Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO)
Ilustraciones
- Autores:
-
Rojo Ceballos, Clara Rosa
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83017
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::621 - Física aplicada
Varistores
Conductividad eléctrica
Descargadores de sobretensión
ANOVA
Varistor
Tiempo de frente
Voltaje residual
Corriente de descarga
Surge arresters
Head-on time
Residual voltage
Discharge current
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_99fd9fdd5da8bbaddac44729d050d107 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83017 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
dc.title.translated.eng.fl_str_mv |
Study of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO). |
title |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
spellingShingle |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::621 - Física aplicada Varistores Conductividad eléctrica Descargadores de sobretensión ANOVA Varistor Tiempo de frente Voltaje residual Corriente de descarga Surge arresters Head-on time Residual voltage Discharge current |
title_short |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
title_full |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
title_fullStr |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
title_full_unstemmed |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
title_sort |
Caracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) |
dc.creator.fl_str_mv |
Rojo Ceballos, Clara Rosa |
dc.contributor.advisor.none.fl_str_mv |
Chejne Janna, Farid Pérez González, Ernesto |
dc.contributor.author.none.fl_str_mv |
Rojo Ceballos, Clara Rosa |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::621 - Física aplicada |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::621 - Física aplicada Varistores Conductividad eléctrica Descargadores de sobretensión ANOVA Varistor Tiempo de frente Voltaje residual Corriente de descarga Surge arresters Head-on time Residual voltage Discharge current |
dc.subject.lemb.none.fl_str_mv |
Varistores Conductividad eléctrica |
dc.subject.proposal.spa.fl_str_mv |
Descargadores de sobretensión ANOVA Varistor Tiempo de frente Voltaje residual Corriente de descarga |
dc.subject.proposal.eng.fl_str_mv |
Surge arresters Head-on time Residual voltage Discharge current |
description |
Ilustraciones |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01-17 |
dc.date.accessioned.none.fl_str_mv |
2023-01-18T20:20:51Z |
dc.date.available.none.fl_str_mv |
2023-01-18T20:20:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83017 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83017 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
E. Kazuo, “Zinc Oxide Varistors,” IEEE Electr. Insul. Mag., vol. 5, no. 6, pp. 28–30, 1989. D. B. Pawelek et al., “Design of compact transmission line transformer for high voltage nanosecond pulses,” Conf. Rec. Int. Power Modul. Symp. High Volt. Work., pp. 522–525, 2006. H. Zhou, Advanced Topics in Science and Technology in China Ultra-high Voltage AC / DC Power Transmission. V. Vita, A. D. Mitropoulou, L. Ekonomou, S. Panetsos, and I. A. Stathopulos, “Comparison of metal-oxide surge arresters circuit models and implementation on high-voltage transmission lines of the Hellenic network,” IET Gener. Transm. Distrib., vol. 4, no. 7, p. 846, 2010. G. R. S. Lira, L. A. M. M. Nobrega, L. V Gomes, and E. G. Costa, “Performance Evaluation of Mosa Models Against Lightning Discharges,” pp. 154–159, 2011. G. D. Peppas, I. A. Naxakis, C. T. Vitsas, and E. C. Pyrgioti, “Surge arresters models for fast transients,” 2012 31st Int. Conf. Light. Prot. ICLP 2012, no. 2, 2012. M. Karbalaye Zadeh, H. Abniki, and A. A. Shayegani Akmal, “The modeling of metal-oxide surge arrester applied to improve surge protection,” PEITS 2009 - 2009 2nd Conf. Power Electron. Intell. Transp. Syst., vol. 1, pp. 238–243, 2009. M. C. Magro, M. Giannettoni, and P. Pinceti, “Validation of ZnO surge arresters model for overvoltage studies,” IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1692–1695, 2004. M. Matsuoka, “Related content Nonohmic Properties of Zinc Oxide Ceramics,” Jpn. J. Appl. Phys., vol. 10, no. 6, 1971. M. Reza, “Metal Oxide ZnO-Based Varistor Ceramics,” Intech open, vol. 2, p. 64, 2018. J. He, Metal oxide varistors_ from microstructure to macro-characteristics. Chennai, India: Wiley-VCH, 2019. M. R. Meshkatoddini, “Metal Oxide ZnO-Based Varistor Ceramics,” Adv. Ceram. - Electr. Magn. Ceram. Bioceram. Ceram. Environ., pp. 329–356, 2011. S. C. Pillai, J. M. Kelly, R. Ramesh, and D. E. McCormack, “Advances in the synthesis of ZnO nanomaterials for varistor devices,” J. Mater. Chem. C, vol. 1, no. 20, pp. 3268–3281, 2013. G. E. Pike and C. H. Seager, “The dc voltage dependence of semiconductor grain-boundary resistance,” J. Appl. Phys., vol. 50, no. 5, pp. 3414–3422, 1979. V. S. Brito, G. R. S. Lira, E. G. Costa, and M. J. A. Maia, “A Wide-Range Model for Metal-Oxide Surge Arrester,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 102–109, 2018. F. Fernández and R. Díaz, “Metal-oxide surge arrester model for fast transient simulations,” pp. 0–4, 2001. X. Lin, J. Wang, and J. Xu, “High frequency model of metal-oxide surge arrester for researching on VFTO,” 2011 1st Int. Conf. Electr. Power Equip. - Switch. Technol. ICEPE2011 - Proc., no. 201102169, pp. 577–581, 2011. K. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” vol. 3, pp. 147–153, 2018. D. Povh et al., “Modeling and analysis guidelines for very fast transients,” IEEE Power Eng. Rev., vol. 16, no. 10, p. 71, 1996. J. R. A.Hileman, “Metal oxide surge arrester in ac systems -part v: proteccion performance of metal oxide surge arrester,” Electra, vol. 133, pp. 132–143, 1990. S. Tominaga, K. Azumi, T. Nagai, M. Imataki, and H. Kuwahara, “Reliability and Application of Metal Oxide Surge Arresters for Power Systems,” IEEE Trans. Power Appar. Syst., vol. PAS-98, no. 3, pp. 805–816, 2007. EMTP Newsletter, “The Choice of EMTP Surge Arrester Models,” in EMTP Newsletter, 1987. R. A. Jones et al., “Modeling of Metal Oxide Surge Arresters,” IEEE Trans. Power Deliv., vol. 7, no. 1, pp. 302–309, 1992. M. Giannettoni and P. Pinceti, “A simplified model for zinc oxide surge arresters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 393–398, 1999. I. Kim, T. Funabashi, H. Sasaki, T. Hagiwara, and M. Kobayashi, “Study of ZnO arrester model for steep front wave,” IEEE Trans. Power Deliv., vol. 11, no. 2, pp. 834–839, 1996. R. Kannadasan, P. Valsalal, and R. Jayavel, “Performance improvement of metal-oxide arrester for VFTs,” IET Sci. Meas. Technol., vol. 11, no. 4, pp. 438–444, 2017. K. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” High Volt., vol. 3, no. 2, pp. 147–153, 2018. K. Aodsup and T. Kulworawanichpong, “Numerical modeling and very-fast transient simulation of MOV surge arresters,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 1000–1003, 2012. Donald. A. Neamen, Semiconductor physics and devices, vol. 9, no. 5. 2006. R. B. Adler, A. C. Smith, and R. L. Longini, Introduccion a la fisica de los semiconductores, 1st ed. Barcelona: Editorial Reverté S.A., 1981. J. Woodworth, “Understanding Arrester Voltage-Current Characteristic Curves,” no. March, pp. 1–6, 2017. Q. He, Z. Hao, and J. Guo, “Research of VFTO in 110kV minimized GIS,” Proc. 5th IEEE Int. Conf. Electr. Util. Deregulation, Restruct. Power Technol. DRPT 2015, pp. 1786–1789, 2016. W. Yiru, C. Guang, and Z. Hao, “Study on VFTO in UHV GIS substation,” DRPT 2011 - 2011 4th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., pp. 1756–1759, 2011. L. Zhao, L. Ye, S. Wang, Y. Yang, P. Jiang, and X. Zou, “Research on Very Fast Transient Overvoltage during Switching of Disconnector in 550kV GIS,” 2018 IEEE 3rd Int. Conf. Integr. Circuits Microsystems, ICICM 2018, pp. 114–118, 2018. M. Stosur, M. Szewczyk, W. Piasecki, M. Florkowski, and M. Fulczyk, “GIS disconnector switching operation VFTO study,” Proc. - Int. Symp. Mod. Electr. Power Syst. MEPS’10, pp. 1–5, 2010. S. Rahmani and A. A. Razi-Kazemi, “Investigation of very fast transient over voltages in gas insulated substations,” Conf. Proc. 2015 2nd Int. Conf. Knowledge-Based Eng. Innov. KBEI 2015, pp. 428–435, 2016. IEC, “International standar IEC 71-1,” in Part 1: Definitions, principles and rules, 2006. J. Wada, G. Ueta, and S. Okabe, “Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - Breakdown characteristics in the presence of bias voltages under non-uniform electric field,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 112–121, 2013. Y. Li, Y. Shang, L. Zhang, R. Shi, and W. Shi, “Analysis of very fast transient overvoltages (VFTO) from onsite measurements on 800 kV GIS,” IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 6, pp. 2102–2110, 2012. J. Lin, J. Zhang, and J. Yang, “HIGH-VOLTAGE PULSE GENERATOR BASED ON MAGNETIC PULSE COMPRESSION AND TRANSMISSION LINE TRANSFORMER,” pp. 3–6, 2013. R. A. Almenweer, S. Yixin, and W. Xixiu, “Research on the fitting method to describe the mathematical expression of VFTO in GIS,” J. Eng., vol. 2019, no. 16, pp. 2053–2057, 2019. D. Montgomery, Diseño y análisis de experimentos. 2004. O. Tumova, L. Kupka, and P. Netolicky, “Design of Experiments approach and its application in the evaluation of experiments,” 2018 Int. Conf. Diagnostics Electr. Eng. Diagnostika 2018, pp. 1–4, 2018. E. Ag, “SIOV metal oxide varistors Calculation examples,” Energy, no. December 2007, 2008. M. Fors, “Análisis de varianza,” Rev. Chil. Anest., vol. 43, no. 4, pp. 306–310, 2014. J. y J. Bakieva, M., González Such, “Las medias poblacionales son iguales,” 2015. M. A. Abd-Allah, A. Said, and E. A. Badran, “New techniques for disconnector switching VFT mitigation in GIS,” Int. J. Electr. Comput. Eng., vol. 4, no. 2, pp. 179–192, 2014. K. Usha and M. Z. Ameena, “Suppression of VFTO and VFTC in GIS using Ferrite Rings,” vol. 4, no. 8, pp. 853–864, 2011 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 127 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83017/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83017/2/32498499.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/83017/3/32498499.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5d5bb5ce0d78083fa64e87f4f340539e b4fbc4e66fff12f143a4f82c264ec08c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090169503973376 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Janna, Farid401f8232cbbed073cf4612ce7bc3b54b600Pérez González, Ernesto9e6927ede4a872bcf9337317b10efe9a600Rojo Ceballos, Clara Rosaaf7c43a01efe1f4291be1d520fc455966002023-01-18T20:20:51Z2023-01-18T20:20:51Z2021-01-17https://repositorio.unal.edu.co/handle/unal/83017Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesCaracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO) Este trabajo presenta la caracterización de un tipo de varistores de ZnO ante sobretensiones transitorias con tiempo de frente muy rápido (VFTO. Very Fast Transient Overvoltages), mediante un desarrollo teórico-experimental. Tradicionalmente, los varistores son analizados para transitorios un poco más lentos, del orden de los cientos de kHz, asociados principalmente a descargas eléctricas atmosféricas. Sin embargo, existen fenómenos de muy alta frecuencia, principalmente en estaciones encapsuladas o dispositivos aislados en gases, que podrían presentar transitorios muy rápidos, y este tipo de protección no está ampliamente estudiada frente a estos fenómenos. En la primera etapa, se realiza el estado del arte que comprende el estudio de los diferentes modelos de los descargadores de sobretensión ante sobretensiones con tiempos de frente muy rápido. Estos son el punto de partida para la caracterización de dichos dispositivos ante los pulsos de tensión VFTOs. Además, se presenta un análisis teórico sobre la estructura interna del varistor de ZnO, permitiendo establecer los efectos no lineales causados por los aditivos que contiene este material, del mismo modo, se estudian los mecanismos de conducción eléctrica que explican el porqué de la desviación de la ley de Ohm en estos dispositivos. Mas adelante, se planea y se lleva a cabo un diseño experimental con un solo factor, para un total de 5 unidades experimentales, a las cuales se le realizaron 20 réplicas. Este diseño experimental permitió seleccionar un solo varistor en representación de la población muestral, mediante el Análisis de Varianza (ANOVA. Analysis Of Variance). En la última parte, se presenta la forma de onda obtenida por el generador de pulsos de tensión diseñado, la cual se caracterizó por su nivel de voltaje, frecuencia y tiempo de frente (Rise Time); finalmente, se presentan las pruebas de laboratorio al varistor seleccionado, cuya respuesta en el voltaje residual y corriente de descarga permitió establecer el dominante efecto capacitivo en el comportamiento de varistor ante pulsos de tensión VFTOs. (Texto tomado de la fuente)Study of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO). This work performs the characterization of a type of ZnO varistor, used in low voltage aginst very fast transient overvoltages with front time (VFTO), using a means theoretical-experimental development. Traditionally, varistors are analyzed for transients slower, that is about hundreds of kHz, mainly associated with atmospheric electrical discharges. However, there are very high- frequency phenomena, essentially in encapsulated stations or devices insulated-gas, which could present very fast transients, and this type of protection, has not been widely studied in the face of these phenomena. In the first stage, the state of the art is carried out, which includes the study of the different models of surge arresters in the event of surges with fast front times. These are the starting point for the characterization of these devices in the face of voltage pulses. VFTOs. Furthermore, a theoretical analysis of the internal structure of the ZnO varistor is presented, establishing the non-linear effects caused by the additives contained in this material, as well as the electrical conduction mechanisms that explain the reason for the deviation of Ohm's law in these devices. Then an experimental design with a single factor is planned and carried out, for five experimental units, to which 20 replications were made. This experimental design allowed the selection of a single varistor in the sample population representation, using the Analysis of Variance (ANOVA). In the last part, the waveform obtained by the designed voltage pulse generator is presented, which was characterized by parameters such as voltage level, frequency, and rise time. Finally, the laboratory tests at the selected varistor are presented. Thus, the response in the residual voltage and discharge current allowed to establish the dominant capacitive effect in the behavior of the varistor before voltage pulses VFTOsDoctoradoDoctor en IngenieríaEnergíaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxvii, 127 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería620 - Ingeniería y operaciones afines::621 - Física aplicadaVaristoresConductividad eléctricaDescargadores de sobretensiónANOVAVaristorTiempo de frenteVoltaje residualCorriente de descargaSurge arrestersHead-on timeResidual voltageDischarge currentCaracterización de varistores de ZnO ante sobretensiones transitorias con tiempo de frentes muy rápidos (VFTO)Study of the behavior of low voltage ZnO varistors against very fast transient overvoltages (VFTO).Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaE. Kazuo, “Zinc Oxide Varistors,” IEEE Electr. Insul. Mag., vol. 5, no. 6, pp. 28–30, 1989.D. B. Pawelek et al., “Design of compact transmission line transformer for high voltage nanosecond pulses,” Conf. Rec. Int. Power Modul. Symp. High Volt. Work., pp. 522–525, 2006.H. Zhou, Advanced Topics in Science and Technology in China Ultra-high Voltage AC / DC Power Transmission.V. Vita, A. D. Mitropoulou, L. Ekonomou, S. Panetsos, and I. A. Stathopulos, “Comparison of metal-oxide surge arresters circuit models and implementation on high-voltage transmission lines of the Hellenic network,” IET Gener. Transm. Distrib., vol. 4, no. 7, p. 846, 2010.G. R. S. Lira, L. A. M. M. Nobrega, L. V Gomes, and E. G. Costa, “Performance Evaluation of Mosa Models Against Lightning Discharges,” pp. 154–159, 2011.G. D. Peppas, I. A. Naxakis, C. T. Vitsas, and E. C. Pyrgioti, “Surge arresters models for fast transients,” 2012 31st Int. Conf. Light. Prot. ICLP 2012, no. 2, 2012.M. Karbalaye Zadeh, H. Abniki, and A. A. Shayegani Akmal, “The modeling of metal-oxide surge arrester applied to improve surge protection,” PEITS 2009 - 2009 2nd Conf. Power Electron. Intell. Transp. Syst., vol. 1, pp. 238–243, 2009.M. C. Magro, M. Giannettoni, and P. Pinceti, “Validation of ZnO surge arresters model for overvoltage studies,” IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1692–1695, 2004.M. Matsuoka, “Related content Nonohmic Properties of Zinc Oxide Ceramics,” Jpn. J. Appl. Phys., vol. 10, no. 6, 1971.M. Reza, “Metal Oxide ZnO-Based Varistor Ceramics,” Intech open, vol. 2, p. 64, 2018.J. He, Metal oxide varistors_ from microstructure to macro-characteristics. Chennai, India: Wiley-VCH, 2019.M. R. Meshkatoddini, “Metal Oxide ZnO-Based Varistor Ceramics,” Adv. Ceram. - Electr. Magn. Ceram. Bioceram. Ceram. Environ., pp. 329–356, 2011.S. C. Pillai, J. M. Kelly, R. Ramesh, and D. E. McCormack, “Advances in the synthesis of ZnO nanomaterials for varistor devices,” J. Mater. Chem. C, vol. 1, no. 20, pp. 3268–3281, 2013.G. E. Pike and C. H. Seager, “The dc voltage dependence of semiconductor grain-boundary resistance,” J. Appl. Phys., vol. 50, no. 5, pp. 3414–3422, 1979.V. S. Brito, G. R. S. Lira, E. G. Costa, and M. J. A. Maia, “A Wide-Range Model for Metal-Oxide Surge Arrester,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 102–109, 2018.F. Fernández and R. Díaz, “Metal-oxide surge arrester model for fast transient simulations,” pp. 0–4, 2001.X. Lin, J. Wang, and J. Xu, “High frequency model of metal-oxide surge arrester for researching on VFTO,” 2011 1st Int. Conf. Electr. Power Equip. - Switch. Technol. ICEPE2011 - Proc., no. 201102169, pp. 577–581, 2011.K. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” vol. 3, pp. 147–153, 2018.D. Povh et al., “Modeling and analysis guidelines for very fast transients,” IEEE Power Eng. Rev., vol. 16, no. 10, p. 71, 1996.J. R. A.Hileman, “Metal oxide surge arrester in ac systems -part v: proteccion performance of metal oxide surge arrester,” Electra, vol. 133, pp. 132–143, 1990.S. Tominaga, K. Azumi, T. Nagai, M. Imataki, and H. Kuwahara, “Reliability and Application of Metal Oxide Surge Arresters for Power Systems,” IEEE Trans. Power Appar. Syst., vol. PAS-98, no. 3, pp. 805–816, 2007.EMTP Newsletter, “The Choice of EMTP Surge Arrester Models,” in EMTP Newsletter, 1987.R. A. Jones et al., “Modeling of Metal Oxide Surge Arresters,” IEEE Trans. Power Deliv., vol. 7, no. 1, pp. 302–309, 1992.M. Giannettoni and P. Pinceti, “A simplified model for zinc oxide surge arresters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 393–398, 1999.I. Kim, T. Funabashi, H. Sasaki, T. Hagiwara, and M. Kobayashi, “Study of ZnO arrester model for steep front wave,” IEEE Trans. Power Deliv., vol. 11, no. 2, pp. 834–839, 1996.R. Kannadasan, P. Valsalal, and R. Jayavel, “Performance improvement of metal-oxide arrester for VFTs,” IET Sci. Meas. Technol., vol. 11, no. 4, pp. 438–444, 2017.K. Raju and V. Prasad, “Modelling and validation of metal oxide surge arrester for very fast transients,” High Volt., vol. 3, no. 2, pp. 147–153, 2018.K. Aodsup and T. Kulworawanichpong, “Numerical modeling and very-fast transient simulation of MOV surge arresters,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 1000–1003, 2012.Donald. A. Neamen, Semiconductor physics and devices, vol. 9, no. 5. 2006.R. B. Adler, A. C. Smith, and R. L. Longini, Introduccion a la fisica de los semiconductores, 1st ed. Barcelona: Editorial Reverté S.A., 1981.J. Woodworth, “Understanding Arrester Voltage-Current Characteristic Curves,” no. March, pp. 1–6, 2017.Q. He, Z. Hao, and J. Guo, “Research of VFTO in 110kV minimized GIS,” Proc. 5th IEEE Int. Conf. Electr. Util. Deregulation, Restruct. Power Technol. DRPT 2015, pp. 1786–1789, 2016.W. Yiru, C. Guang, and Z. Hao, “Study on VFTO in UHV GIS substation,” DRPT 2011 - 2011 4th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., pp. 1756–1759, 2011.L. Zhao, L. Ye, S. Wang, Y. Yang, P. Jiang, and X. Zou, “Research on Very Fast Transient Overvoltage during Switching of Disconnector in 550kV GIS,” 2018 IEEE 3rd Int. Conf. Integr. Circuits Microsystems, ICICM 2018, pp. 114–118, 2018.M. Stosur, M. Szewczyk, W. Piasecki, M. Florkowski, and M. Fulczyk, “GIS disconnector switching operation VFTO study,” Proc. - Int. Symp. Mod. Electr. Power Syst. MEPS’10, pp. 1–5, 2010.S. Rahmani and A. A. Razi-Kazemi, “Investigation of very fast transient over voltages in gas insulated substations,” Conf. Proc. 2015 2nd Int. Conf. Knowledge-Based Eng. Innov. KBEI 2015, pp. 428–435, 2016.IEC, “International standar IEC 71-1,” in Part 1: Definitions, principles and rules, 2006.J. Wada, G. Ueta, and S. Okabe, “Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - Breakdown characteristics in the presence of bias voltages under non-uniform electric field,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 112–121, 2013.Y. Li, Y. Shang, L. Zhang, R. Shi, and W. Shi, “Analysis of very fast transient overvoltages (VFTO) from onsite measurements on 800 kV GIS,” IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 6, pp. 2102–2110, 2012.J. Lin, J. Zhang, and J. Yang, “HIGH-VOLTAGE PULSE GENERATOR BASED ON MAGNETIC PULSE COMPRESSION AND TRANSMISSION LINE TRANSFORMER,” pp. 3–6, 2013.R. A. Almenweer, S. Yixin, and W. Xixiu, “Research on the fitting method to describe the mathematical expression of VFTO in GIS,” J. Eng., vol. 2019, no. 16, pp. 2053–2057, 2019.D. Montgomery, Diseño y análisis de experimentos. 2004.O. Tumova, L. Kupka, and P. Netolicky, “Design of Experiments approach and its application in the evaluation of experiments,” 2018 Int. Conf. Diagnostics Electr. Eng. Diagnostika 2018, pp. 1–4, 2018.E. Ag, “SIOV metal oxide varistors Calculation examples,” Energy, no. December 2007, 2008.M. Fors, “Análisis de varianza,” Rev. Chil. Anest., vol. 43, no. 4, pp. 306–310, 2014.J. y J. Bakieva, M., González Such, “Las medias poblacionales son iguales,” 2015.M. A. Abd-Allah, A. Said, and E. A. Badran, “New techniques for disconnector switching VFT mitigation in GIS,” Int. J. Electr. Comput. Eng., vol. 4, no. 2, pp. 179–192, 2014.K. Usha and M. Z. Ameena, “Suppression of VFTO and VFTC in GIS using Ferrite Rings,” vol. 4, no. 8, pp. 853–864, 2011EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83017/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL32498499.2021.pdf32498499.2021.pdfTesis Doctorado en Ingeniería - Sistemas e Informáticaapplication/pdf4875920https://repositorio.unal.edu.co/bitstream/unal/83017/2/32498499.2021.pdf5d5bb5ce0d78083fa64e87f4f340539eMD52THUMBNAIL32498499.2021.pdf.jpg32498499.2021.pdf.jpgGenerated Thumbnailimage/jpeg5312https://repositorio.unal.edu.co/bitstream/unal/83017/3/32498499.2021.pdf.jpgb4fbc4e66fff12f143a4f82c264ec08cMD53unal/83017oai:repositorio.unal.edu.co:unal/830172023-08-13 23:04:46.973Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |