosan,” Int. J. Polym. Anal. Charact., vol. 16, no. 8, pp. 609–618, 2011, doi: 10.1080/1023666X.2011.622483.
S. Ibrahim, A. Ahmad, and N. S. Mohamed, “Characterization of novel castor oil-based polyurethane polymer electrolytes,” Polymers (Basel)., vol. 7, no. 4, pp. 747–759, 2015, doi: 10.3390/polym7040747.
T. Panhwar et al., “Physicochemical composition and FTIR characterization of castor seed oil,” Ukr. Food J., vol. 8, no. 4, pp. 778–787, 2019, doi: 10.24263/2304-974X-2019-8-4-9.
A. Yusuf, P. Mamza, A. Ahmed, and U. Agunwa, “EXTRACTION AND CHARACTERIZATION OF CASTOR SEED OIL FROM WILD RICINUS COMMUNIS LINN,” Int. J. Sci. Environ. Technol., vol. 4, pp. 1392–1404, Oct. 2015.
T. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization,” Prog. Org. Coatings, vol. 80, no. 1, pp. 39–48, 2015, doi: 10.1016/j.porgcoat.2014.11.017.
S. Sahoo, H. Kalita, S. Mohanty, and S. K. Nayak, “Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior,” Int. J. Chem. Kinet., vol. 48, no. 10, pp. 622–634, 2016, doi: 10.1002/kin.21020.
I. A. Mohammed, E. A. J. Al-Mulla, N. K. A. Kadar, and M. Ibrahim, “Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols,” J. Oleo Sci., vol. 62, no. 12, pp. 1059–1072, 2013, doi: 10.5650/jos.62.1059.
K. M. Zia, A. Ahmad, S. Anjum, M. Zuber, and M. N. Anjum, “Synthesis and characterization of siloxane-based polyurethane elastomers using hexamethylene diisocyanate,” J. Elastomers Plast., vol. 47, no. 7, pp. 625–635, 2015, doi: 10.1177/0095244314526746.
S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.
Huntsman Corporation, “Technical Data Sheet RUBINATE® 1790 MDI.” 2010.
A. Farkas, G. A. Mills, W. E. Erner, and J. B. Maerker, “Triethylenediamine—A New Bicyclic Intermediate and Catalyst for Making Polyurethane Foam,” Ind. Eng. Chem., vol. 51, no. 10, pp. 1299–1300, Oct. 1959, doi: 10.1021/ie50598a039.
A. Farkas, R. L. Mascioli, F. Miller, and P. F. Strohm, “Derivatives of 1,4-diazabicyclo[2.2.2]octane (triethylenediamine),” J. Chem. Eng. Data, vol. 13, no. 2, pp. 278–284, Apr. 1968, doi: 10.1021/je60037a046.
C. Wang, C. Ma, C. Mu, and W. Lin, “Tailor-made zwitterionic polyurethane coatings: Microstructure, mechanical property and their antimicrobial performance,” RSC Adv., vol. 7, no. 44, pp. 27522–27529, 2017, doi:10.1039/c7ra04379a.
R. C. R. Nunes, R. A. Pereira, J. L. C. Fonseca, and M. R. Pereira, “X-ray studies on compositions of polyurethane and silica,” Polym. Test., vol. 20, no. 6, pp. 707–712, 2001, doi: 10.1016/S0142-9418(01)00007-1.
H. Ishihara, I. Kimura, and N. Yoshihara, “Studies on Segmented Polyurethane-Urea Elastomers: Structure of Segmented Polyurethane-Urea Based on Poly(tetramethylene glycol), 4,4′-Diphenylmethane Diisocyanate, and 4,4′-Diaminodiphenylmethane,” J. Macromol. Sci. Part B, vol. 22, no. 5–6, pp. 713–733, 1983, doi: 10.1080/00222348308245751.
S. Sang, Y. Li, K. Wang, and J. Tang, “Application of blocked isocyanate in preparation of polyurethane(urea) elastomers,” J. Appl. Polym. Sci., vol. 138, no. 24, 2021, doi: 10.1002/app.50582.
M. Shoaib et al., “Relationship of hard segment concentration in polyurethane-urea elastomers with mechanical, thermal and drug release properties,” J. Drug Deliv. Sci. Technol., vol. 37, no. 1, pp. 88–96, 2017, doi: 10.1016/j.jddst.2016.12.003.
D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, “Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea,” J. Polym. Sci. Part B Polym. Phys., vol. 44, no. 1, pp. 102–118, 2006, doi: 10.1002/polb.20586.
X. Dai et al., “Study on structure and orientation action of polyurethane nanocomposites,” Macromolecules, vol. 37, no. 15, pp. 5615–5623, 2004, doi: 10.1021/ma049900g.
M. Sadeghi, M. A. Semsarzadeh, M. Barikani, and B. Ghalei, “The effect of urethane and urea content on the gas permeation properties of poly(urethane-urea) membranes,” J. Memb. Sci., vol. 354, no. 1–2, pp. 40–47, 2010, doi: 10.1016/j.memsci.2010.02.070.
L. C. Raghunanan, I. Martínez, C. Valencia, M. C. Sánchez, and J. M. Franco, “Unexpected Selectivity in the Functionalization of Neat Castor Oil under Benign Catalyst-Free Conditions,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7212–7215, 2018, doi: 10.1021/acssuschemeng.8b00979.
J. Sheth, “Investigation of the Influence of Selected Variables on the Solid State Structure-Property Behavior of Segmented Copolymers,” 2005.
A. Marcos-Fernández, A. E. Lozano, L. González, and A. Rodríguez, “Hydrogen bonding in copoly(ether-urea)s and its relationship with the physical properties,” Macromolecules, vol. 30, no. 12, pp. 3584–3592, 1997, doi: 10.1021/ma9619039.
P. Cinelli, I. Anguillesi, and A. Lazzeri, “Green synthesis of flexible polyurethane foams from liquefied lignin,” Eur. Polym. J., vol. 49, no. 6, pp. 1174–1184, 2013, doi: 10.1016/j.eurpolymj.2013.04.005.
S. J. Peng, Y. Jin, X. F. Cheng, T. B. Sun, R. Qi, and B. Z. Fan, “A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution,” Prog. Org. Coatings, vol. 86, no. 1, pp. 1–10, 2015, doi: 10.1016/j.porgcoat.2015.03.013.
D. P. Queiroz, M. N. De Pinho, and C. Dias, “ATR-FTIR studies of poly(propylene oxide)/polybutadiene bi-soft segment urethane/urea membranes,” Macromolecules, vol. 36, no. 11, pp. 4195–4200, 2003, doi: 10.1021/ma034032t.
A. Cuellar, “Influencia de la separación de fases en poliuretanos-urea sobre la distribucion de cargas estructurales de escala nanometrica,” Universidad Nacional de Colombia, 2013.
M. Abdelrehim, H. Komber, J. Langenwalter, B. Voit, and B. Bruchmann, “Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA* and B2B* monomers,” John Wiley & Sons, Ltd, 2004. doi: https://doi.org/10.1002/pola.20154.
A. S. More, T. Lebarbé, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, “Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes,” Eur. Polym. J., vol. 49, no. 4, pp. 823–833, 2013, doi: 10.1016/j.eurpolymj.2012.12.013.
Q. W. Lu, T. R. Hoye, and C. W. Macosko, “Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends,” J. Polym. Sci. Part A Polym. Chem., vol. 40, no. 14, pp. 2310–2328, 2002, doi: 10.1002/pola.10310.
A. Kyritsis, K. Raftopoulos, M. A. Rehim, S. S. Shabaan, A. Ghoneim, and G. Turky, “Structure and molecular dynamics of hyperbranched polymeric systems with urethane and urea linkages,” Polymer (Guildf)., vol. 50, no. 16, pp. 4039–4047, 2009, doi: 10.1016/j.polymer.2009.06.037.
C. N. Beecher and C. K. Larive, “1H and 15N NMR Characterization of the Amine Groups of Heparan Sulfate Related Glucosamine Monosaccharides in Aqueous Solution,” Anal. Chem., vol. 87, no. 13, pp. 6842–6848, Jul. 2015, doi: 10.1021/acs.analchem.5b01181.
A. Frick and A. Rochman, “Characterization of TPU-elastomers by thermal analysis (DSC),” Polym. Test., vol. 23, no. 4, pp. 413–417, 2004, doi: 10.1016/j.polymertesting.2003.09.013.
L. M. Leung and J. T. Koberstein, “DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers,” Macromolecules, vol. 19, no. 3, pp. 706–713, 1986, doi: 10.1021/ma00157a038.
J. L. Hong, C. P. Lillya, and J. C. W. Chien, “Degree of phase separation in polyether-polyurethane copolymers with different chemical structures of hard segments,” Polymer (Guildf)., vol. 33, no. 20, pp. 4347–4351, 1992, doi: 10.1016/0032-3861(92)90278-5.
J. T. Haponiuk, A. Balas, and T. Kawka, “Application of the DSC analysis of thermoplastic polyurethane elastomers to a comparative study of their technological properties,” J. Therm. Anal., vol. 36, no. 6, pp. 2249–2252, 1990, doi: 10.1007/BF01914162.
S. G. Musselman, T. M. Santosusso, J. D. Barnes, and L. H. Sperling, “Domain structure and interphase dimensions in poly(urethaneurea) elastomers using DSC and SAXS,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 18, pp. 2586–2600, 1999, doi: 10.1002/(SICI)1099-0488(19990915)37:18<2586::AID-POLB4>3.0.CO;2-A.
C. Hepburn, Polyurethane elastomers, Segunda. Nueva York: Elsevier Ltd., 2012.
Y. H. Que et al., “The crystallisation, microphase separation and mechanical properties of the mixture of ether-based tpu with different ester-based tpus,” Polymers (Basel)., vol. 13, no. 20, 2021, doi: 10.3390/polym13203475.
P. K. Saxena et al., “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” Macromolecules, vol. 10, no. 2, pp. 149–154, 2014, doi: 10.1002/app.
A. Stribeck, B. Eling, E. Pöselt, M. Malfois, and E. Schander, “Melting, Solidification, and Crystallization of a Thermoplastic Polyurethane as a Function of Hard Segment Content,” Macromol. Chem. Phys., vol. 220, no. 11, pp. 1–10, 2019, doi: 10.1002/macp.201900074.
Y. L. Uscátegui et al., “Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications,” Molecules, vol. 24, no. 2, pp. 237–267, 2019, doi: 10.3390/molecules24020237.
Y. C. Chen and W. Tai, “Castor oil-based polyurethane resin for low-density composites with bamboo charcoal,” Polymers (Basel)., vol. 10, no. 10, 2018, doi: 10.3390/polym10101100.
I. Navarro-Baena et al., “Thermal Degradation Effects on Polyurethanes and Their Nanocomposites,” React. Mech. Therm. Anal. Adv. Mater., pp. 165–189, 2015, doi: 10.1002/9781119117711.ch7.
Y. Zhang, Z. Xia, H. Huang, and H. Chen, “Thermal degradation of polyurethane based on IPDI,” J. Anal. Appl. Pyrolysis, vol. 84, no. 1, pp. 89–94, 2009, doi: 10.1016/j.jaap.2008.11.008.
F. Gaboriaud and J. P. Vantelon, “Mechanism of Thermal Degradation of Polyurethane Based on Mdi and Propoxylated Trimethylol Propane.,” J. Polym. Sci. A1., vol. 20, no. 8, pp. 2063–2071, 1982, doi: 10.1002/pol.1982.170200809.
L. Jiao, H. Xiao, Q. Wang, and J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR- MS,” Polym. Degrad. Stab., vol. 98, no. 12, pp. 2687–2696, 2013, doi: 10.1016/j.polymdegradstab.2013.09.032.
M. F. Valero, J. E. Pulido, Á. Ramírez, D. C. Camargo, and D. Navas, “Caracterización físico-mecánica, térmica y morfológica de polímeros de redes interpenetradas con base en poliuretano obtenido a partir de aceite de ricino y almidón modificados/polimetilmetacrilato (PMMA),” Polímeros, vol. 21, no. 4, pp. 293–298, 2011, doi: 10.1590/S0104-14282011005000050.
H. Sui, X. Ju, X. Liu, K. Cheng, Y. Luo, and F. Zhong, “Primary thermal degradation effects on the polyurethane film,” Polym. Degrad. Stab., vol. 101, no. 1, pp. 109–113, 2014, doi: 10.1016/j.polymdegradstab.2013.11.021.
A. D. Macalino, V. A. Salen, and L. Q. Reyes, “Castor Oil Based Polyurethanes: Synthesis and Characterization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 229, no. 1, 2017, doi: 10.1088/1757-899X/229/1/012016.
M. Berta, C. Lindsay, G. Pans, and G. Camino, “Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites,” Polym. Degrad. Stab., vol. 91, no. 5, pp. 1179–1191, 2006, doi: 10.1016/j.polymdegradstab.2005.05.027.
C. S. P. Sung and N. S. Schneider, “Infrared Studies of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes,” Macromolecules, vol. 8, no. 1, pp. 68–73, 1975, doi: 10.1021/ma60043a015.
O. Smith and S. Cristol, Organic Chemistry, Primera. Nueva York: Reinhold Publishing Corporation, 1970.
F. Yeh, B. S. Hsiao, B. B. Sauer, S. Michel, and H. W. Siesler, “In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer,” Macromolecules, vol. 36, no. 6, pp. 1940–1954, 2003, doi: 10.1021/ma0214456.
K. Madhavan and B. S. R. Reddy, “Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 9, pp. 2980–2989, May 2006, doi: https://doi.org/10.1002/pola.21401.
R. Rohim, R. Ahmad, N. Ibrahim, N. Hamidin, and C. Z. Azner Abidin, “Characterization of calcium oxide catalyst from eggshell waste,” Adv. Environ. Biol., vol. 8, no. 22, pp. 35–38, 2014.
A. Anantapinitwatna et al., “Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel,” Fuel, vol. 296, no. March, p. 120653, 2021, doi: 10.1016/j.fuel.2021.120653.
L. Ning, W. De-Ning, and Y. Sheng-Kang, “Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers,” Polymer (Guildf)., vol. 37, no. 16, pp. 3577–3583, 1996, doi: 10.1016/0032-3861(96)00166-8.
J. Puiggalí and L. Franco, “Estudio de la cristalización y de la transición de Brill en el Nylon 5,6,” 1998.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85386/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85386/2/1053842440.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85386/3/1053842440.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f9ed7906199bfed066620973b53d9f1d
e913af47825c47a4f4a811cac5eb4d4c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089281349615616
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuellar Burgos, Alneira03566ed38dd1ac85ec739a65099c0143600Mesa Rueda, Fabio Augustobac44b568ac9f30ee81b043480db2108600Valencia Eraso, Carlos David1704d9a6d2b1e51e299d19f85368e0f3Polímeros y Materiales Compuestos2024-01-22T14:28:30Z2024-01-22T14:28:30Z2023https://repositorio.unal.edu.co/handle/unal/85386Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías, graficas, tablasLa incorporación de compuestos poliméricos biobasados han adquirido mucha importancia y relevancia en la actualidad, debido a que permiten la reducción de los compuestos que tiene como origen el petróleo mediante la inclusión de nuevas fuentes renovables en su producción. En este trabajo se obtuvo un derivado del aceite de ricino mediante la transesterificación del aceite con el fin de reducir la funcionalidad hidroxilo y poder obtener un producto lineal para la elaboración de un elastómero de poliuretano urea (PUU). En la síntesis se utilizó aceite de ricino con dietilenglicol en exceso y KOH como catalizador. El producto obtenido fue separado y caracterizado por resonancia magnética nuclear (RMN), espectroscopia de infrarrojo por transformada de Fourier (FTIR), análisis termogravimétrico (TGA) y número hidroxilo, obteniéndose como bandas características para el ricinoleato (REG) el -OH en 1050 cm-1 del grupo hidroxilo primario y los picos 3.6 y 4.1 ppm correspondientes al –CH2 adyacente a un carbono secundario y al CH2-C-C=O-, respectivamente. El producto obtenido presentó una temperatura de degradación de 165ºC y un valor hidroxilo de 328 mg KOH/g. Posteriormente, se formuló y obtuvo un poliuretano urea biobasado (PUUR) con un segmento duro (%HS) de 40% a partir del derivado de aceite de ricino con una adición de ricinoleato de etilenglicol (REG) de 1.6% molar, una temperatura de 90ºC, catalizador DABCO y utilizando la técnica por solvente en dos pasos con un 32% de sólidos disueltos de igual forma se sintetizó un PUU estándar a las mismas condiciones con el fin de establecer las variaciones del producto biobasado. Estos productos fueron caracterizados X Poliuretano Urea Modificado con un Derivado de Aceite de Ricino con Aplicaciones Elastoméricas por RMN, FTIR, TGA, DSC y finalmente, por un ensayo de tracción para evaluar las características mecánicas de los productos. A través de la RMN se estableció que el producto REG se incorporó a la estructura a través del protón en la ubicación de 5.40 ppm (–CH) que corresponde a la insaturación del REG. Adicionalmente, se observó un cambio en el módulo de tracción del PUUR aumentando un 29% y reduciendo la elongación en un 82% con respecto al PUU estándar sintetizado, además se presenta también una reducción en 17 ºC en su estabilidad térmica, una reducción de la cristalización fría y un aumento en la temperatura de fusión del producto final con respecto al PUU estándar. Estos resultados son importantes, ya que se pudo sintetizar un producto biobasado mediante la modificación del aceite de ricino, y se pudo establecer los efectos ocasionados por el uso de este tipo de productos renovables en las propiedades finales de los poliuretanos urea lineales, adicionalmente se establecieron los procesos de síntesis y purificación de cada una de las etapas del proceso para la producción de un polímero de ingeniería como es el PUU con un derivado de fuente renovable (Texto tomado de la fuente)The incorporation of biobased polymeric compounds has acquired great importance and relevance today, because they allow the reduction of compounds that have petroleum origin by including new renewable sources in their production. In this work, a derivative of castor oil was obtained by means of transesterification of the oil in order to reduce the hydroxyl functionality and to obtain a linear product for the elaboration of a polyurethane urea elastomer. In the synthesis, castor oil was obtained with excess diethylene glycol and KOH as catalyst. The obtained product was separated and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and hydroxyl number, obtaining as characteristic bands for ricinoleate (REG) the -OH in 1050 cm-1 of the primary hydroxyl group and the 3.6 and 4.1 ppm peaks corresponding to –CH2 adjacent to a secondary carbon and to CH2-C-C=O-, respectively. The product obtained had a degradation temperature of 165°C and a hydroxyl value of 328 mg KOH/g. Subsequently, a biobased polyurethane urea (PUUR) with a hard segment (%HS) of 40% was formulated and obtained from the castor oil derivative with an addition of ethylene glycol ricinoleate (REG) of 1.6% molar, a temperature of 90ºC, DABCO catalyst and using the solvent technique in two steps with 32% dissolved solids, in the same way, a standard PUU was synthesized under the same conditions in order to establish the variations of the biobased product. These products were characterized by NMR, FTIR, TGA, DSC and finally, by a tensile test to evaluate the mechanical characteristics of the products. Through NMR it was established that the REG product was incorporated into the structure through the proton at the location of 5.40 ppm (–CH) which corresponds to the unsaturation of the REG. In addition, a change in the traction modulus of the PUUR was lost, increasing by 29% and elongation was reduced by 82% with respect to the synthesized standard PUU, in addition there is also a reduction of 17 ºC in its thermal stability, a reduction in the cold crystallization and an increase in the melting temperature of the final product with respect to standard PUU. These results are important, since it was possible to synthesize a biobased product by modifying castor oil, and it was possible to establish the effects caused by the use of this type of renewable products on the final properties of linear urea polyurethanes, additionally it suffers the synthesis and purification processes of each of the stages of the process for the production of an engineering polymer such as PUU with derivatives from renewable sources.MaestríaMagíster en Ingeniería - Ingeniería QuímicaPolímeros y Materiales CompuestosQuímica Y Procesos.Sede Manizales147 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería QuímicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales660 - Ingeniería químicaPoliuretano ureaAceite de ricinoRicinoleato de etilenglicolElastómerosPolyurethane UreaCastor oilEthylene glycol ricinoleateElastomersQuímicaChemistryPoliuretano urea modificado con un derivado de aceite de ricino con aplicaciones elastoméricasPolyurethane urea modified with a derivative of castor oil with elastomeric applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, “Polyurethane types, synthesis and applications – a review,” RSC Adv., vol. 6, no. 115, pp. 114453–114482, 2016, doi: 10.1039/C6RA14525FHarvard Growth Lab’s, “The Atlas of Economic Complexity,” 7.0, 2022. https://atlas.cid.harvard.edu/American Chemistry Council, “Polyurethane Applications,” 2022. https://www.americanchemistry.com/industry-groups/center-for-the-polyurethanes-industry-cpi/applications-benefits/polyurethane-applicationsJ. Mattia and P. Painter, “A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol),” Macromolecules, vol. 40, no. 5, pp. 1546–1554, 2007, doi: 10.1021/ma0626362.M. Lee, M. H. Heo, H. Lee, Y. Kim, and J. Shin, “Tunable Softening and Toughening of Individualized Cellulose Nanofibers-Polyurethane Urea Elastomer Composites,” Carbohydr. Polym., 2016, doi: 10.1016/j.carbpol.2016.12.019.H. K. Lee and S. W. Ko, “Structure and thermal properties of polyether polyurethaneurea elastomers,” J. Appl. Polym. Sci., vol. 50, no. 7, pp. 1269–1280, 1993, doi: 10.1002/app.1993.070500718.Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, “Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments,” Polymer (Guildf)., vol. 49, no. 19, pp. 4248–4258, 2008, doi: 10.1016/j.polymer.2008.07.027.T. A. P. Hai et al., “Renewable polyurethanes from sustainable biological precursors,” Biomacromolecules, vol. 22, no. 5, pp. 1770–1794, 2021, doi: 10.1021/acs.biomac.0c01610.S. Albeaik, M. Kaltenberg, M. Alsaleh, and C. A. Hidalgo, “Improving the Economic Complexity Index,” pp. 1–21, 2013.C. Isola et al., “Life cycle assessment of photodegradable polymeric material derived from renewable bioresources,” J. Clean. Prod., 2016, doi: 10.1016/j.jclepro.2016.10.177.ministerio de agricultura y desarrollo Rural, “Red de información y comunicación del sector agropecuario colombiano,” 2020. https://www.agronet.gov.co/Paginas/inicio.aspxH. Mutlu and M. A. R. Meier, “Castor oil as a renewable resource for the chemical industry,” Eur. J. Lipid Sci. Technol., vol. 112, no. 1, pp. 10–30, 2010, doi: 10.1002/ejlt.200900138.S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.M. Sánchez, R. Castañeda, and M. Castañeda S., “Usos y potencialidad de la Higuerilla (Ricinus communis) en sistemas agroforestales en Colombia,” Pubvet, vol. 10, no. 6, pp. 507–512, 2016, doi: 10.22256/pubvet.v10n6.507-512.P. Mazo, L. a. Rios, and D. Estenoz, “Síntesis y caracterización de espumas flexibles de poliuretano obtenidas a partir de aceite de castor maleinizado,” Polímeros, vol. 19, no. 2, pp. 149–154, 2009, doi: 10.1590/S0104-14282009000200013.S. A. Madbouly, Y. Xia, and M. R. Kessler, “Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions,” 2013.M. M. Conceição, R. A. Candeia, F. C. Silva, A. F. Bezerra, V. J. Fernandes, and A. G. Souza, “Thermoanalytical characterization of castor oil biodiesel,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 964–975, 2007, doi: 10.1016/j.rser.2005.10.001.A. M. G. Pilonieta, F. J. I, and L. J. C. Riaño, “Poliuretanos degradables a partir de aceite de higuerilla.,” Sci. Tech. Año XIII, vol. 1, no. 36, pp. 1–6, 2007, doi: 10.22517/23447214.4855.A. Bahadur et al., “Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: A sustained drug release study,” React. Funct. Polym., vol. 119, no. March, pp. 57–63, 2017, doi: 10.1016/j.reactfunctpolym.2017.08.001.J. Chen, R. Dong, J. Ge, B. Guo, and P. X. Ma, “Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28273–28285, 2015, doi: 10.1021/acsami.5b10829.R. A. Beck and R. W. Truss, “Effect of chemical structure on the wear behaviour of polyurethane-urea elastomers,” Wear, vol. 218, no. 2, pp. 145–152, 1998, doi: 10.1016/S0043-1648(98)00219-1.A. Reghunadhan and S. Thomas, Polyurethanes: Structure, Properties, Synthesis, Characterization, and Applications. Elsevier Inc., 2017. doi: 10.1016/B978-0-12-804039-3.00001-4.E. Delebecq, J. Pascault, and B. Boutevin, “On the Versatility of Urethane: Urea Bonds/Reversibility , Blocked Isocyanate and Non-isocyanate Polyurethane,” Chem. Rev., vol. 113, pp. 80–118, 2013.D. K. Chattopadhyay and D. C. Webster, “Thermal stability and flame retardancy of polyurethanes,” Prog. Polym. Sci., vol. 34, no. 10, pp. 1068–1133, 2009, doi: 10.1016/j.progpolymsci.2009.06.002.O. Bayer and G. Farbenindustrie, “Polyurethanes 16.1,” no. 1950, 1988.A. Brocas, C. Mantzaridis, D. Tunc, and S. Carlotti, “Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization,” Prog. Polym. Sci., 2012, doi: 10.1016/j.progpolymsci.2012.09.007.A. Domanska and A. Boczkowska, “Biodegradable polyurethanes from crystalline prepolymers,” Polym. Degrad. Stab., vol. 108, pp. 175–181, 2014, doi: 10.1016/j.polymdegradstab.2014.06.017.D. K. Chattopadhyay and K. V. S. N. Ã. Raju, “Structural engineering of polyurethane coatings for high performance applications,” vol. 32, pp. 352–418, 2007, doi: 10.1016/j.progpolymsci.2006.05.003.Y. Zhou, G. Yuan, and H. Saihua, “Novel CuCo 2 O 4 / graphitic Carbon Nitride Nanohybrids : Highly Effective Catalysts for Reducing CO Generation and Fire Hazards of Thermoplastic Polyurethane Nanocomposites,” Elsevier B.V., 2015, doi: 10.1016/j.jhazmat.2015.03.041.J. W. Britain and P. G. Gemeinhardt, “Catalysis of the isocyanate‐hydroxyl reaction,” J. Appl. Polym. Sci., vol. 4, no. 11, pp. 207–211, 1960, doi: 10.1002/app.1960.070041112.S. Oprea and Æ. O. Potolinca, “Synthesis of cross-linked polyurethane elastomers with fluorescein linkages,” pp. 4181–4187, 2009, doi: 10.1007/s10853-009-3625-2.J. T. Garrett, J. Runt, and J. S. Lin, “Microphase separation of segmented poly(urethane urea) block copolymers,” Macromolecules, vol. 33, no. 17, pp. 6353–6359, 2000, doi: 10.1021/ma000600i.P. A. Ourique et al., “Synthesis, properties, and applications of hybrid polyurethane–urea obtained from air-oxidized soybean oil,” Prog. Org. Coatings, vol. 108, no. April, pp. 15–24, 2017, doi: 10.1016/j.porgcoat.2017.04.002.Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym.Sci., vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.L. May-Hernández, F. Hernández-Sáncehz, J. L. Gomez Ribelles, and R. Sabater i Serra, “Segmented Poly(urethane-urea) Elastomers Based on Polycaprolactone: Structure and Properties,” J. ofAppliedPolymer Sci., vol. 119, p. 2093, Feb. 2011, doi: 10.1002/app.32929.A. J. Hsieh, J. A. Orlicki, and R. L. Beyer, “Molecular Design of Novel Poly ( urethane-urea ) Hybrids as Helmet Pads for Ballistic and Blast Trauma Mitigation,” ARL Tech Rep., no. March, 2009.R. Heath, “Chapter 28 - Isocyanate-Based Polymers: Polyurethanes, Polyureas, Polyisocyanurates, and their Copolymers,” M. B. T.-B. P. M. (Eighth E. Gilbert, Ed. Butterworth-Heinemann, 2017, pp. 799–835. doi: https://doi.org/10.1016/B978-0-323-35824-8.00028-1.J. C. Ronda, G. Lligadas, and M. Galia, “Review Article Vegetable oils as platform chemicals for polymer synthesis,” pp. 46–58, 2011, doi: 10.1002/ejlt.201000103.Y. Y. Li, X. Luo, and S. Hu, “Bio-based Polyols and Polyurethanes,” Bio-based Polyols and Polyurethanes, pp. 1–79, 2015, doi: 10.1007/978-3-319-21539-6.P. Taylor and Z. S. Petrovi, “Polyurethanes from Vegetable Oils Polyurethanes from Vegetable Oils,” no. December 2012, pp. 37–41, 2008, doi: 10.1080/15583720701834224.V. Ca, G. Lligadas, J. C. Ronda, and M. Galia, “Renewable polymeric materials from vegetable oils : a perspective,” vol. 16, no. 9, pp. 337–343, 2013, doi: 10.1016/j.mattod.2013.08.016.The chemistry of oils and fats, vol. 2325. 2005. doi: 10.1002/jsfa.2337.D. S. Ogunniyi, “Castor oil: A vital industrial raw material,” Bioresour. Technol., vol. 97, no. 9, pp. 1086–1091, 2006, doi: 10.1016/j.biortech.2005.03.028.D. E. Rodríguez Arias and J. S. Duque Nieto, “Plan de negocios para el cultivo de Higuerilla, estudio de caso municipio de Balboa (Risaralda),” UniversidadTecnológica de Pereira, 2010.M. A. Mdalel and L. S. Esparza Heredia, “Análisis de factibilidad para planta de extracción de aceite de ricino,” Universidad Católica de salta, 2016. [Online]. Available: http://bibliotecavirtualoducal.uc.cl:8081/xmlui/handle/123456789/1423882S. Tips, J. Ward, W. Collins, and V. Information, Kirk-Othmer Encyclopedia of Chemical Technology 4 th Edition, no. September. 2010.F. H. Smith and A. U. Ayres, “Vegetable oil refining by the modified soda ash process,” J. Am. Oil Chem. Soc., vol. 33, no. 3, pp. 93–95, 1956, doi: 10.1007/BF02632287.I. A. Sánchez Medina and K. Huertas Greco, “Obtención y caracterización de biodiesel a partir de aceite de semillas de ricinus communis. (higuerilla) modificadas géneticamente y cultivadas en el eje cafetero,” Universidad Tecnológica de Pereira, 2012.A. Yeboah et al., “Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties,” Food Sci. Technol., vol. 41, no. December, pp. 399–413, 2021, doi: 10.1590/fst.19620.Vertellus and O’Shea, “Castor oil and its chemistry,” 2000. [Online]. Available: www.groshea.comM. F. Valero, J. E. Pulido, Á. Ramírez, and Z. Cheng, “Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol,” Quim. Nova, vol. 31, no. 8, pp. 2076–2082, 2008, doi: 10.1590/S0100-40422008000800031.S. Miao, P. Wang, Z. Su, and S. Zhang, “Vegetable-oil-based polymers as future polymeric biomaterials,” Acta Biomater., vol. 10, no. 4, pp. 1692–1704, 2014, doi: 10.1016/j.actbio.2013.08.040.N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Fabrication and evaluation of acrylated epoxidized castor oil-toughened diglycidyl ether of bisphenol A nanocomposites,” Can. J. Chem. Eng., vol. 93, no. 12, pp. 2107–2116, 2015, doi: 10.1002/cjce.22320.M. F. Valero et al., “Poliuretanos elastomericos obtenidos a partir de aceitede ricino y almidon de yuca original y modificado con anhidrido propinico: Sinntesis, propiedades fisicoquímicas y fisicomecánicas,” Quim. Nova, vol. 33, no. 4, pp. 850–854, 2010, doi: 10.1590/S0100-40422010000400016.M. F. Valero and L. E. Díaz, “Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Sinntesis, propiedades mecanicas y termicas y degradación in vitro,” Quim. Nova, vol. 37, no. 9, pp. 1441–1445, 2014, doi: 10.5935/0100-4042.20140228.S. Pramanik, K. Sagar, B. K. Konwar, and N. Karak, “Synthesis, characterization and properties of a castor oil modified biodegradable poly(ester amide) resin,” Prog. Org. Coatings, vol. 75, no. 4, pp. 569–578, 2012, doi: 10.1016/j.porgcoat.2012.05.009.V. Cardona et al., “Obtención de monoglicéridos de aceite de ricino empleando glicerina refinada y cruda: estudio de las principales variables del proceso,” 2010.A. Franco, “Preparation flexible foam polyurethane from modifications palm oil and castor oil,” no. 36, pp. 607–612, 2007.S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “An insight on castor oil based polyuretahne and nanocomposites: resent trends and development,” Polym. Plast. Technol. Eng., vol. 56, no. January 2016, pp. 1–30, 2017.G. Castellar, E. Angulo, and B. Cardozo, “Transesterificación de aceites vegetales empleando catalizadores heterogéneos,” Prospect, vol. 12, no. 2, pp. 90–104, 2014, doi: 10.1007/s11746-016-2798-5.K. Ramezani, S. Rowshanzamir, and M. H. Eikani, “Castor oil transesteri fi cation reaction : A kinetic study and optimization of parameters,” Energy, vol. 35, no. 10, pp. 4142–4148, 2010, doi: 10.1016/j.energy.2010.06.034.M. Belén Navas, “Estudio de catalizadores heterogéneos en la transesterificación de triglicéridos para obtener biodiesel de segunda generación,” Universidad Nacional de La Plata, 2018.A. Eladeb, A. Aydi, and I. Alenezi, “Ethanolysis of Waste Cooking oils using KOH Catalyst,” Orient. J. Chem., vol. 37, no. 6, pp. 1344–1349, 2021, doi:10.13005/ojc/370611.S. Baroutian, M. K. Aroua, A. A. A. Raman, and N. M. N. Sulaiman, “Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil,” Fuel Process. Technol., vol. 91, no. 11, pp. 1378–1385, 2010, doi: 10.1016/j.fuproc.2010.05.009.C. Cabello, S. Rincon, and A. Zeped, “Types of heterogeneous catalysts used for biodiesel production,” Afinidad, vol. 74, no. 577, pp. 51–59, 2017.Z. Helwani, M. R. Othman, N. Aziz, J. Kim, and W. J. N. Fernando, “Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review,” Applied Catalysis A: General, vol. 363, no. 1–2. pp. 1–10, 2009. doi: 10.1016/j.apcata.2009.05.021.M. Becerra, A. Centeno, and S. A. Giraldo, “Búsqueda de catalizadores sólidos básicos para la producción de biodiesel,” Inf. Tecnol., vol. 21, no. 4, pp. 57–66, 2010, doi: 10.1612/inf.tecnol.4361it.09.M. Kouzu, T. Kasuno, M. Tajika, and Y. Sugimoto, “Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” vol. 87, pp. 2798–2806, 2008, doi: 10.1016/j.fuel.2007.10.019.Y. Meng et al., “Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating,” Polymers (Basel)., vol. 14, no. 9, 2022, doi: 10.3390/polym14091880.P. Saha, C. Khomlaem, H. Aloui, and B. S. Kim, “Biodegradable polyurethanes based on castor oil and poly (3-hydroxybutyrate),” Polymers (Basel)., vol. 13, no. 9, 2021, doi: 10.3390/polym13091387.J. Pulido et al., “Síntesis y caracterización de elastómeros de poliuretano a partir de poliol-suspensiones de aceite de higuerilla y almidón de yuca Synthesis and characterization of polyurethane elastomers from polyol-suspensions of castor oil and yucca starch,” Rev. Fac. Ing. Univ. Antioquia Colomb., vol. 39, no. Marzo, pp. 100–111, 2007.S. Oprea, “Synthesis and properties of polyurethane elastomers with castor oil as crosslinker,” JAOCS, J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 313–320, 2010, doi: 10.1007/s11746-009-1501-5.J. Chen, D. Hu, Y. Li, F. Meng, J. Zhu, and J. Zeng, “Castor oil derived poly ( urethane urea ) networks with reprocessibility and enhanced mechanical properties,” Polymer (Guildf)., vol. 143, pp. 79–86, 2018, doi: 10.1016/j.polymer.2018.04.013.T. Guan et al., “Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors,” Macromolecules, vol. 55, no. 13, pp. 5816–5825, Jul. 2022, doi: 10.1021/acs.macromol.2c00492.N. Bhosale, A. Shaik, and S. K. Mandal, “Synthesis and characterization of castor oil based hybrid polymers and their polyurethane-urea/silica coatings,” RSC Adv., vol. 5, no. 125, pp. 103625–103635, 2015, doi: 10.1039/c5ra20356b.T. A. da Silva, L. P. Ramos, S. F. Zawadzki, and R. V. Barbosa, “Application of Taguchi design to produce polyols based on castor oil derivatives with diethylene glycol,” Mediterr. J. Chem., vol. 4, no. 2, pp. 93–99, 2015, doi: 10.13171/mjc.4.2.2015.11.04.15.35/barbosa.J. Yamanis and M. Adelman, “Transesterification of dmt with ethylene glycol catalyzed by amberlyst 15,” Can. J. Chem. Eng., vol. 53, no. 5, pp. 536–540, 1975, doi: 10.1002/cjce.5450530513.G. Mendow, N. S. Veizaga, and C. A. Querini, “Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst,” Bioresour. Technol., vol. 102, no. 11, pp. 6385–6391, 2011, doi: 10.1016/j.biortech.2011.01.072.P. Mazo and L. Galeano, “Esterificación de los ácidos grasos libres (FFA) del aceite crudo de palma. Calentamiento convencional vs microondas,” Sci. Tech., vol. XIII, no. 35, pp. 461–465, 2007, [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/5481I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “Biodiesel separation and purification: A review,” Renew. Energy, vol. 36, no. 2, pp. 437–443, 2011, doi: 10.1016/j.renene.2010.07.019.A. Cambiella, J. M. Benito, C. Pazos, and J. Coca, “Centrifugal separation efficiency in the treatment of waste emulsified oils,” Chem. Eng. Res. Des., vol. 84, no. 1 A, pp. 69–76, 2006, doi: 10.1205/cherd.05130.J. Fang, S. H. Ye, V. Shankarraman, Y. Huang, X. Mo, and W. R. Wagner, “Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine,” Acta Biomater., vol. 10, no. 11, pp. 4639–4649, 2014, doi: 10.1016/j.actbio.2014.08.008.H. Shirasaka, S. I. Inoue, K. Asai, and H. Okamoto, “Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment,” Macromolecules, vol. 33, no. 7, pp. 2776–2778, 2000, doi: 10.1021/ma9917904.S. Guoliang, D. Youjia, X. U. Tiejun, F. U. Chengbi, and C. Yuannan, “Study on synthesis technology of ethylene glycol potassium,” Ind. Catal., vol. 19, no. 12, pp. 71–73, 2011, doi: 10.3969/j.issn.1008-1143.2011.12.015.M. Di Serio, R. Tesser, A. Dimiccoli, and E. Santacesaria, “Kinetics of ethoxylation and propoxylation of ethylene glycol catalyzed by KOH,” Ind. Eng. Chem. Res., vol. 41, no. 21, pp. 5196–5206, 2002, doi: 10.1021/ie020082v.Charles M. Hansen, Hansen Solubility Parameters A User’s Handbook, 2nd ed. Boca Raton, 2007. doi: https://doi.org/10.1201/9781420006834.S. Zhang, C. Campagne, and F. Salaün, “Influence of solvent selection in the electrospraying process of polycaprolactone,” Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030402.R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, and I. Smirnova, “On the road to biopolymer aerogels—dealing with the solvent,” Gels, vol. 1, no. 2, pp. 291–313, 2015, doi: 10.3390/gels1020291.J. Bus, F. Groeneweg, and F. Voorst Vader, “Effect of hydrogen bonding on water in oil emulsion properties,” in Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk, vol. 130, 2008, pp. 122–130. doi: 10.1007/bfb0118250.J. Ma, Y. Yang, X. Li, H. Sui, and L. He, “Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing,” Fuel, vol. 297, no. January, p. 120763, 2021, doi: 10.1016/j.fuel.2021.120763.A. U. Hahn and K. L. Mittal, “Mechanism of demulsification of oil-in-water emulsion in the centrifuge,” Colloid Polym. Sci. Kolloid-Zeitschrift Zeitschrift für Polym., vol. 257, no. 9, pp. 959–967, 1979, doi: 10.1007/BF01520721.R. N. Mukherjea, K. K. Saha, and S. K. Sanyal, “Plasticizing Effect of Acetylated Castor Oil on Castor Oil- Based , Moisture-Cured Polyurethane Film,” J. Am. Oil Chem. Soc., vol. 29, no. 9, pp. 653–656, 1978.R. P. Wool, “4 - POLYMERS AND COMPOSITE RESINS FROM PLANT OILS,” R. P. Wool and X. S. B. T.-B.-B. P. and C. Sun, Eds. Burlington: Academic Press, 2005, pp. 56–113. doi: https://doi.org/10.1016/B978-012763952-9/50005-8.S. N. Naik, D. K. Saxena, B. R. Dole, and S. K. Khare, “Chapter 21 - Potential and Perspective of Castor Biorefinery,” T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, and S. K. B. T.-W. B. Khanal, Eds. Elsevier, 2018, pp. 623–656. doi: https://doi.org/10.1016/B978-0-444-63992-9.00021-5.I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016, doi: 10.1016/j.ejpe.2015.06.007.H. Li, S. Niu, and C. Lu, “Pyrolysis Characteristics of Castor Oil through Thermogravimetric Coupled with Fourier Transform Infrared Spectroscopy,” in Procedia Engineering, 2017, vol. 205, pp. 3705–3710. doi: 10.1016/j.proeng.2017.10.292.G. Dwivedi and M. P. Sharma, “Experimental investigation on thermal stability of Pongamia Biodiesel by thermogravimetric analysis,” Egypt. J. Pet., vol. 25, no. 1, pp. 33–38, 2016, doi: 10.1016/j.ejpe.2015.06.008.H. Li, S. Niu, C. Lu, and Y. Wang, “Comprehensive Investigation of the Thermal Degradation Characteristics of Biodiesel and Its Feedstock Oil through TGA-FTIR,” Energy and Fuels, vol. 29, no. 8, pp. 5145–5153, 2015, doi: 10.1021/acs.energyfuels.5b01054.I. S. Ristić et al., “Thermal stability of polyurethane materials based on castor oil as polyol component,” J. Therm. Anal. Calorim., vol. 111, no. 2, pp. 1083–1091, 2013, doi: 10.1007/s10973-012-2497-x.P. Chand, C. V. Reddy, J. G. Verkade, and T. Wang, “Novel Characterization Method of Biodiesel Produced from Soybean Oil using Thermogravimetric Analysis David Grewell (corresponding author) Written for presentation at the,” Asabe, vol. 0300, no. 08, pp. 1–5, 2008.S. V. Araújo, B. S. Rocha, F. M. T. Luna, E. M. Rola, D. C. S. Azevedo, and C. L. Cavalcante, “FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods,” Fuel Process. Technol., vol. 92, no. 5, pp. 1152–1155, 2011, doi: 10.1016/j.fuproc.2010.12.026.F. N. Habib, S. S. Kordestani, F. Afshar-Taromi, and Z. Shariatinia, “A novel topical tissue adhesive composed of urethane prepolymer modified with chitosan,” Int. J. Polym. Anal. Charact., vol. 16, no. 8, pp. 609–618, 2011, doi: 10.1080/1023666X.2011.622483.S. Ibrahim, A. Ahmad, and N. S. Mohamed, “Characterization of novel castor oil-based polyurethane polymer electrolytes,” Polymers (Basel)., vol. 7, no. 4, pp. 747–759, 2015, doi: 10.3390/polym7040747.T. Panhwar et al., “Physicochemical composition and FTIR characterization of castor seed oil,” Ukr. Food J., vol. 8, no. 4, pp. 778–787, 2019, doi: 10.24263/2304-974X-2019-8-4-9.A. Yusuf, P. Mamza, A. Ahmed, and U. Agunwa, “EXTRACTION AND CHARACTERIZATION OF CASTOR SEED OIL FROM WILD RICINUS COMMUNIS LINN,” Int. J. Sci. Environ. Technol., vol. 4, pp. 1392–1404, Oct. 2015.T. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization,” Prog. Org. Coatings, vol. 80, no. 1, pp. 39–48, 2015, doi: 10.1016/j.porgcoat.2014.11.017.S. Sahoo, H. Kalita, S. Mohanty, and S. K. Nayak, “Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior,” Int. J. Chem. Kinet., vol. 48, no. 10, pp. 622–634, 2016, doi: 10.1002/kin.21020.I. A. Mohammed, E. A. J. Al-Mulla, N. K. A. Kadar, and M. Ibrahim, “Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols,” J. Oleo Sci., vol. 62, no. 12, pp. 1059–1072, 2013, doi: 10.5650/jos.62.1059.K. M. Zia, A. Ahmad, S. Anjum, M. Zuber, and M. N. Anjum, “Synthesis and characterization of siloxane-based polyurethane elastomers using hexamethylene diisocyanate,” J. Elastomers Plast., vol. 47, no. 7, pp. 625–635, 2015, doi: 10.1177/0095244314526746.S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: Synthesis and characterization,” Mater. Express, vol. 5, no. 5, pp. 377–389, 2015, doi: 10.1166/mex.2015.1254.Huntsman Corporation, “Technical Data Sheet RUBINATE® 1790 MDI.” 2010.A. Farkas, G. A. Mills, W. E. Erner, and J. B. Maerker, “Triethylenediamine—A New Bicyclic Intermediate and Catalyst for Making Polyurethane Foam,” Ind. Eng. Chem., vol. 51, no. 10, pp. 1299–1300, Oct. 1959, doi: 10.1021/ie50598a039.A. Farkas, R. L. Mascioli, F. Miller, and P. F. Strohm, “Derivatives of 1,4-diazabicyclo[2.2.2]octane (triethylenediamine),” J. Chem. Eng. Data, vol. 13, no. 2, pp. 278–284, Apr. 1968, doi: 10.1021/je60037a046.C. Wang, C. Ma, C. Mu, and W. Lin, “Tailor-made zwitterionic polyurethane coatings: Microstructure, mechanical property and their antimicrobial performance,” RSC Adv., vol. 7, no. 44, pp. 27522–27529, 2017, doi:10.1039/c7ra04379a.R. C. R. Nunes, R. A. Pereira, J. L. C. Fonseca, and M. R. Pereira, “X-ray studies on compositions of polyurethane and silica,” Polym. Test., vol. 20, no. 6, pp. 707–712, 2001, doi: 10.1016/S0142-9418(01)00007-1.H. Ishihara, I. Kimura, and N. Yoshihara, “Studies on Segmented Polyurethane-Urea Elastomers: Structure of Segmented Polyurethane-Urea Based on Poly(tetramethylene glycol), 4,4′-Diphenylmethane Diisocyanate, and 4,4′-Diaminodiphenylmethane,” J. Macromol. Sci. Part B, vol. 22, no. 5–6, pp. 713–733, 1983, doi: 10.1080/00222348308245751.S. Sang, Y. Li, K. Wang, and J. Tang, “Application of blocked isocyanate in preparation of polyurethane(urea) elastomers,” J. Appl. Polym. Sci., vol. 138, no. 24, 2021, doi: 10.1002/app.50582.M. Shoaib et al., “Relationship of hard segment concentration in polyurethane-urea elastomers with mechanical, thermal and drug release properties,” J. Drug Deliv. Sci. Technol., vol. 37, no. 1, pp. 88–96, 2017, doi: 10.1016/j.jddst.2016.12.003.D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, “Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea,” J. Polym. Sci. Part B Polym. Phys., vol. 44, no. 1, pp. 102–118, 2006, doi: 10.1002/polb.20586.X. Dai et al., “Study on structure and orientation action of polyurethane nanocomposites,” Macromolecules, vol. 37, no. 15, pp. 5615–5623, 2004, doi: 10.1021/ma049900g.M. Sadeghi, M. A. Semsarzadeh, M. Barikani, and B. Ghalei, “The effect of urethane and urea content on the gas permeation properties of poly(urethane-urea) membranes,” J. Memb. Sci., vol. 354, no. 1–2, pp. 40–47, 2010, doi: 10.1016/j.memsci.2010.02.070.L. C. Raghunanan, I. Martínez, C. Valencia, M. C. Sánchez, and J. M. Franco, “Unexpected Selectivity in the Functionalization of Neat Castor Oil under Benign Catalyst-Free Conditions,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7212–7215, 2018, doi: 10.1021/acssuschemeng.8b00979.J. Sheth, “Investigation of the Influence of Selected Variables on the Solid State Structure-Property Behavior of Segmented Copolymers,” 2005.A. Marcos-Fernández, A. E. Lozano, L. González, and A. Rodríguez, “Hydrogen bonding in copoly(ether-urea)s and its relationship with the physical properties,” Macromolecules, vol. 30, no. 12, pp. 3584–3592, 1997, doi: 10.1021/ma9619039.P. Cinelli, I. Anguillesi, and A. Lazzeri, “Green synthesis of flexible polyurethane foams from liquefied lignin,” Eur. Polym. J., vol. 49, no. 6, pp. 1174–1184, 2013, doi: 10.1016/j.eurpolymj.2013.04.005.S. J. Peng, Y. Jin, X. F. Cheng, T. B. Sun, R. Qi, and B. Z. Fan, “A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution,” Prog. Org. Coatings, vol. 86, no. 1, pp. 1–10, 2015, doi: 10.1016/j.porgcoat.2015.03.013.D. P. Queiroz, M. N. De Pinho, and C. Dias, “ATR-FTIR studies of poly(propylene oxide)/polybutadiene bi-soft segment urethane/urea membranes,” Macromolecules, vol. 36, no. 11, pp. 4195–4200, 2003, doi: 10.1021/ma034032t.A. Cuellar, “Influencia de la separación de fases en poliuretanos-urea sobre la distribucion de cargas estructurales de escala nanometrica,” Universidad Nacional de Colombia, 2013.M. Abdelrehim, H. Komber, J. Langenwalter, B. Voit, and B. Bruchmann, “Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA* and B2B* monomers,” John Wiley & Sons, Ltd, 2004. doi: https://doi.org/10.1002/pola.20154.A. S. More, T. Lebarbé, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, “Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes,” Eur. Polym. J., vol. 49, no. 4, pp. 823–833, 2013, doi: 10.1016/j.eurpolymj.2012.12.013.Q. W. Lu, T. R. Hoye, and C. W. Macosko, “Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends,” J. Polym. Sci. Part A Polym. Chem., vol. 40, no. 14, pp. 2310–2328, 2002, doi: 10.1002/pola.10310.A. Kyritsis, K. Raftopoulos, M. A. Rehim, S. S. Shabaan, A. Ghoneim, and G. Turky, “Structure and molecular dynamics of hyperbranched polymeric systems with urethane and urea linkages,” Polymer (Guildf)., vol. 50, no. 16, pp. 4039–4047, 2009, doi: 10.1016/j.polymer.2009.06.037.C. N. Beecher and C. K. Larive, “1H and 15N NMR Characterization of the Amine Groups of Heparan Sulfate Related Glucosamine Monosaccharides in Aqueous Solution,” Anal. Chem., vol. 87, no. 13, pp. 6842–6848, Jul. 2015, doi: 10.1021/acs.analchem.5b01181.A. Frick and A. Rochman, “Characterization of TPU-elastomers by thermal analysis (DSC),” Polym. Test., vol. 23, no. 4, pp. 413–417, 2004, doi: 10.1016/j.polymertesting.2003.09.013.L. M. Leung and J. T. Koberstein, “DSC Annealing Study of Microphase Separation and Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers,” Macromolecules, vol. 19, no. 3, pp. 706–713, 1986, doi: 10.1021/ma00157a038.J. L. Hong, C. P. Lillya, and J. C. W. Chien, “Degree of phase separation in polyether-polyurethane copolymers with different chemical structures of hard segments,” Polymer (Guildf)., vol. 33, no. 20, pp. 4347–4351, 1992, doi: 10.1016/0032-3861(92)90278-5.J. T. Haponiuk, A. Balas, and T. Kawka, “Application of the DSC analysis of thermoplastic polyurethane elastomers to a comparative study of their technological properties,” J. Therm. Anal., vol. 36, no. 6, pp. 2249–2252, 1990, doi: 10.1007/BF01914162.S. G. Musselman, T. M. Santosusso, J. D. Barnes, and L. H. Sperling, “Domain structure and interphase dimensions in poly(urethaneurea) elastomers using DSC and SAXS,” J. Polym. Sci. Part B Polym. Phys., vol. 37, no. 18, pp. 2586–2600, 1999, doi: 10.1002/(SICI)1099-0488(19990915)37:18<2586::AID-POLB4>3.0.CO;2-A.C. Hepburn, Polyurethane elastomers, Segunda. Nueva York: Elsevier Ltd., 2012.Y. H. Que et al., “The crystallisation, microphase separation and mechanical properties of the mixture of ether-based tpu with different ester-based tpus,” Polymers (Basel)., vol. 13, no. 20, 2021, doi: 10.3390/polym13203475.P. K. Saxena et al., “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” Macromolecules, vol. 10, no. 2, pp. 149–154, 2014, doi: 10.1002/app.A. Stribeck, B. Eling, E. Pöselt, M. Malfois, and E. Schander, “Melting, Solidification, and Crystallization of a Thermoplastic Polyurethane as a Function of Hard Segment Content,” Macromol. Chem. Phys., vol. 220, no. 11, pp. 1–10, 2019, doi: 10.1002/macp.201900074.Y. L. Uscátegui et al., “Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications,” Molecules, vol. 24, no. 2, pp. 237–267, 2019, doi: 10.3390/molecules24020237.Y. C. Chen and W. Tai, “Castor oil-based polyurethane resin for low-density composites with bamboo charcoal,” Polymers (Basel)., vol. 10, no. 10, 2018, doi: 10.3390/polym10101100.I. Navarro-Baena et al., “Thermal Degradation Effects on Polyurethanes and Their Nanocomposites,” React. Mech. Therm. Anal. Adv. Mater., pp. 165–189, 2015, doi: 10.1002/9781119117711.ch7.Y. Zhang, Z. Xia, H. Huang, and H. Chen, “Thermal degradation of polyurethane based on IPDI,” J. Anal. Appl. Pyrolysis, vol. 84, no. 1, pp. 89–94, 2009, doi: 10.1016/j.jaap.2008.11.008.F. Gaboriaud and J. P. Vantelon, “Mechanism of Thermal Degradation of Polyurethane Based on Mdi and Propoxylated Trimethylol Propane.,” J. Polym. Sci. A1., vol. 20, no. 8, pp. 2063–2071, 1982, doi: 10.1002/pol.1982.170200809.L. Jiao, H. Xiao, Q. Wang, and J. Sun, “Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR- MS,” Polym. Degrad. Stab., vol. 98, no. 12, pp. 2687–2696, 2013, doi: 10.1016/j.polymdegradstab.2013.09.032.M. F. Valero, J. E. Pulido, Á. Ramírez, D. C. Camargo, and D. Navas, “Caracterización físico-mecánica, térmica y morfológica de polímeros de redes interpenetradas con base en poliuretano obtenido a partir de aceite de ricino y almidón modificados/polimetilmetacrilato (PMMA),” Polímeros, vol. 21, no. 4, pp. 293–298, 2011, doi: 10.1590/S0104-14282011005000050.H. Sui, X. Ju, X. Liu, K. Cheng, Y. Luo, and F. Zhong, “Primary thermal degradation effects on the polyurethane film,” Polym. Degrad. Stab., vol. 101, no. 1, pp. 109–113, 2014, doi: 10.1016/j.polymdegradstab.2013.11.021.A. D. Macalino, V. A. Salen, and L. Q. Reyes, “Castor Oil Based Polyurethanes: Synthesis and Characterization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 229, no. 1, 2017, doi: 10.1088/1757-899X/229/1/012016.M. Berta, C. Lindsay, G. Pans, and G. Camino, “Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites,” Polym. Degrad. Stab., vol. 91, no. 5, pp. 1179–1191, 2006, doi: 10.1016/j.polymdegradstab.2005.05.027.C. S. P. Sung and N. S. Schneider, “Infrared Studies of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes,” Macromolecules, vol. 8, no. 1, pp. 68–73, 1975, doi: 10.1021/ma60043a015.O. Smith and S. Cristol, Organic Chemistry, Primera. Nueva York: Reinhold Publishing Corporation, 1970.F. Yeh, B. S. Hsiao, B. B. Sauer, S. Michel, and H. W. Siesler, “In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer,” Macromolecules, vol. 36, no. 6, pp. 1940–1954, 2003, doi: 10.1021/ma0214456.K. Madhavan and B. S. R. Reddy, “Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 9, pp. 2980–2989, May 2006, doi: https://doi.org/10.1002/pola.21401.R. Rohim, R. Ahmad, N. Ibrahim, N. Hamidin, and C. Z. Azner Abidin, “Characterization of calcium oxide catalyst from eggshell waste,” Adv. Environ. Biol., vol. 8, no. 22, pp. 35–38, 2014.A. Anantapinitwatna et al., “Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel,” Fuel, vol. 296, no. March, p. 120653, 2021, doi: 10.1016/j.fuel.2021.120653.L. Ning, W. De-Ning, and Y. Sheng-Kang, “Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers,” Polymer (Guildf)., vol. 37, no. 16, pp. 3577–3583, 1996, doi: 10.1016/0032-3861(96)00166-8.J. Puiggalí and L. Franco, “Estudio de la cristalización y de la transición de Brill en el Nylon 5,6,” 1998.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85386/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053842440.2023.pdf1053842440.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf2383934https://repositorio.unal.edu.co/bitstream/unal/85386/2/1053842440.2023.pdff9ed7906199bfed066620973b53d9f1dMD52THUMBNAIL1053842440.2023.pdf.jpg1053842440.2023.pdf.jpgGenerated Thumbnailimage/jpeg5129https://repositorio.unal.edu.co/bitstream/unal/85386/3/1053842440.2023.pdf.jpge913af47825c47a4f4a811cac5eb4d4cMD53unal/85386oai:repositorio.unal.edu.co:unal/853862024-01-22 23:03:35.367Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=