Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas
ilustraciones, tablas
- Autores:
-
Castro Moreno, Germán Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79731
- Palabra clave:
- 660 - Ingeniería química
Composición de los alimentos
Hidratos de carbono
Galactooligosacáridos
Proceso intensificado
Sistema acuoso de dos fases
Proceso asistido por microondas
Galactooligosaccharides
Intensified process
Aqueous two-phase system
Microwave-assisted process
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_99e64a30a40ce3190b3b4c98f5e247ab |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79731 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
dc.title.translated.eng.fl_str_mv |
Development of a process production-separation of galactooligosaccharides by a two-phase aqueous system microwave assisted |
title |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
spellingShingle |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas 660 - Ingeniería química Composición de los alimentos Hidratos de carbono Galactooligosacáridos Proceso intensificado Sistema acuoso de dos fases Proceso asistido por microondas Galactooligosaccharides Intensified process Aqueous two-phase system Microwave-assisted process |
title_short |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
title_full |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
title_fullStr |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
title_full_unstemmed |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
title_sort |
Desarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondas |
dc.creator.fl_str_mv |
Castro Moreno, Germán Andrés |
dc.contributor.advisor.none.fl_str_mv |
Serrato Bermúdez, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Castro Moreno, Germán Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Procesos Químicos y Bioquímicos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química |
topic |
660 - Ingeniería química Composición de los alimentos Hidratos de carbono Galactooligosacáridos Proceso intensificado Sistema acuoso de dos fases Proceso asistido por microondas Galactooligosaccharides Intensified process Aqueous two-phase system Microwave-assisted process |
dc.subject.lemb.none.fl_str_mv |
Composición de los alimentos Hidratos de carbono |
dc.subject.proposal.spa.fl_str_mv |
Galactooligosacáridos Proceso intensificado Sistema acuoso de dos fases Proceso asistido por microondas |
dc.subject.proposal.eng.fl_str_mv |
Galactooligosaccharides Intensified process Aqueous two-phase system Microwave-assisted process |
description |
ilustraciones, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-25T21:41:59Z |
dc.date.available.none.fl_str_mv |
2021-06-25T21:41:59Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79731 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79731 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adam, D. (2003). Out of the kitchen. Nature, 421(6923), 571–572. Aeberhardt, K., De Saint Laumer, J. Y., Bouquerand, P. E., & Normand, V. (2005). Ultrasonic wave spectroscopy study of sugar oligomers and polysaccharides in aqueous solutions: The hydration length concept. International Journal of Biological Macromolecules, 36(5), 275–282. Ahmad, A. L., Derek, C. J. C., & Zulkali, M. M. D. (2008). Optimization of thaumatin extraction by aqueous two-phase system () using response surface methodology (RSM). Separation and Purification Technology, 62(3), 702–708. Akpinar, O., Penner, M.H., (2008). Preparation of cellooligosaccharides: comparative study. Journal of Food, Agriculture and Environment 6, 55–61. Albayrak, N., & Yang, S.-T. (2002). Production of galacto-oligosaccharides from lactose byAspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 77(1), 8–19. Albertsson P., Johansson G., Tjerneld F. (1990) in: Asenjo J. (Ed.), Separation Process in Biotechnology, Marcel Dekker, New York, pp. 287–327. Albertsson, P.A. (1971) Partition of Cell Particles and Macromolecules, 2nd Ed.; Almqvist and Wiksell: Stockholm Andrews, B. , Schmidt, A. and Asenjo, J. (2005), Correlation for the partition behavior of proteins in aqueous two‐phase systems: Effect of surface hydrophobicity and charge. Biotechnol. Bioeng., 90: 380-390. Andrews, B. A., & Asenjo, J. A. (2010). Theoretical and experimental evaluation of hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase systems: A review. Separation Science and Technology, 45(15), 2165–2170. Asenjo, J. A., & Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: A perspective. Journal of Chromatography A, 1218(49), 8826–8835. Avella, N.; Solano C.; Castro G. (2011).Comparación de la producción de galactooligosacáridos (gos) a partir de lactosuero en polvo y lactosa usando Aspergillus oryzae y enzima β-galactosidasa libre, (2011). Tesis de pregrado, Ingeniería de Alimentos, Universidad de la Salle, Bogotá, Colombia. Azevedo, A. M., Gomes, A. G., Rosa, P. A. J., Ferreira, I. F., Pisco, A. M. M. O., & Aires-Barros, M. R. (2009). Partitioning of human antibodies in polyethylene glycol-sodium citrate aqueous two-phase systems. Separation and Purification Technology, 65(1), 14–21. Banik, R. M., Santhiagu, A., Kanari, B., Sabarinath, C., & Upadhyay, S. N. (2003). Technological aspects of extractive fermentation using aqueous two-phase systems, (Albertsson 1971), 337–348. Baskir, J.N., Hatton, T.A., and Suter, U.W. (1989) Protein partition- ing in two-phase aqueous polymer systems. Biotech. Bioeng. 34: 541–558. Benavides J, Rito-Palomares M (2008) Practical Experiences from the Development of Aqueous Two-Phase Processes for the Recovery of High Value Biological Products. J Chem Technol Biot 83: 133-142. Benavides, J. & Rito-Palomares, M., (2008). Aplicación genérica de sistemas de dos fases acuosas Polietilénglicol – sal para el desarrollo de procesos de recuperación primaria de compuestos biológicos. Revista Mexicana de Ingeniería Química Vol. 7, No. 2, 99-111. Benavides, J., & Rito-Palomares, M. (2004). Bioprocess intensification: A potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 807(1), 33–38. Benavides, J., Rito-Palomares, M., & Asenjo, J. A. (2011). Aqueous Two-Phase Systems. Comprehensive Biotechnology, 697 - 713. Boon, M. a., Janssen, a. E. M., & Van ’t Riet, K. (2000). Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme and Microbial Technology, 26(2–4), 271–281. Botelho-cunha, V. A., & Pinho, M. N. De. (2010). Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochemical engineering journal, 50, 29–36. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacterias in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664. Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. Brás, N. F., Moura-Tamames, S. A., Fernandes, P. A., & Ramos, M. J. (2008). Mechanistic studies on the formation of glycosidase-substrate and glycosidase- inhibitor covalent intermediates. Journal of Computational Chemistry, 29(15), 2565–2574. Bruins, M. E., Van Hellemond, E. W., Janssen, A. E. M., & Boom, R. M. (2003). Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase. Biotechnology and Bioengineering, 81(5), 546–552. Buttersack, C. (2017). Hydrophobicity of carbohydrates and related hydroxy compounds. Carbohydrate Research, 446–447, 101–112. Carvalho, C. P., Coimbra, J. S. R., Costa, I. A. F., Minim, L. A., Cristina, M., & Silva, L. H. M. (2008). INFLUENCE OF THE TEMPERATURE AND TYPE OF SALT ON THE PHASE EQUILIBRIUM OF PEG 1500 + Artigo, 31(2), 209–213. Carvalho, J. De, Renann, P., França, L. De, & Souza, T. (2018). Optimized extraction of polygalacturonase from Aspergillus aculeatus URM4953 by aqueous two-phase systems PEG / Citrate. Journal of Molecular Liquids, 263, 81–88. Charalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23(2), 187–191. Chavez-Santoscoy, A., Benavides, J., Vermaas, W., & Rito-Palomares, M. (2010). Application of Aqueous two-phase systems for the potential extractive Fermentation of Cyanobacterial products. Chemical Engineering and Technology, 33(1), 177–182. Chen, C. W., & Yeh, C. (2003). Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles, 33, 497–507. Chen, J., Cheng, W.,(1991). Lactose Hydrolysis by β-Galactosidase in Aqueous Two-Phase Systems. Journal of Fermentation & Bioengineering 71(3), 168–175. Chen, S. X., Wei, D. Z., & Hu, Z. H. (2001). Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. Journal of Molecular Catalysis - B Enzymatic, 16(2), 109–114. Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., & Zhang, H. (2008). Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91(5), 1751–1758. Cheng C, Yu M, Cheng T, Sheu D, Duan K, Tai W (2006). Production of High-content Galacto-oligosaccharide by Enzyme Catalysis and Fermentation with Kluyveromyces marxianus. Biotechnology Letters. 28(11): 793-797. Chethana, S., Nayak, C. a., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification and concentration of betalains. Journal of Food Engineering, 81(4), 679–687. Chilamkurthi, S, Willemsen, J-H, Wielen, LAM van der, Poiesz, E & Ottens, M (2012). High-throughput determination of adsorption equilibria for chromatographic oligosaccharide separations. Journal of Chromatography A, 1239, 22-34. Corral JM, Banuelos O, Adrio JL, Velasco J (2005) Cloning and characterization of a beta-galactosidase encoding region in Lactobacillus coryniformis. Appl Microbiol Biotechnol 73:640–646. Cruz, R., Cruz, V. D., Belote, J. G., Khenayfes, M. de O., Dorta, C., & Oliveira, L. H. dos S. (1999). Properties of a new fungal b-galactosidase with potential application in the dairy industry. Revista de Microbiologia, 30(3), 265–271. Cruz-Guerrero, A. E., Gómez-Ruiz, L., Viniegra-González, G., Bárzana, E., & García- Garibay, M. (2006). Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic beta-glycosidase in an organic medium. Biotechnology and Bioengineering, 93(6), 1123–1129. Czermak P., Ebrahimi M., Grau K., Netz S., Sawatzki G.and Pfromm P.H., (2004). Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process, J. Membr. Sci., 232, 85–91. Da Silva, C. A. S., Coimbra, J. S. R., Rojas, E. E. G., & Teixeira, J. A. C. (2009). Partitioning of glycomacropeptide in aqueous two-phase systems. Process Biochemistry, 44(11), 1213–1216. Dang, Y.-Y., Zhang, H., & Xiu, Z.-L. (2013). Microwave-assisted aqueous two-phase extraction of phenolics from grape ( Vitis vinifera ) seed. Journal of Chemical Technology & Biotechnology, (August). Davis, L. M. G., (2010). "The Bifidogenicity of the Prebiotic Galactooligosaccharides" (2010). Dissertations & Theses in Food Science and Technology.Paper 9. De Araújo, R. F. F., Porto, T. S., Martins, D. B. G., Dutra, R. F., Porto, A. L. F., & Filho, J. L. de L. (2011). Partitioning of lactate dehydrogenase from bovine heart crude extract by polyethylene glycol-citrate aqueous two-phase systems. Fluid Phase Equilibria, 301(1), 46–50. De Brito Cardoso, G., Mourão, T., Pereira, F. M., Freire, M. G., Fricks, A. T., Soares, C. M. F., & Lima, Á. S. (2013). Aqueous two-phase systems based on acetonitrile and carbohydrates and their application to the extraction of vanillin. Separation and Purification Technology, 104, 106–113. De la Hoz A., Díaz-Ortiz A., Moreno A., 2005. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev., 34(2):164-78. De Oliveira, R. M., Dos Reis Coimbra, J. S., Minim, L. A., Da Silva, L. H. M., & Fontes, M. P. F. (2008). Liquid-liquid equilibria of biphasic systems composed of sodium citrate + polyethylene(glycol) 1500 or 4000 at different temperatures. Journal of Chemical and Engineering Data, 53(4), 895–899. Del Val M., Otero C. (2003). Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose. Enzyme Microb Technol 33(1):118–26. Dhoot, S. B., Dalal, J. M., & Gaikar, V. G. (2007). Purification of glucose oxidase and β-galactosidase by partitioning in a PEG-salt aqueous two-phase system in the presence of PEG-derivatives. Separation Science and Technology, 42(8), 1859–1881. Domingues, L., Lima, N., & Teixeira, J. A. (2005). Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3–4), 1151–1154. Doran, P. (1995). Principios de Ingeniería de los bioprocesos. Editorial Acribia S.A, Zaragoza, España. (Traducido 1998) Ebrahimi M., Placido L., Engel L., Shams Ashaghi K., Czermak P, (2010). A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 250. 1105–1108. Ebrahimi, M., Gonzalez, R., & Czermak, P. (2006). Experimental and theoretical study of Galactosyl – Oligosaccharides formation in CRMR by thermostable mesophilic enzymes, 200(September), 686–688. Engel L., Ebrahimi M., Czermak P. (2008). Membrane chromatography reactor system for the continuous synthesis of galactosyl-oligosaccharides. Desalination 224 46–51. Engel, L., Schneider, P., Ebrahimi, M., & Czermak, P. (2007). Immobilization of β-Galactosidase in Adsorptive Membranes for the Continuous Production of Galacto-Oligosaccharides from Lactose. The open food science journal, 1, 17–23. Francesconi, C. F. De M., Machado, M. B., Steinwurz, F., Nones, R. B., Quilici, F. A., Catapani, W. R., … Bafutto, M. (2016). Oral Administration of Exogenous Lactase in Tablets for Patients Diagnosed With Lactose Intolerance Due To Primary Hypolactasia. Arquivos de Gastroenterologia, 53(4), 228–234. Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7), 685–694. Garai, D., & Kumar, V. (2013). Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system: Optimization by Box-Behnken design approach. Biocatalysis and Agricultural Biotechnology, 2(2), 125–131. Gargova, S., Pishtijski, I., & Stoilova, I. (2017). Purification and Properties of β -Galactosidase from Aspergillus Oryzae β-galactosidase from Aspergillus oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51 Gaur, R., Pant, H., Jain, R., & Khare, S. K. (2006). Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry, 97(3), 426–430. Gelo-Pujic, M., Guibe´ -Jampel, E., Loupy, A., Galema S., Mathe´, D., 1996. J. Chem. Soc. Perkin Trans.,1, 2777–2780. Gloster, T. M., Roberts, S., Ducros, V. M. A., Perugino, G., Rossi, M., Hoos, R., Davies, G. J. (2004). Structural studies of the β-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovalently bound inhibitors. Biochemistry, 43(20), 6101–6109. Glyk, A., Solle, D., Scheper, T., & Beutel, S. (2015). Optimization of PEG-salt aqueous two-phase systems by design of experiments. Chemometrics and Intelligent Laboratory Systems, 149, 12–21. Gonzalez R., Ebrahimi M., Czermak P. (2009). Experimental and Modeling Study of Galactosyl-Oligosaccharides Formation in Continuous Recycle Membrane Reactors (CRMR). The Open Food Science Journal, (2009) 3, 1-9 1. Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318. Goulas A., Tzortzis G, Gibson G. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. International Dairy Journal 17 648–656. Grandison, A. S., Goulas, A. K., & Rastall, R. A. (2002). The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures, Songklanakarin J. Sci. Technol., 24(Suppl.) : 915-928. Grilo, A. L., Aires-Barros, M. R., & Azevedo, A. M. (2016). Partitioning in Aqueous Two-Phase Systems: Fundamentals, Applications and Trends. Separation and Purification Reviews, 45(1), 68–80. Guerrero, C., Vera, C., Conejeros, R., & Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70. Guío, F (2015). Evaluación de la producción de galactooligosacáridos a partir de materias primas lácteas con β-galactosidasa inmovilizada, Tesis de Maestría en Ingeniería Química. Universidad Nacional de Colombia. Hatti-Kaul, R. - editor (2000). Aqueous Two-Phase Systems, methods and prototcols – Methods in Biotechnology, 11. Humana Press, New Jersey. Hatzinikolaou, D. G., Katsifas, E., Mamma, D., Karagouni, A. D., Christakopoulos, P., & Kekos, D. (2005). Modeling of the simultaneous hydrolysis-ultrafiltration of whey permeate by a thermostable beta-galactosidase from Aspergillus niger. Biochemical Engineering Journal, 24(2), 161–172. Held, P. (2007). Kinetic Analysis of β -Galactosidase Activity using the PowerWave TM HT and Gen5 TM Data Analysis Software. Hemavathi, A. B., & Raghavarao, K. S. M. S. (2011). Differential partitioning of β-galactosidase and β-glucosidase using aqueous two phase extraction. Process Biochemistry, 46(3), 649–655. Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009). Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J 19(9):531. Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., et al.(2002). Trimeric crystal structure of the glycoside hydrolase family 42 beta- galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. Journal of Molecular Biology, 322(1), 79–91. Hong Yang, A. M. G. (2013). Aqueous Two-Phase Extraction Advances for Bioseparation. Journal of Bioprocessing & Biotechniques, 4(1), 1–8. Horikoshi, S., Nakamura, K., Yashiro, M., Kadomatsu, K., & Serpone, N. (2019). Probing the effect(s) of the microwaves’ electromagnetic fields in enzymatic reactions. Scientific Reports, 9(1), 1–11. Hsu, C. A., Lee, S. L., & Chou, C. C. (2007). Enzymatic production of galactooligosaccharides by beta-galactosidase from bifidobacterium longum BCRC 15708. Journal of Agricultural and Food Chemistry, 55(6), 2225–2230. Hsu, C. A., Yu, R. C., & Chou, C. C. (2006). Purification and characterization of a sodium-stimulated beta-galactosidase from Bifidobacterium longum CCRC 15708. World Journal of Microbiology and Biotechnology, 22(4), 355–361. Huang NP, Voros J, Paul SM, Textor M, Spencer ND. (2002). Biotin-derivatized poly (L-lysine)-g-poly (ethylene glycol): A novel polymeric interface for bioaffinity sensing. Langmuir 18: 220–230. Huber RE, Kurz G, Wallenfels K (1976) A quantitation of the factors which affect the hydrolase and trangalactosylase activities of b- galactosidase (E. coli) on lactose. Biochemistry 15:1994–2001. Huebner, J., Wehling, R.L., Hutkins, R.W., (2007). Functional activity of commercial prebiotics. International Dairy Journal 17, 770–775. Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252. Husain, Q. (2010). β Galactosidases and their potential applications : a review, 30(August 2009), 41–62. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., … Yuan, Z. (2016). Aqueous two-phase system (): an overview and advances in its applications. Biological Procedures Online, 18(1), 1–18. Isabel, M., Hill, C. G., & Qu, I. De. (2001). Selective enzymatic synthesis of 6 -galactosyl lactose by Pectinex Ultra SP in water, (pH 5), 1921–1924. Ivetic, D., Sciban, M., Vasic, V., Kukic, D., Prodanovic, J.,Antov, M., (2013). Evaluation of possibility of textile dye removal from wastewater by aqueous two-phase extraction. Desalination and water treatment, 51(7-9), 1603-1608. Iwasaki, K., Nakajima, M., Nakao, S. (1996). Galacto-oligosaccharide Production from lactose by an Enzymic Batch Reaction Using β-Galactosidase. Process Biochem.; 31 (1): 69 – 76. Ji, E.-S., Park, N.-H., & Oh, D.-K. (2005). Galacto-oligosaccharide production by a thermostable recombinant beta-galactosidase from Thermotoga maritima. World Journal of Microbiology and Biotechnology, 21(5), 759–764. Johansson, H., & Karlstrom, G. (1997). Temperature-induced phase partitioning of peptides in water solutions of ethylene oxide and propylene oxide random copolymers, 315–325. Juers, D. H., Heightman, T. D., Vasella, A., McCarter, J. D., Mackenzie, L., Withers, S. G., et al.(2001). A structural view of the action of Escherichia coli (lacZ) beta- galactosidase. Biochemistry, 40(49), 14781–14794. Kamerke, C., Pattky, M., Huhn, C., & Elling, L. (2012). Synthesis of UDP-activated oligosaccharides with commercial β-galactosidase from Bacillus circulans under microwave irradiation. Journal of Molecular Catalysis B: Enzymatic, 79, 27–34. Kappe, C. O., & Dallinger, D. (2009). Controlled microwave heating in modern organic synthesis: Highlights from the 2004-2008 literature. Molecular Diversity, 13(2), 71–193. Kaul, R. & Mattiasson, B. (1986). Extractive bioconversion in aqueous two-phase systems. Production of prednisolone from hydrocortisone using Arthrobacter simplex as catalyst Appl Microbiol Biotechnol. 24: 259. Kazemi S, Khayati G, Faezi-Ghasemi M (2016) b-Galactosidase pro- duction by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: optimization by orthogonal arrays design. Iran Biomed J 20:287–294 Kim, S. H., Lim, K. P., & Kim, H. S. (1997). Differences in the Hydrolysis of Lactose and Other Substrates by β-D-Galactosidase from Kluyveromyces lactis. Journal of Dairy Science, 80(10), 2264–2269. Kim, Y. S., Park, C. S., & Oh, D. K. (2006). Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 39(4), 903–908. Kirk, P. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354-358. Klotz, B. (2014). Suero lácteo, clave en la innovación de alimentos. Revista Portafolio. Agosto 3. Cosultado en: https://www.portafolio.co/economia/finanzas/suero-lacteo-clave-innovacion-alimentos-61526, consultado el 10 de Agosto de 2019.. Kokkiligadda, A., & Beniwal, A. (2016). Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Applied Biochemistry and Biotechnology, Vol. 179, No. 8, 1469–1484. Kushwah, P. (2013). Effect of Microwave Radiation on Growth, Enzyme Activity (Amylase and Pectinase), and/or Exopolysaccharide Production in Bacillus subtilis, Streptococcus mutans, Xanthomonas campestris and Pectobacterium carotovora. British Microbiology Research Journal, 3(4), 645–653. La Cara F, D’Auria S, Scarfì MR, Zeni O, Massa R, d’Ambrosio G, Franceschetti G, De Rosa M, Rossi M. (1999a). Microwave exposure effect on a Thermophilic Alcohol Dehydrogenase. Protein and Peptide Letters, 6 (3), 155-162. La Cara, F., Scarffi, M. R., DAuria, S., Massa, R., dAmbrosio, G., Franceschetti, G., Rossi, M. and De Rosa, M. (1999), Different effects of microwave energy and conventional heat on the activity of a thermophilic ß-galactosidase from Bacillus acidocaldarius. Bioelectromagnetics, 20: 172–176. Lamsal, B. P. (2012). Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. Journal of the science of food and agriculture, 92(10), 2020–8. Levicky R, Horgan A. 2005. Physicochemical perspectives on DNA microarray and biosensor technologies. Trends Biotechnol 23: 143–149. Lewis, M. (n.d.). GRAS Notice 000510, 2014: Acid lactase from Aspergillus oryzae expressed in Aspergillus niger., http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm. Li, X., Lian, Z., Dong, B., Xu, Y., Yong, Q., & Yu, S. (2011). Extractive bioconversion of xylan for production of xylobiose and xylotriose using a PEG6000/sodium citrate aqueous two-phase system. Korean Journal of Chemical Engineering, 28(9), 1897–1901. Mahoney, R. R. (1998). Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chemistry, 63(2), 147–154. Marcos, J., Fonseca, P., Ramalho, M.,Cabral, J. (2002) “Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems,” Enzyme and Microbial Technology, 31, 7, 1006–1014. Martirosyan, D. M., & Singh, J. (2015). A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209–223. Matella NJ, Dolan KD, Lee YS. 2006. Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. J Food Sci 71(7):C363–8. Mattiasson, B. (1988). Bioconversions in aqueous two phase systems: an alternative to conventional immobilization. Methods in Enzymology, Academic Press inc. Vol 137, 657–667. Maugard, T., Gaunt, D., Legoy, M. , Besson, T. (2003). Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized β-galactosidase from Kluyveromyces lactis. Biotech. Let., 25(8), 623–9. Mello, P., Barin, J., Guarnieri, R., 2014. Microwave-Assisted Sample Preparation for Trace Element Analysis, Chapter 2 - Microwave Heating, Editor: Érico Marlon de Moraes Flores, Elsevier. Montañés F, Fornari T, Stateva RP, Olano A, nez EI (2009). Solubility of carbohydrates in supercritical carbon dioxide with (ethanol + water) cosolvent. J Supercrit Fluids 49(1):16. Montañés FM, Olano A, Reglero G, nez EI, Fornari T (2009a). Supercritical technology as an alternative to fractionate prebiotic galactooligosaccharides. Sep Purif Technol 66(2):383. Moravčík, J., Gramblička, M.,Wi, L., Vaňková, K., & Polakovič, M. (2012). Influence of the ionic form of a cation-exchange adsorbent on chromatographic separation of galactooligosaccharides. Chemical Papers, 66, 583–588. Murugesan, T., & Perumalsamy, M. (2005). Liquid-liquid equilibria of poly(ethylene glycol) 2000 + sodium citrate + water at (25, 30, 35, 40, and 45) °C. Journal of Chemical and Engineering Data, 50(4), 1392–1395. Muset, G. & Castells, L.(2017). Valorización del lactosuero. Colección transferencia tecnológica suma valor a un país de ideas. Retrieved from http://lactosuero.com/wp-content/uploads/2019/01/Valorizacion-Lactosuero.pdf Naganagouda, K., & Mulimani, V. H. (2008). Aqueous two-phase extraction (ATPE): An attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase. Process Biochemistry, 43(11), 1293–1299. Nagaraj, N., Narayan, a V, Srinivas, N. D., & Raghavarao, K. S. M. S. (2003). Microwave-field-assisted enhanced demixing of aqueous two-phase systems. Analytical Biochemistry, 312(2), 134–140. Nagaraja, V. H., & Iyyaswami, R. (2013). Phase Demixing Studies in Aqueous Two-Phase System With Polyethylene Glycol (Peg) and Sodium Citrate. Chemical Engineering Communications, 200(10), 1293–1308. Nakano, H., Takenishi, S., & Watanabe, Y. (1987). Substrate Specificity of Several β-Galactosidases toward a Series of β-l,4-Linked Galactooligosaccharides. Agricultural and Biological Chemistry, 51(8), 2267–2269. Nasir M., Rehman H., Aziz N., Jabbar M. (2011). Bifidogenicity of galacto-oligosaccharides in diarrhea management of acute malnourished infants and young children. Proceedings of the Nutrition Society, 70, E344. Neri, D. F. M., Balcão, V. M., Dourado, F. O. Q., Oliveira, J. M. B., Carvalho, L. B., & Teixeira, J. a. (2009). Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 69(4), 246–251. Nobre C, Teixeira J, Rodrigues L (2012). Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column. New Biotechnol 29(3):395. Ohtsuka K, Benno Y, Endo A, Ueda H, Ozawa O, Uchida T, Mitsouka T (1989) Effects of 49galactosyllactose intake on human fecal microflora.Bifidus 2:143–149. Oliveira, G., Silva, D., Roberto, I., Vitolo, M., Pessoa, A. (2003). Partition behavior and partial purification of hexokinase in aqueous two-phase polyethylene glycol/citrate systems,” Applied Biochemistry and Biotechnology A, 108, 1–3, 787–798. Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. (2009). Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. Journal of Molecular Catalysis B Enzymatic, 61(3–4), 208–215. Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research. Panesar, R., Panesar, P. S., Singh, R. S., Kennedy, J. F., & Bera, M. B. (2007). Production of lactose-hydrolyzed milk using ethanol permeabilized yeast cells. Food Chemistry, 101(2), 786–790. Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. C. (2016). IncoE/S*oration of whey permeate , a dairy effluent , in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 1859–1867. Park, H. Y., Kim, H. J., Lee, J. K., Kim, D., & Oh, D. K. (2008). Galactooligosaccharide production by a thermostable beta-galactosidase from Sulfolobus solfataricus. World Journal of Microbiology and Biotechnology, 24(8), 1553–1558. Peña-Montenegro, T., Sánchez, O. (2010). Producción de galactooligosacáridos empleando células libres de Aspergillus oryzae UA1, Tesis de pregrado, Ingeniería Química, Universidad de los Andes, Bogotá, Colombia. Perumalsamy, M., Bathmalakshmi, A., & Murugesan, T. (2007). Experiment and correlation of liquid-liquid equilibria of an aqueous salt polymer system containing PEG6000 + sodium citrate. Journal of Chemical and Engineering Data, 52(4), 1186–1188. Pinelo, M., Jonsson, G., & Meyer, A. S. (2009). Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance. Separation and Purification Technology, 70(1), 1–11. Pocedičová, K., Čurda, L., Mišún, D., Dryáková, A., & Diblíková, L. (2010). Preparation of galacto-oligosaccharides using membrane reactor. Journal of Food Engineering, 99(4), 479–484. Polshettiwar, V. & Varma, R., (2010) - Editors. Aqueous Microwave Assisted Chemistry. Royal Society of Chemistry. Porto, T. S., Medeiros e Silva, G. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima-Filho, J. L., Pessoa, A. (2008). Liquid-liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing: Process Intensification, 47(4), 716–721. Prenosil, J. E., Stuker, E., & Bourne, J. R. (1987). Formation of oligosaccharides during enzymatic lactose: Part I: State of Art. Biotechnology and Bioengineering, 30(9), 1019–1025. Pruksasri S. (2007). Production and separation of galacto-oligosaccharides from lactose by β-galactosidase immobilized on nanofiltration membranes, PhD thesis, Ohio State University, Chemical Engineering. Raja, S., & Murty, V. R. (2012a). Development and Evaluation of Environmentally Benign Aqueous Two Phase Systems for the Recovery of Proteins from Tannery Waste Water. ISRN Chemical Engineering, 2012, 1–9. Raja, S., & Murty, V. R. (2013). Liquid-Liquid Equilibria of Aqueous Two-Phase Systems Containing PEG + Sodium Citrate + Water at various pH. Journal of Chemical Science and Technology, 2(4), 169–174. Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V., & Ramesh, V. (2012a). Aqueous Two Phase Systems for the Recovery of Biomolecules – A Review. Science and Technology, 1(1), 7–16. Rao MV, Dutta SM (1978) Lactase activity of microorganisms. Folia Microbiol 23:210–215 Reay, D., Ramshaw, C., Harvey A. (2013). Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, second edition. Butterworth-Heinemann Editors. Rico Rodríguez, F. (2018). Evaluación de un sistema mixto de enzimas para la producción de galactooligosacáridos y ácido glucónico a partir de lactosuero como fuente de lactosa, 157. Tesis de doctorado, Universidad Nacional de Colombia, sede Bogotá, Colombia. Rico-Díaz, A., Ramírez-Escudero, M., Vizoso-Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz- Aparicio, J. (2017). Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. Rosa PAJ, Ferreira IF, Azevedo AM, Aires‑Barros MR (2010) Aqueous two‑phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 217(16):2296–2305. Sakai, T., Tsuji, H., Shibata, S., Hayakawa, K., & Matsumoto, K. (2008). Repeated-batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. The Journal of General and Applied Microbiology, 54(5), 285–293. Sako, T., Matsumoto, K., Tanaka, R. (1999) Recent progress on research and applications of non-digestible galactooligosaccharides. International Dairy J 1999( 9): 69 – 80. Sanz J., 2009. Production of galacto-oligosaccharides from lactose by Immobilized β-galactosidase and posterior Chromatographic separation. PhD thesis, Ohio State University, Chemical Engineering. Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1). Schubert, H., Regier, M., (editors) 2005. Microwave Processing of Food, edited by. CRC Press. Scott, F., Vera, C., & Conejeros, R. (2016). Technical and economic analysis of industrial production of lactose-derived prebiotics with focus on galacto-oligosaccharides. In: Lactose-Derived Prebiotics: A Process Perspective. Sen D., Sarkar A., Gosling A., Gras S., Stevens G., Kentish S., Bhattacharya P., Barber A., Bhattacharjee Ch. (2011), Feasibility study of enzyme immobilization on polymeric membrane: A case study with enzymatically galacto-oligosaccharides production from lactose, Journal of Membrane Science. 378 (1–2) 15: 471-478. Sen D., Gosling A., Stevens G., Bhattacharya P., Barber A., Kentish S., Bhattacharjee Ch., Gras S.,(2011a) Galactosyl oligosaccharide purification by ethanol precipitation, Food Chemistry. (128) (3): 773-777. Seyis, I., & Aksoz, N. (2004). Production of Lactase by Trichoderma sp., Food Technol. Biotechnol. 42 (2) 121–124. Sheu D, Lio P, Chen S, Lin C, Duan K (2001). Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters. 23 (18): 1499-1503. Shoaf, K., Mulvey, G.L., Armstrong, G.D., Hutkins, R.W., 2006. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infection and Immunity 74, 6920–6928. Silva, A. C., Guimaraes, P. M., Teixeira, J. A., & Domingues, L. (2010). Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of industrial microbiology & biotechnology, 37(9), 973-982. Silva, Maria Estela, Pellogia, Cássia, Piza, Francisco Assis Toledo, & Franco, Telma Teixeira. (1997). Purificação de três diferentes beta-galactosidades microbianas por partição em sistemas de duas fases aquosas. Food Science and Technology, 17(3), 219-223. Simons, J., Cocinero, E., Stanca-Kaposta, E., Davis, B., Gamblin, D. (2009). Hydrophilic and hydrophobic carbohydrate interactions. Lasers for science facility programme, chemistry (5). Sinha, J., Dey, P. K., & Panda, T. (2000). Aqueous two-phase: The system of choice for extractive fermentation. Applied Microbiology and Biotechnology, 54(4), 476–486. Splechtna, B., Petzelbauer, I., Baminger, U., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (2001). Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme and microbial technology. Vol. 29, Issue 6-7. 434–440. Tanaka, Y., Kagamiishi, A., Kiuchi, A., Horiuchi, T., 1975. Purification and Properties of β-Galactosidase from Aspergillus oryzae. Journal of Biochemistry 77(1?):241-7. Tjerneld, F. , Persson, I. and Lee, J. M. (1991), Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two‐phase system. Biotechnol. Bioeng., 37: 876-882. Toba T, Adachi S. 1978. Hydrolysis of lactose by microbial beta-galactosidases—formation of oligosaccharides with special reference to 2-0-beta-D-galactopyranosyl-D-glucose. J Dairy Sci 61(1):33–8. Torres, D. P., Goncalves, M., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto oligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9, 438-454. Treybal, R., (1988). Operaciones de Transferencia de Masa, 2 ed. México. Tubío, G., Nerli, B., & Picó, G. (2007). Partitioning features of bovine trypsin and α-chymotrypsin in polyethyleneglycol-sodium citrate aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 852(1–2), 244–249. Tzortzis G and Vulevic J. (2009), Galacto-oligosaccharide, in Prebiotics and Probiotics: Science and Technology, ed. by Charalampopoulos D and Rastall RA. Springer, Guildford. 207–243. Tzortzis G, Goulas AK, Gee JM, Gibson GR (2005) A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 135:1726–1731 Tzortzis G, Goulas AK, Gibson GR. 2005. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68(3):412–6. Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Wilson, L., Illanes, A., & Plou, F. J. (2013). Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 61(5). Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: state of the art. World Journal of Microbiology and Biotechnology, 32(12). Vera, C., Guerrero, C., & Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae b -galactosidase : effect of pH , temperature , and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752. Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194. Walstra P, Wouter J, Geurts T. (2006). Dairy Science and Technology. second ed. Florida: CRC Press, Taylor & Francis Group; p. 17–26. Ward, T., Allis J., Elder, A. (1975) Measure of Enzymatic Activity Coincident with 2450 MHz Microwave Exposure, Journal of Microwave Power, 10:3, 315-323, Wei, L., Xiaoli, X., Shufen, T., Bing, H., Lin, T., Yi, S., Xiaoxiong, Z. (2009). Effective enzymatic synthesis of lactosucrose and its analogues by β-d-galactosidase from bacillus circulans. Journal of Agricultural and Food Chemistry, 57(9), 3927–3933. White, J. S. (2000). Sugar, special sugars. In Kirk-othmer encyclopedia of chemical technology. Woodley, J. M. (2017). Bioprocess intensification for the effective production of chemical products. Computers and Chemical Engineering, 105, 297–307. Yau, Y. K., Ooi, C. W., Ng, E.-P., Lan, J. C.-W., Ling, T. C., & Show, P. L. (2015). Current applications of different type of aqueous two-phase systems. Bioresources and Bioprocessing, 2(1), 49. Yeargers, E., Langley, J., Sheppard, A., Huddleston, G., 1975. Effects of microwave radiation of enzymes. Ann N Y Acad Sci. 28;247:301-4. Yuan, H., Liu, Y., Wei, W., Zhao, Y., Yuan, H., Liu, Y., … Zhao, Y. (2015). Phase Separation Behavior and System Properties of Aqueous Two-Phase Systems with Polyethylene Glycol and Different Salts: Experiment and Correlation. Journal of Fluids, 2015, 1–10. Zarate, S., & Lopez-Leiva, M. H. (1990). Oligosaccharide formation during enzymatic lactose hydrolysis: A literature review. Journal of Food Protection, 53(3), 262–268. Zhao, H. (2010). Microwave-assisted enzymatic reactions in aqueous media. In V. Polshettiwar, & R. S. Varma (Eds.), Aqueous microwave assisted chemistry (pp. 123-44). Cambridge: RSC Publishing. Zhengyi Li, Min Xiao, Lili Lu, Yumei Li, (2008). Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochemistry. 43 (8): 896-899. Zhi, W., Song, J., Bi, J., & Ouyang, F. (2004). Partial purification of α-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems. Bioprocess and Biosystems Engineering, 27(1), 3–7. Zhou, Q. Z. K., & Chen, X. D. (2001). Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochemical Engineering Journal, 9(1), 33–40. Zijlstra, G, De Gooijert, C., Trampert, J., (1998). Extractive bioconversions in aqueous two-phase systems. Current opinion in Biotechnology, 9, 171 - 176. Cibergrafía https://www.prnewswire.com/news-releases/global-lactase-market-to-reach-us-1647-mn-by-2025---persistence-market-research-676226763.html, consultado el 15 de Agosto de 2019 https://www.globenewswire.com/news-release/2015/01/12/696650/10115085/en/Galacto-Oligosaccharides-GOS-Market-Will-Be-Worth-1-01-Billion-By-2020-New-Report-By-Grand-View-Research-Inc.html, consultado el 5 de Diciembre de 2019 https://www.fedegan.org.co/estadisticas/documentos-de-estadistica, consultado el 21 de Agosto de 2019 https://www.contextoganadero.com/economia/minagricultura-pide-vigilancia-la-importaciones-de-lactosueros, consultado el 28 de Agosto de 2019 http://www.fao.org/docrep/009/a0691e/A0691E07.htm, FAO Corporate Document Repository, 2006. Specific methods, Enzyme preparations. Consultado 03/03/2015. |
dc.rights.spa.fl_str_mv |
Derechos Reservados al Autor, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos Reservados al Autor, 2020 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
168 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Química y Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79731/5/PhD%20Tesis%20Germ%c3%a1n%20Castro%20Moreno%20Final.pdf https://repositorio.unal.edu.co/bitstream/unal/79731/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/79731/6/PhD%20Tesis%20Germ%c3%a1n%20Castro%20Moreno%20Final.pdf.jpg |
bitstream.checksum.fl_str_mv |
2efa821ab27dab1f1e77298fb22ef09f cccfe52f796b7c63423298c2d3365fc6 513236a69f3423ae1e245e8e1277f12b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089559597645824 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2020http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serrato Bermúdez, Juan Carlos2cec2f7270f1d605a516d2e2beace5a2Castro Moreno, Germán Andrés155e80301cc6bb48cd5235cb60ae9e70Grupo de Investigación en Procesos Químicos y Bioquímicos2021-06-25T21:41:59Z2021-06-25T21:41:59Z2020https://repositorio.unal.edu.co/handle/unal/79731Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasLos GOS (Galactooligosacáridos) son carbohidratos con una molécula de glucosa unida a 2-5 moléculas de galactosa. Los GOS son prebióticos y se obtienen industrialmente mediante reacciones enzimáticas. Los GOS son producidos a partir de lactosa, ya sea en estado puro o haciendo parte del suero de quesería, el cual debe presentar un contenido de lactosa superior al 70% (m/m). La reacción de hidrólisis rompe la lactosa en glucosa y galactosa, que reacciona para formar GOS, a través de la reacción de transgalactosilación, estas dos reacciones suceden simultáneamente, ya que una se nutre de la otra. La presencia de estos monosacáridos inhibe la última reacción y disminuye la producción de GOS. Los sistemas acuosos de dos fases (SADF) pueden usarse para separar una mezcla de sustancias de acuerdo con su afinidad preferencial por una de las dos fases en este sistema. Estos sistemas están formados por dos polímeros o una sal y un polímero disueltos en agua en una concentración específica para producir la separación de fases. Hay muchos factores que afectan esta operación, como el pH, la temperatura, el polímero, la concentración de sales y sustancias, el peso molecular del polímero y la relación polímero / sal. El SADF puede usarse para separar los monosacáridos inhibidores de la mezcla de GOS. La irradiación de microondas ha mostrado un efecto positivo en la separación por SADF y se ha utilizado para mejorar la reacción de producción de GOS a partir de lactosa. El SADF se utilizó en este trabajo para producir y separar GOS simultáneamente. El medio de reacción estaba formado por lactosa a diferentes concentraciones, polietilenglicol (PEG) y citrato de sodio para formar el SADF, pH de 4.5 a 5.5, las temperaturas probadas estuvieron entre 40 y 60 ° C. Se evaluó el efecto de la irradiación de microondas sobre la reacción, la separación por SADF y la reacción - separación simultáneas. Se establecieron todas las condiciones del SADF que produjeron resultados optimizados, que se expresaron como coeficiente de partición, rendimiento de separación, selectividad para GOS y rendimiento de reacción. La selectividad para GOS aumentó más del 40%, en relación con el medio convencional (buffer + lactosa), el rendimiento de la reacción no cambió estadísticamente. La separación de la mezcla de carbohidratos fue de acuerdo con su peso molecular, las sustancias más pesadas (GOS) se mantuvieron principalmente en la fase inferior (citrato de sodio), mientras que los monosacáridos migraron en mayor medida a la fase superior (PEG). Los resultados optimizados de reacción, separación y separación simultánea de reacción se probaron en irradiación de microondas. El rendimiento, la producción, la selectividad y la productividad disminuyeron con la acción de microondas. (Texto tomado de la fuente).GOS are carbohydrates with a glucose molecule linked to 2-5 molecules of galactose. GOS are prebiotics and are industrially obtained by enzymatic reactions. GOS are produced from lactose, it might be pure or as part of cheese whey with a lactose content higher than 70%. Hydrolysis reaction breaks lactose into glucose and galactose, which reacts to form GOS, through transgalactosylation reaction; those reactions occur simultaneously because each one depends of the other. Monosaccharides inhibit transgalactosylation reaction and decrease the GOS production. Aqueous two phase system (ATPS) could be used to separate a mixture of substances according to its preferential affinity to one of the two phases in this system, it is formed by two polymers or a salt and a polymer dissolved in water upon a specific concentration to produce phase separation. There are many factors affecting this operation like pH, temperature, polymer, salt and substances concentration, molecular weight of polymer and polymer / salt ratio, ATPS could be used to separate inhibitor monosaccharides, from GOS mixture. Microwave irradiation has shown a positive effect on ATPS separation and has been used to improve GOS production reaction from lactose. ATPS was used in this work to produce and separate galactooligosaccharides simultaneously. Reaction medium was formed by lactose at different concentrations, polyethyleneglycol (PEG) and sodium citrate to form ATPS, pH of 4.5 – 5.5, temperatures tested were between 40 - 60°C. Was evaluated the effect of microwave irradiation on reaction, ATPS separation and simultaneous reactions-separation conditions. Were stablished all conditions in ATPS that produced optimized results, which were expressed as partition coefficient, separation yield, selectivity to GOS and reaction yield. Selectivity to GOS raise up more than 40%, relative to conventional medium, reaction yield did not change statistically. Separation of carbohydrates mixture is according to its molecular weight, heaviest substances (GOS) kept mainly in the bottom phase (sodium citrate), while monosaccharides kept in top phase (PEG) mainly. Optimized results of reaction, separation and simultaneous reaction-separation were tested into microwave irradiation. Yield, production, selectivity and productivity were increased with microwave action. (Texto tomado de la fuente).DoctoradoDoctor en Ingeniería - Ingeniería QuímicaBioprocesos168 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería químicaComposición de los alimentosHidratos de carbonoGalactooligosacáridosProceso intensificadoSistema acuoso de dos fasesProceso asistido por microondasGalactooligosaccharidesIntensified processAqueous two-phase systemMicrowave-assisted processDesarrollo de un proceso de producción-separación de galactooligosacáridos mediante un sistema acuoso de dos fases asistido por microondasDevelopment of a process production-separation of galactooligosaccharides by a two-phase aqueous system microwave assistedTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAdam, D. (2003). Out of the kitchen. Nature, 421(6923), 571–572.Aeberhardt, K., De Saint Laumer, J. Y., Bouquerand, P. E., & Normand, V. (2005). Ultrasonic wave spectroscopy study of sugar oligomers and polysaccharides in aqueous solutions: The hydration length concept. International Journal of Biological Macromolecules, 36(5), 275–282.Ahmad, A. L., Derek, C. J. C., & Zulkali, M. M. D. (2008). Optimization of thaumatin extraction by aqueous two-phase system () using response surface methodology (RSM). Separation and Purification Technology, 62(3), 702–708.Akpinar, O., Penner, M.H., (2008). Preparation of cellooligosaccharides: comparative study. Journal of Food, Agriculture and Environment 6, 55–61.Albayrak, N., & Yang, S.-T. (2002). Production of galacto-oligosaccharides from lactose byAspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 77(1), 8–19.Albertsson P., Johansson G., Tjerneld F. (1990) in: Asenjo J. (Ed.), Separation Process in Biotechnology, Marcel Dekker, New York, pp. 287–327.Albertsson, P.A. (1971) Partition of Cell Particles and Macromolecules, 2nd Ed.; Almqvist and Wiksell: StockholmAndrews, B. , Schmidt, A. and Asenjo, J. (2005), Correlation for the partition behavior of proteins in aqueous two‐phase systems: Effect of surface hydrophobicity and charge. Biotechnol. Bioeng., 90: 380-390.Andrews, B. A., & Asenjo, J. A. (2010). Theoretical and experimental evaluation of hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase systems: A review. Separation Science and Technology, 45(15), 2165–2170.Asenjo, J. A., & Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: A perspective. Journal of Chromatography A, 1218(49), 8826–8835.Avella, N.; Solano C.; Castro G. (2011).Comparación de la producción de galactooligosacáridos (gos) a partir de lactosuero en polvo y lactosa usando Aspergillus oryzae y enzima β-galactosidasa libre, (2011). Tesis de pregrado, Ingeniería de Alimentos, Universidad de la Salle, Bogotá, Colombia.Azevedo, A. M., Gomes, A. G., Rosa, P. A. J., Ferreira, I. F., Pisco, A. M. M. O., & Aires-Barros, M. R. (2009). Partitioning of human antibodies in polyethylene glycol-sodium citrate aqueous two-phase systems. Separation and Purification Technology, 65(1), 14–21.Banik, R. M., Santhiagu, A., Kanari, B., Sabarinath, C., & Upadhyay, S. N. (2003). Technological aspects of extractive fermentation using aqueous two-phase systems, (Albertsson 1971), 337–348.Baskir, J.N., Hatton, T.A., and Suter, U.W. (1989) Protein partition- ing in two-phase aqueous polymer systems. Biotech. Bioeng. 34: 541–558.Benavides J, Rito-Palomares M (2008) Practical Experiences from the Development of Aqueous Two-Phase Processes for the Recovery of High Value Biological Products. J Chem Technol Biot 83: 133-142.Benavides, J. & Rito-Palomares, M., (2008). Aplicación genérica de sistemas de dos fases acuosas Polietilénglicol – sal para el desarrollo de procesos de recuperación primaria de compuestos biológicos. Revista Mexicana de Ingeniería Química Vol. 7, No. 2, 99-111.Benavides, J., & Rito-Palomares, M. (2004). Bioprocess intensification: A potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 807(1), 33–38.Benavides, J., Rito-Palomares, M., & Asenjo, J. A. (2011). Aqueous Two-Phase Systems. Comprehensive Biotechnology, 697 - 713.Boon, M. a., Janssen, a. E. M., & Van ’t Riet, K. (2000). Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme and Microbial Technology, 26(2–4), 271–281.Botelho-cunha, V. A., & Pinho, M. N. De. (2010). Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochemical engineering journal, 50, 29–36.Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacterias in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664.Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.Brás, N. F., Moura-Tamames, S. A., Fernandes, P. A., & Ramos, M. J. (2008). Mechanistic studies on the formation of glycosidase-substrate and glycosidase- inhibitor covalent intermediates. Journal of Computational Chemistry, 29(15), 2565–2574.Bruins, M. E., Van Hellemond, E. W., Janssen, A. E. M., & Boom, R. M. (2003). Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase. Biotechnology and Bioengineering, 81(5), 546–552.Buttersack, C. (2017). Hydrophobicity of carbohydrates and related hydroxy compounds. Carbohydrate Research, 446–447, 101–112.Carvalho, C. P., Coimbra, J. S. R., Costa, I. A. F., Minim, L. A., Cristina, M., & Silva, L. H. M. (2008). INFLUENCE OF THE TEMPERATURE AND TYPE OF SALT ON THE PHASE EQUILIBRIUM OF PEG 1500 + Artigo, 31(2), 209–213.Carvalho, J. De, Renann, P., França, L. De, & Souza, T. (2018). Optimized extraction of polygalacturonase from Aspergillus aculeatus URM4953 by aqueous two-phase systems PEG / Citrate. Journal of Molecular Liquids, 263, 81–88.Charalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23(2), 187–191.Chavez-Santoscoy, A., Benavides, J., Vermaas, W., & Rito-Palomares, M. (2010). Application of Aqueous two-phase systems for the potential extractive Fermentation of Cyanobacterial products. Chemical Engineering and Technology, 33(1), 177–182.Chen, C. W., & Yeh, C. (2003). Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles, 33, 497–507.Chen, J., Cheng, W.,(1991). Lactose Hydrolysis by β-Galactosidase in Aqueous Two-Phase Systems. Journal of Fermentation & Bioengineering 71(3), 168–175.Chen, S. X., Wei, D. Z., & Hu, Z. H. (2001). Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. Journal of Molecular Catalysis - B Enzymatic, 16(2), 109–114.Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., & Zhang, H. (2008). Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91(5), 1751–1758.Cheng C, Yu M, Cheng T, Sheu D, Duan K, Tai W (2006). Production of High-content Galacto-oligosaccharide by Enzyme Catalysis and Fermentation with Kluyveromyces marxianus. Biotechnology Letters. 28(11): 793-797.Chethana, S., Nayak, C. a., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification and concentration of betalains. Journal of Food Engineering, 81(4), 679–687.Chilamkurthi, S, Willemsen, J-H, Wielen, LAM van der, Poiesz, E & Ottens, M (2012). High-throughput determination of adsorption equilibria for chromatographic oligosaccharide separations. Journal of Chromatography A, 1239, 22-34.Corral JM, Banuelos O, Adrio JL, Velasco J (2005) Cloning and characterization of a beta-galactosidase encoding region in Lactobacillus coryniformis. Appl Microbiol Biotechnol 73:640–646.Cruz, R., Cruz, V. D., Belote, J. G., Khenayfes, M. de O., Dorta, C., & Oliveira, L. H. dos S. (1999). Properties of a new fungal b-galactosidase with potential application in the dairy industry. Revista de Microbiologia, 30(3), 265–271.Cruz-Guerrero, A. E., Gómez-Ruiz, L., Viniegra-González, G., Bárzana, E., & García- Garibay, M. (2006). Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic beta-glycosidase in an organic medium. Biotechnology and Bioengineering, 93(6), 1123–1129.Czermak P., Ebrahimi M., Grau K., Netz S., Sawatzki G.and Pfromm P.H., (2004). Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process, J. Membr. Sci., 232, 85–91.Da Silva, C. A. S., Coimbra, J. S. R., Rojas, E. E. G., & Teixeira, J. A. C. (2009). Partitioning of glycomacropeptide in aqueous two-phase systems. Process Biochemistry, 44(11), 1213–1216.Dang, Y.-Y., Zhang, H., & Xiu, Z.-L. (2013). Microwave-assisted aqueous two-phase extraction of phenolics from grape ( Vitis vinifera ) seed. Journal of Chemical Technology & Biotechnology, (August).Davis, L. M. G., (2010). "The Bifidogenicity of the Prebiotic Galactooligosaccharides" (2010). Dissertations & Theses in Food Science and Technology.Paper 9.De Araújo, R. F. F., Porto, T. S., Martins, D. B. G., Dutra, R. F., Porto, A. L. F., & Filho, J. L. de L. (2011). Partitioning of lactate dehydrogenase from bovine heart crude extract by polyethylene glycol-citrate aqueous two-phase systems. Fluid Phase Equilibria, 301(1), 46–50.De Brito Cardoso, G., Mourão, T., Pereira, F. M., Freire, M. G., Fricks, A. T., Soares, C. M. F., & Lima, Á. S. (2013). Aqueous two-phase systems based on acetonitrile and carbohydrates and their application to the extraction of vanillin. Separation and Purification Technology, 104, 106–113.De la Hoz A., Díaz-Ortiz A., Moreno A., 2005. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev., 34(2):164-78.De Oliveira, R. M., Dos Reis Coimbra, J. S., Minim, L. A., Da Silva, L. H. M., & Fontes, M. P. F. (2008). Liquid-liquid equilibria of biphasic systems composed of sodium citrate + polyethylene(glycol) 1500 or 4000 at different temperatures. Journal of Chemical and Engineering Data, 53(4), 895–899.Del Val M., Otero C. (2003). Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose. Enzyme Microb Technol 33(1):118–26.Dhoot, S. B., Dalal, J. M., & Gaikar, V. G. (2007). Purification of glucose oxidase and β-galactosidase by partitioning in a PEG-salt aqueous two-phase system in the presence of PEG-derivatives. Separation Science and Technology, 42(8), 1859–1881.Domingues, L., Lima, N., & Teixeira, J. A. (2005). Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3–4), 1151–1154.Doran, P. (1995). Principios de Ingeniería de los bioprocesos. Editorial Acribia S.A, Zaragoza, España. (Traducido 1998)Ebrahimi M., Placido L., Engel L., Shams Ashaghi K., Czermak P, (2010). A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 250. 1105–1108.Ebrahimi, M., Gonzalez, R., & Czermak, P. (2006). Experimental and theoretical study of Galactosyl – Oligosaccharides formation in CRMR by thermostable mesophilic enzymes, 200(September), 686–688.Engel L., Ebrahimi M., Czermak P. (2008). Membrane chromatography reactor system for the continuous synthesis of galactosyl-oligosaccharides. Desalination 224 46–51.Engel, L., Schneider, P., Ebrahimi, M., & Czermak, P. (2007). Immobilization of β-Galactosidase in Adsorptive Membranes for the Continuous Production of Galacto-Oligosaccharides from Lactose. The open food science journal, 1, 17–23.Francesconi, C. F. De M., Machado, M. B., Steinwurz, F., Nones, R. B., Quilici, F. A., Catapani, W. R., … Bafutto, M. (2016). Oral Administration of Exogenous Lactase in Tablets for Patients Diagnosed With Lactose Intolerance Due To Primary Hypolactasia. Arquivos de Gastroenterologia, 53(4), 228–234.Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7), 685–694.Garai, D., & Kumar, V. (2013). Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system: Optimization by Box-Behnken design approach. Biocatalysis and Agricultural Biotechnology, 2(2), 125–131.Gargova, S., Pishtijski, I., & Stoilova, I. (2017). Purification and Properties of β -Galactosidase from Aspergillus Oryzae β-galactosidase from Aspergillus oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51Gaur, R., Pant, H., Jain, R., & Khare, S. K. (2006). Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry, 97(3), 426–430.Gelo-Pujic, M., Guibe´ -Jampel, E., Loupy, A., Galema S., Mathe´, D., 1996. J. Chem. Soc. Perkin Trans.,1, 2777–2780.Gloster, T. M., Roberts, S., Ducros, V. M. A., Perugino, G., Rossi, M., Hoos, R., Davies, G. J. (2004). Structural studies of the β-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovalently bound inhibitors. Biochemistry, 43(20), 6101–6109.Glyk, A., Solle, D., Scheper, T., & Beutel, S. (2015). Optimization of PEG-salt aqueous two-phase systems by design of experiments. Chemometrics and Intelligent Laboratory Systems, 149, 12–21.Gonzalez R., Ebrahimi M., Czermak P. (2009). Experimental and Modeling Study of Galactosyl-Oligosaccharides Formation in Continuous Recycle Membrane Reactors (CRMR). The Open Food Science Journal, (2009) 3, 1-9 1.Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318.Goulas A., Tzortzis G, Gibson G. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. International Dairy Journal 17 648–656.Grandison, A. S., Goulas, A. K., & Rastall, R. A. (2002). The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures, Songklanakarin J. Sci. Technol., 24(Suppl.) : 915-928.Grilo, A. L., Aires-Barros, M. R., & Azevedo, A. M. (2016). Partitioning in Aqueous Two-Phase Systems: Fundamentals, Applications and Trends. Separation and Purification Reviews, 45(1), 68–80.Guerrero, C., Vera, C., Conejeros, R., & Illanes, A. (2015). Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 70.Guío, F (2015). Evaluación de la producción de galactooligosacáridos a partir de materias primas lácteas con β-galactosidasa inmovilizada, Tesis de Maestría en Ingeniería Química. Universidad Nacional de Colombia.Hatti-Kaul, R. - editor (2000). Aqueous Two-Phase Systems, methods and prototcols – Methods in Biotechnology, 11. Humana Press, New Jersey.Hatzinikolaou, D. G., Katsifas, E., Mamma, D., Karagouni, A. D., Christakopoulos, P., & Kekos, D. (2005). Modeling of the simultaneous hydrolysis-ultrafiltration of whey permeate by a thermostable beta-galactosidase from Aspergillus niger. Biochemical Engineering Journal, 24(2), 161–172.Held, P. (2007). Kinetic Analysis of β -Galactosidase Activity using the PowerWave TM HT and Gen5 TM Data Analysis Software.Hemavathi, A. B., & Raghavarao, K. S. M. S. (2011). Differential partitioning of β-galactosidase and β-glucosidase using aqueous two phase extraction. Process Biochemistry, 46(3), 649–655.Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009). Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J 19(9):531.Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., et al.(2002). Trimeric crystal structure of the glycoside hydrolase family 42 beta- galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. Journal of Molecular Biology, 322(1), 79–91.Hong Yang, A. M. G. (2013). Aqueous Two-Phase Extraction Advances for Bioseparation. Journal of Bioprocessing & Biotechniques, 4(1), 1–8.Horikoshi, S., Nakamura, K., Yashiro, M., Kadomatsu, K., & Serpone, N. (2019). Probing the effect(s) of the microwaves’ electromagnetic fields in enzymatic reactions. Scientific Reports, 9(1), 1–11.Hsu, C. A., Lee, S. L., & Chou, C. C. (2007). Enzymatic production of galactooligosaccharides by beta-galactosidase from bifidobacterium longum BCRC 15708. Journal of Agricultural and Food Chemistry, 55(6), 2225–2230.Hsu, C. A., Yu, R. C., & Chou, C. C. (2006). Purification and characterization of a sodium-stimulated beta-galactosidase from Bifidobacterium longum CCRC 15708. World Journal of Microbiology and Biotechnology, 22(4), 355–361.Huang NP, Voros J, Paul SM, Textor M, Spencer ND. (2002). Biotin-derivatized poly (L-lysine)-g-poly (ethylene glycol): A novel polymeric interface for bioaffinity sensing. Langmuir 18: 220–230.Huber RE, Kurz G, Wallenfels K (1976) A quantitation of the factors which affect the hydrolase and trangalactosylase activities of b- galactosidase (E. coli) on lactose. Biochemistry 15:1994–2001.Huebner, J., Wehling, R.L., Hutkins, R.W., (2007). Functional activity of commercial prebiotics. International Dairy Journal 17, 770–775.Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252.Husain, Q. (2010). β Galactosidases and their potential applications : a review, 30(August 2009), 41–62.Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., … Yuan, Z. (2016). Aqueous two-phase system (): an overview and advances in its applications. Biological Procedures Online, 18(1), 1–18.Isabel, M., Hill, C. G., & Qu, I. De. (2001). Selective enzymatic synthesis of 6 -galactosyl lactose by Pectinex Ultra SP in water, (pH 5), 1921–1924.Ivetic, D., Sciban, M., Vasic, V., Kukic, D., Prodanovic, J.,Antov, M., (2013). Evaluation of possibility of textile dye removal from wastewater by aqueous two-phase extraction. Desalination and water treatment, 51(7-9), 1603-1608.Iwasaki, K., Nakajima, M., Nakao, S. (1996). Galacto-oligosaccharide Production from lactose by an Enzymic Batch Reaction Using β-Galactosidase. Process Biochem.; 31 (1): 69 – 76.Ji, E.-S., Park, N.-H., & Oh, D.-K. (2005). Galacto-oligosaccharide production by a thermostable recombinant beta-galactosidase from Thermotoga maritima. World Journal of Microbiology and Biotechnology, 21(5), 759–764.Johansson, H., & Karlstrom, G. (1997). Temperature-induced phase partitioning of peptides in water solutions of ethylene oxide and propylene oxide random copolymers, 315–325.Juers, D. H., Heightman, T. D., Vasella, A., McCarter, J. D., Mackenzie, L., Withers, S. G., et al.(2001). A structural view of the action of Escherichia coli (lacZ) beta- galactosidase. Biochemistry, 40(49), 14781–14794.Kamerke, C., Pattky, M., Huhn, C., & Elling, L. (2012). Synthesis of UDP-activated oligosaccharides with commercial β-galactosidase from Bacillus circulans under microwave irradiation. Journal of Molecular Catalysis B: Enzymatic, 79, 27–34.Kappe, C. O., & Dallinger, D. (2009). Controlled microwave heating in modern organic synthesis: Highlights from the 2004-2008 literature. Molecular Diversity, 13(2), 71–193.Kaul, R. & Mattiasson, B. (1986). Extractive bioconversion in aqueous two-phase systems. Production of prednisolone from hydrocortisone using Arthrobacter simplex as catalyst Appl Microbiol Biotechnol. 24: 259.Kazemi S, Khayati G, Faezi-Ghasemi M (2016) b-Galactosidase pro- duction by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: optimization by orthogonal arrays design. Iran Biomed J 20:287–294Kim, S. H., Lim, K. P., & Kim, H. S. (1997). Differences in the Hydrolysis of Lactose and Other Substrates by β-D-Galactosidase from Kluyveromyces lactis. Journal of Dairy Science, 80(10), 2264–2269.Kim, Y. S., Park, C. S., & Oh, D. K. (2006). Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 39(4), 903–908.Kirk, P. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354-358.Klotz, B. (2014). Suero lácteo, clave en la innovación de alimentos. Revista Portafolio. Agosto 3. Cosultado en: https://www.portafolio.co/economia/finanzas/suero-lacteo-clave-innovacion-alimentos-61526, consultado el 10 de Agosto de 2019..Kokkiligadda, A., & Beniwal, A. (2016). Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Applied Biochemistry and Biotechnology, Vol. 179, No. 8, 1469–1484.Kushwah, P. (2013). Effect of Microwave Radiation on Growth, Enzyme Activity (Amylase and Pectinase), and/or Exopolysaccharide Production in Bacillus subtilis, Streptococcus mutans, Xanthomonas campestris and Pectobacterium carotovora. British Microbiology Research Journal, 3(4), 645–653.La Cara F, D’Auria S, Scarfì MR, Zeni O, Massa R, d’Ambrosio G, Franceschetti G, De Rosa M, Rossi M. (1999a). Microwave exposure effect on a Thermophilic Alcohol Dehydrogenase. Protein and Peptide Letters, 6 (3), 155-162.La Cara, F., Scarffi, M. R., DAuria, S., Massa, R., dAmbrosio, G., Franceschetti, G., Rossi, M. and De Rosa, M. (1999), Different effects of microwave energy and conventional heat on the activity of a thermophilic ß-galactosidase from Bacillus acidocaldarius. Bioelectromagnetics, 20: 172–176.Lamsal, B. P. (2012). Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. Journal of the science of food and agriculture, 92(10), 2020–8. Levicky R, Horgan A. 2005. Physicochemical perspectives on DNA microarray and biosensor technologies. Trends Biotechnol 23: 143–149.Lewis, M. (n.d.). GRAS Notice 000510, 2014: Acid lactase from Aspergillus oryzae expressed in Aspergillus niger., http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm.Li, X., Lian, Z., Dong, B., Xu, Y., Yong, Q., & Yu, S. (2011). Extractive bioconversion of xylan for production of xylobiose and xylotriose using a PEG6000/sodium citrate aqueous two-phase system. Korean Journal of Chemical Engineering, 28(9), 1897–1901.Mahoney, R. R. (1998). Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chemistry, 63(2), 147–154.Marcos, J., Fonseca, P., Ramalho, M.,Cabral, J. (2002) “Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems,” Enzyme and Microbial Technology, 31, 7, 1006–1014.Martirosyan, D. M., & Singh, J. (2015). A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209–223.Matella NJ, Dolan KD, Lee YS. 2006. Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. J Food Sci 71(7):C363–8.Mattiasson, B. (1988). Bioconversions in aqueous two phase systems: an alternative to conventional immobilization. Methods in Enzymology, Academic Press inc. Vol 137, 657–667.Maugard, T., Gaunt, D., Legoy, M. , Besson, T. (2003). Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized β-galactosidase from Kluyveromyces lactis. Biotech. Let., 25(8), 623–9.Mello, P., Barin, J., Guarnieri, R., 2014. Microwave-Assisted Sample Preparation for Trace Element Analysis, Chapter 2 - Microwave Heating, Editor: Érico Marlon de Moraes Flores, Elsevier.Montañés F, Fornari T, Stateva RP, Olano A, nez EI (2009). Solubility of carbohydrates in supercritical carbon dioxide with (ethanol + water) cosolvent. J Supercrit Fluids 49(1):16.Montañés FM, Olano A, Reglero G, nez EI, Fornari T (2009a). Supercritical technology as an alternative to fractionate prebiotic galactooligosaccharides. Sep Purif Technol 66(2):383.Moravčík, J., Gramblička, M.,Wi, L., Vaňková, K., & Polakovič, M. (2012). Influence of the ionic form of a cation-exchange adsorbent on chromatographic separation of galactooligosaccharides. Chemical Papers, 66, 583–588.Murugesan, T., & Perumalsamy, M. (2005). Liquid-liquid equilibria of poly(ethylene glycol) 2000 + sodium citrate + water at (25, 30, 35, 40, and 45) °C. Journal of Chemical and Engineering Data, 50(4), 1392–1395.Muset, G. & Castells, L.(2017). Valorización del lactosuero. Colección transferencia tecnológica suma valor a un país de ideas. Retrieved from http://lactosuero.com/wp-content/uploads/2019/01/Valorizacion-Lactosuero.pdfNaganagouda, K., & Mulimani, V. H. (2008). Aqueous two-phase extraction (ATPE): An attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase. Process Biochemistry, 43(11), 1293–1299.Nagaraj, N., Narayan, a V, Srinivas, N. D., & Raghavarao, K. S. M. S. (2003). Microwave-field-assisted enhanced demixing of aqueous two-phase systems. Analytical Biochemistry, 312(2), 134–140.Nagaraja, V. H., & Iyyaswami, R. (2013). Phase Demixing Studies in Aqueous Two-Phase System With Polyethylene Glycol (Peg) and Sodium Citrate. Chemical Engineering Communications, 200(10), 1293–1308.Nakano, H., Takenishi, S., & Watanabe, Y. (1987). Substrate Specificity of Several β-Galactosidases toward a Series of β-l,4-Linked Galactooligosaccharides. Agricultural and Biological Chemistry, 51(8), 2267–2269.Nasir M., Rehman H., Aziz N., Jabbar M. (2011). Bifidogenicity of galacto-oligosaccharides in diarrhea management of acute malnourished infants and young children. Proceedings of the Nutrition Society, 70, E344.Neri, D. F. M., Balcão, V. M., Dourado, F. O. Q., Oliveira, J. M. B., Carvalho, L. B., & Teixeira, J. a. (2009). Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 69(4), 246–251.Nobre C, Teixeira J, Rodrigues L (2012). Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column. New Biotechnol 29(3):395. Ohtsuka K, Benno Y, Endo A, Ueda H, Ozawa O, Uchida T, Mitsouka T (1989) Effects of 49galactosyllactose intake on human fecal microflora.Bifidus 2:143–149.Oliveira, G., Silva, D., Roberto, I., Vitolo, M., Pessoa, A. (2003). Partition behavior and partial purification of hexokinase in aqueous two-phase polyethylene glycol/citrate systems,” Applied Biochemistry and Biotechnology A, 108, 1–3, 787–798.Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. (2009). Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. Journal of Molecular Catalysis B Enzymatic, 61(3–4), 208–215.Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research.Panesar, R., Panesar, P. S., Singh, R. S., Kennedy, J. F., & Bera, M. B. (2007). Production of lactose-hydrolyzed milk using ethanol permeabilized yeast cells. Food Chemistry, 101(2), 786–790.Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. C. (2016). IncoE/S*oration of whey permeate , a dairy effluent , in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 1859–1867.Park, H. Y., Kim, H. J., Lee, J. K., Kim, D., & Oh, D. K. (2008). Galactooligosaccharide production by a thermostable beta-galactosidase from Sulfolobus solfataricus. World Journal of Microbiology and Biotechnology, 24(8), 1553–1558.Peña-Montenegro, T., Sánchez, O. (2010). Producción de galactooligosacáridos empleando células libres de Aspergillus oryzae UA1, Tesis de pregrado, Ingeniería Química, Universidad de los Andes, Bogotá, Colombia.Perumalsamy, M., Bathmalakshmi, A., & Murugesan, T. (2007). Experiment and correlation of liquid-liquid equilibria of an aqueous salt polymer system containing PEG6000 + sodium citrate. Journal of Chemical and Engineering Data, 52(4), 1186–1188.Pinelo, M., Jonsson, G., & Meyer, A. S. (2009). Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance. Separation and Purification Technology, 70(1), 1–11.Pocedičová, K., Čurda, L., Mišún, D., Dryáková, A., & Diblíková, L. (2010). Preparation of galacto-oligosaccharides using membrane reactor. Journal of Food Engineering, 99(4), 479–484.Polshettiwar, V. & Varma, R., (2010) - Editors. Aqueous Microwave Assisted Chemistry. Royal Society of Chemistry.Porto, T. S., Medeiros e Silva, G. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima-Filho, J. L., Pessoa, A. (2008). Liquid-liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing: Process Intensification, 47(4), 716–721.Prenosil, J. E., Stuker, E., & Bourne, J. R. (1987). Formation of oligosaccharides during enzymatic lactose: Part I: State of Art. Biotechnology and Bioengineering, 30(9), 1019–1025.Pruksasri S. (2007). Production and separation of galacto-oligosaccharides from lactose by β-galactosidase immobilized on nanofiltration membranes, PhD thesis, Ohio State University, Chemical Engineering.Raja, S., & Murty, V. R. (2012a). Development and Evaluation of Environmentally Benign Aqueous Two Phase Systems for the Recovery of Proteins from Tannery Waste Water. ISRN Chemical Engineering, 2012, 1–9.Raja, S., & Murty, V. R. (2013). Liquid-Liquid Equilibria of Aqueous Two-Phase Systems Containing PEG + Sodium Citrate + Water at various pH. Journal of Chemical Science and Technology, 2(4), 169–174.Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V., & Ramesh, V. (2012a). Aqueous Two Phase Systems for the Recovery of Biomolecules – A Review. Science and Technology, 1(1), 7–16.Rao MV, Dutta SM (1978) Lactase activity of microorganisms. Folia Microbiol 23:210–215 Reay, D., Ramshaw, C., Harvey A. (2013). Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, second edition. Butterworth-Heinemann Editors.Rico Rodríguez, F. (2018). Evaluación de un sistema mixto de enzimas para la producción de galactooligosacáridos y ácido glucónico a partir de lactosuero como fuente de lactosa, 157. Tesis de doctorado, Universidad Nacional de Colombia, sede Bogotá, Colombia.Rico-Díaz, A., Ramírez-Escudero, M., Vizoso-Vázquez, Á., Cerdán, M. E., Becerra, M., & Sanz- Aparicio, J. (2017). Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.Rosa PAJ, Ferreira IF, Azevedo AM, Aires‑Barros MR (2010) Aqueous two‑phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 217(16):2296–2305.Sakai, T., Tsuji, H., Shibata, S., Hayakawa, K., & Matsumoto, K. (2008). Repeated-batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. The Journal of General and Applied Microbiology, 54(5), 285–293.Sako, T., Matsumoto, K., Tanaka, R. (1999) Recent progress on research and applications of non-digestible galactooligosaccharides. International Dairy J 1999( 9): 69 – 80.Sanz J., 2009. Production of galacto-oligosaccharides from lactose by Immobilized β-galactosidase and posterior Chromatographic separation. PhD thesis, Ohio State University, Chemical Engineering.Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1).Schubert, H., Regier, M., (editors) 2005. Microwave Processing of Food, edited by. CRC Press. Scott, F., Vera, C., & Conejeros, R. (2016). Technical and economic analysis of industrial production of lactose-derived prebiotics with focus on galacto-oligosaccharides. In: Lactose-Derived Prebiotics: A Process Perspective.Sen D., Sarkar A., Gosling A., Gras S., Stevens G., Kentish S., Bhattacharya P., Barber A., Bhattacharjee Ch. (2011), Feasibility study of enzyme immobilization on polymeric membrane: A case study with enzymatically galacto-oligosaccharides production from lactose, Journal of Membrane Science. 378 (1–2) 15: 471-478.Sen D., Gosling A., Stevens G., Bhattacharya P., Barber A., Kentish S., Bhattacharjee Ch., Gras S.,(2011a) Galactosyl oligosaccharide purification by ethanol precipitation, Food Chemistry. (128) (3): 773-777.Seyis, I., & Aksoz, N. (2004). Production of Lactase by Trichoderma sp., Food Technol. Biotechnol. 42 (2) 121–124.Sheu D, Lio P, Chen S, Lin C, Duan K (2001). Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters. 23 (18): 1499-1503.Shoaf, K., Mulvey, G.L., Armstrong, G.D., Hutkins, R.W., 2006. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infection and Immunity 74, 6920–6928.Silva, A. C., Guimaraes, P. M., Teixeira, J. A., & Domingues, L. (2010). Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of industrial microbiology & biotechnology, 37(9), 973-982.Silva, Maria Estela, Pellogia, Cássia, Piza, Francisco Assis Toledo, & Franco, Telma Teixeira. (1997). Purificação de três diferentes beta-galactosidades microbianas por partição em sistemas de duas fases aquosas. Food Science and Technology, 17(3), 219-223.Simons, J., Cocinero, E., Stanca-Kaposta, E., Davis, B., Gamblin, D. (2009). Hydrophilic and hydrophobic carbohydrate interactions. Lasers for science facility programme, chemistry (5).Sinha, J., Dey, P. K., & Panda, T. (2000). Aqueous two-phase: The system of choice for extractive fermentation. Applied Microbiology and Biotechnology, 54(4), 476–486.Splechtna, B., Petzelbauer, I., Baminger, U., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (2001). Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme and microbial technology. Vol. 29, Issue 6-7. 434–440.Tanaka, Y., Kagamiishi, A., Kiuchi, A., Horiuchi, T., 1975. Purification and Properties of β-Galactosidase from Aspergillus oryzae. Journal of Biochemistry 77(1?):241-7.Tjerneld, F. , Persson, I. and Lee, J. M. (1991), Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two‐phase system. Biotechnol. Bioeng., 37: 876-882.Toba T, Adachi S. 1978. Hydrolysis of lactose by microbial beta-galactosidases—formation of oligosaccharides with special reference to 2-0-beta-D-galactopyranosyl-D-glucose. J Dairy Sci 61(1):33–8.Torres, D. P., Goncalves, M., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto oligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9, 438-454. Treybal, R., (1988). Operaciones de Transferencia de Masa, 2 ed. México.Tubío, G., Nerli, B., & Picó, G. (2007). Partitioning features of bovine trypsin and α-chymotrypsin in polyethyleneglycol-sodium citrate aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 852(1–2), 244–249.Tzortzis G and Vulevic J. (2009), Galacto-oligosaccharide, in Prebiotics and Probiotics: Science and Technology, ed. by Charalampopoulos D and Rastall RA. Springer, Guildford. 207–243.Tzortzis G, Goulas AK, Gee JM, Gibson GR (2005) A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 135:1726–1731Tzortzis G, Goulas AK, Gibson GR. 2005. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68(3):412–6.Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Wilson, L., Illanes, A., & Plou, F. J. (2013). Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 61(5).Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: state of the art. World Journal of Microbiology and Biotechnology, 32(12).Vera, C., Guerrero, C., & Illanes, A. (2011). Determination of the transgalactosylation activity of Aspergillus oryzae b -galactosidase : effect of pH , temperature , and galactose and glucose concentrations. Carbohydrate Research, 346(6), 745–752.Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194.Walstra P, Wouter J, Geurts T. (2006). Dairy Science and Technology. second ed. Florida: CRC Press, Taylor & Francis Group; p. 17–26.Ward, T., Allis J., Elder, A. (1975) Measure of Enzymatic Activity Coincident with 2450 MHz Microwave Exposure, Journal of Microwave Power, 10:3, 315-323,Wei, L., Xiaoli, X., Shufen, T., Bing, H., Lin, T., Yi, S., Xiaoxiong, Z. (2009). Effective enzymatic synthesis of lactosucrose and its analogues by β-d-galactosidase from bacillus circulans. Journal of Agricultural and Food Chemistry, 57(9), 3927–3933.White, J. S. (2000). Sugar, special sugars. In Kirk-othmer encyclopedia of chemical technology.Woodley, J. M. (2017). Bioprocess intensification for the effective production of chemical products. Computers and Chemical Engineering, 105, 297–307.Yau, Y. K., Ooi, C. W., Ng, E.-P., Lan, J. C.-W., Ling, T. C., & Show, P. L. (2015). Current applications of different type of aqueous two-phase systems. Bioresources and Bioprocessing, 2(1), 49.Yeargers, E., Langley, J., Sheppard, A., Huddleston, G., 1975. Effects of microwave radiation of enzymes. Ann N Y Acad Sci. 28;247:301-4.Yuan, H., Liu, Y., Wei, W., Zhao, Y., Yuan, H., Liu, Y., … Zhao, Y. (2015). Phase Separation Behavior and System Properties of Aqueous Two-Phase Systems with Polyethylene Glycol and Different Salts: Experiment and Correlation. Journal of Fluids, 2015, 1–10.Zarate, S., & Lopez-Leiva, M. H. (1990). Oligosaccharide formation during enzymatic lactose hydrolysis: A literature review. Journal of Food Protection, 53(3), 262–268.Zhao, H. (2010). Microwave-assisted enzymatic reactions in aqueous media. In V. Polshettiwar, & R. S. Varma (Eds.), Aqueous microwave assisted chemistry (pp. 123-44). Cambridge: RSC Publishing.Zhengyi Li, Min Xiao, Lili Lu, Yumei Li, (2008). Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochemistry. 43 (8): 896-899.Zhi, W., Song, J., Bi, J., & Ouyang, F. (2004). Partial purification of α-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems. Bioprocess and Biosystems Engineering, 27(1), 3–7.Zhou, Q. Z. K., & Chen, X. D. (2001). Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochemical Engineering Journal, 9(1), 33–40.Zijlstra, G, De Gooijert, C., Trampert, J., (1998). Extractive bioconversions in aqueous two-phase systems. Current opinion in Biotechnology, 9, 171 - 176.Cibergrafía https://www.prnewswire.com/news-releases/global-lactase-market-to-reach-us-1647-mn-by-2025---persistence-market-research-676226763.html, consultado el 15 de Agosto de 2019 https://www.globenewswire.com/news-release/2015/01/12/696650/10115085/en/Galacto-Oligosaccharides-GOS-Market-Will-Be-Worth-1-01-Billion-By-2020-New-Report-By-Grand-View-Research-Inc.html, consultado el 5 de Diciembre de 2019 https://www.fedegan.org.co/estadisticas/documentos-de-estadistica, consultado el 21 de Agosto de 2019 https://www.contextoganadero.com/economia/minagricultura-pide-vigilancia-la-importaciones-de-lactosueros, consultado el 28 de Agosto de 2019 http://www.fao.org/docrep/009/a0691e/A0691E07.htm, FAO Corporate Document Repository, 2006. Specific methods, Enzyme preparations. Consultado 03/03/2015.GeneralORIGINALPhD Tesis Germán Castro Moreno Final.pdfPhD Tesis Germán Castro Moreno Final.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf2070707https://repositorio.unal.edu.co/bitstream/unal/79731/5/PhD%20Tesis%20Germ%c3%a1n%20Castro%20Moreno%20Final.pdf2efa821ab27dab1f1e77298fb22ef09fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79731/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAILPhD Tesis Germán Castro Moreno Final.pdf.jpgPhD Tesis Germán Castro Moreno Final.pdf.jpgGenerated Thumbnailimage/jpeg5559https://repositorio.unal.edu.co/bitstream/unal/79731/6/PhD%20Tesis%20Germ%c3%a1n%20Castro%20Moreno%20Final.pdf.jpg513236a69f3423ae1e245e8e1277f12bMD56unal/79731oai:repositorio.unal.edu.co:unal/797312024-07-23 23:33:38.694Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |