Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.

Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón p...

Full description

Autores:
Barragán Jacksson, Camila María
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86296
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86296
https://repositorio.unal.edu.co/
Palabra clave:
560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Contaminación ambiental
Oceanografía
Foraminíferos bentónicos
Offshore del cinturón plegado del Sinú
Intensidad de filtración
Filtraciones frías
Caribe Sur
Zona de transición sulfato- metano
Benthic foraminifera
Offshore of the Sinú folded belt
Cold seeps
South Caribbean
Sulfate and methane transition zone
Filtration intensity
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9843509ea7d74d4600d14f3249c62269
oai_identifier_str oai:repositorio.unal.edu.co:unal/86296
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
dc.title.translated.none.fl_str_mv Response and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt.
title Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
spellingShingle Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Contaminación ambiental
Oceanografía
Foraminíferos bentónicos
Offshore del cinturón plegado del Sinú
Intensidad de filtración
Filtraciones frías
Caribe Sur
Zona de transición sulfato- metano
Benthic foraminifera
Offshore of the Sinú folded belt
Cold seeps
South Caribbean
Sulfate and methane transition zone
Filtration intensity
title_short Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
title_full Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
title_fullStr Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
title_full_unstemmed Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
title_sort Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
dc.creator.fl_str_mv Barragán Jacksson, Camila María
dc.contributor.advisor.none.fl_str_mv Bernal Franco, Gladys Rocío
dc.contributor.author.none.fl_str_mv Barragán Jacksson, Camila María
dc.contributor.researchgroup.spa.fl_str_mv Oceánicos
dc.contributor.orcid.spa.fl_str_mv Barragán Jacksson, Camila María [0000000157086106]
dc.subject.ddc.spa.fl_str_mv 560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Contaminación ambiental
Oceanografía
Foraminíferos bentónicos
Offshore del cinturón plegado del Sinú
Intensidad de filtración
Filtraciones frías
Caribe Sur
Zona de transición sulfato- metano
Benthic foraminifera
Offshore of the Sinú folded belt
Cold seeps
South Caribbean
Sulfate and methane transition zone
Filtration intensity
dc.subject.lemb.none.fl_str_mv Contaminación ambiental
Oceanografía
dc.subject.proposal.spa.fl_str_mv Foraminíferos bentónicos
Offshore del cinturón plegado del Sinú
Intensidad de filtración
Filtraciones frías
Caribe Sur
Zona de transición sulfato- metano
dc.subject.proposal.eng.fl_str_mv Benthic foraminifera
Offshore of the Sinú folded belt
Cold seeps
South Caribbean
Sulfate and methane transition zone
Filtration intensity
description Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-25T19:16:18Z
dc.date.available.none.fl_str_mv 2024-06-25T19:16:18Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86296
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86296
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002
Amato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10.
Amiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283
Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300
Aristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1).
Badesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557
Barreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23).
Barry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1
Basso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723
Bastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR.
Bernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112
Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208
Bernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20.
Bernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirev
Bernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6
Bernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930
Bernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290
Bhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18
Bhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008
Buttitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7
Cai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020
Campbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018
Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632.
Canfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659.
Carson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9
Carvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3
Carvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdf
Carvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511
Conrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems.
Cosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016
Dantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727
Debenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM.
Dessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765
Detlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025
Deville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers.
Di Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225
Dimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591
Dueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552
Elvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag.
Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296
Fatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-X
Feng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001
Fentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4
Flinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246
Fontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006
Fontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5
Gamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.x
Gay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003
Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12
Gieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032
Glock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023
Gómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175
Gonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition.
Gooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1
Gooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5
Gooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8
Gracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421
Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Herguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457
Hernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036
Herrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111.
Hill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-X
Hill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012
Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.
Horikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results.
Houghton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232
Idárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801
Jones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press.
Jørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5
Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016
Jorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174.
Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-X
Jorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3
Judd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294
Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
Kaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0
Katz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia.
Kay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620
Kelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1).
Kelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0).
Kellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA.
Kiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887
Kurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014
Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
Kopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093
Kranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8
Langlet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818
Lee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26).
Leprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3
Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247
Linke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20).
Lintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623
Lopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401
Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9
Lovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*.
Lu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879
Machain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006
Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0
Martin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629
Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024
McGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011
Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1
Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeo
Molina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113
Montoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003
Moodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1).
Mora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612
Murray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390
Naehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010
Naehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164).
Ni, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871
Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879
Ojeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114.
Oksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4).
Osorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121
Otero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016
Palmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621
Pan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1
Panieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008
Panieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020
Panieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006
Panieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005
Panieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006
Panieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002
Parada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327.
Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
Parnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.x
Pierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005
Puerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793
Quintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT.
R Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0).
Rathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0
Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595
Restrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390
Restrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14
Rincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800
Rodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862
Rossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001
Rovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013
Rueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-X
Sahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010
Santa-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863
Schwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-z
Sen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536
Slowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3).
Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017
Takata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724
Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.x
Tarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1
Theodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001
Thomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319
Tinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270
Torres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048
Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824
Toto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2).
Trejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782
Valentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351
Valentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.x
Van Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press.
Vernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-P
Villareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.co
Vinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92).
Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeo
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Wilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012
Wollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004
WoRMS Editorial Board. (2024, January 31). World Register of Marine Species.
Wurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004
Yang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026
Zhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007
Zhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7
Zyakun. (1992). Isotopes and their possible use as biomarkers of microbial products.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 112 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86296/5/1053859882.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86296/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86296/6/1053859882.2024.pdf.jpg
bitstream.checksum.fl_str_mv 7de91b065a32d395ad7738d1f215793f
eb34b1cf90b7e1103fc9dfd26be24b4a
139e95cd474355002b5038a81b8f23b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089202184224768
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Franco, Gladys Rocíof151dbb3c55ee606e69d3eac64d371ddBarragán Jacksson, Camila María4804073f132d82d14627c50970e57ae2OceánicosBarragán Jacksson, Camila María [0000000157086106]2024-06-25T19:16:18Z2024-06-25T19:16:18Z2024https://repositorio.unal.edu.co/handle/unal/86296Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente)Benthic foraminifera have proven to be local tools for understanding the dynamics of methane seepage worldwide. This study characterizes the filtration level of 18 stations within a filtration field between the continental shelf and the slope of the Sinú fold belt based on the spatial variability of benthic foraminifera (BF) populations in relation to filtrations and fluid migration activity.The spatial variability of the leaks was identified in 4 activity zones, based on the dominance of the assemblages of the dominant species and the variables obtained from BF in conjunction with cluster analysis and PCA. The assemblage of Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum and C. poeyanum, represents the zone of low activity; the assemblage of L. ungeriana, C. mundulus, C. pseudoungerianus that of moderate filtration; the assemblage of L. soldanii, B. irregularis and B. cf aspratilis with moderate-high filtration; while the high filtration zone is identified with C. mundulus and other hyaline species. Furthermore, physiological adaptations such as symbiosis, type of substrate, and methane transport turn out to have an impact on the abundances of these species in the different filtration zones, indicating the favoring of greater abundances of BF in zones of moderate activity. Finally, the relationship of BF with methane and other environmental variables was identified from a redundancy analysis (RDA) where the BF populations studied respond mainly to the type of substrate, salinity and methane seepage.MaestríaMagíster en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambiente112 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaContaminación ambientalOceanografíaForaminíferos bentónicosOffshore del cinturón plegado del SinúIntensidad de filtraciónFiltraciones fríasCaribe SurZona de transición sulfato- metanoBenthic foraminiferaOffshore of the Sinú folded beltCold seepsSouth CaribbeanSulfate and methane transition zoneFiltration intensityRespuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.Response and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002Amato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10.Amiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300Aristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1).Badesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557Barreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23).Barry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1Basso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723Bastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR.Bernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208Bernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20.Bernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirevBernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6Bernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930Bernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290Bhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18Bhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008Buttitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7Cai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020Campbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632.Canfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659.Carson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9Carvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3Carvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdfCarvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511Conrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems.Cosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016Dantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727Debenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM.Dessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765Detlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025Deville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers.Di Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225Dimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591Dueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552Elvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag.Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296Fatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-XFeng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001Fentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4Flinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246Fontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006Fontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5Gamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.xGay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12Gieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032Glock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023Gómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175Gonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition.Gooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1Gooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5Gooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8Gracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.Herguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457Hernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036Herrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111.Hill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-XHill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.Horikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results.Houghton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232Idárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801Jones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press.Jørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016Jorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174.Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-XJorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3Judd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2Kaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0Katz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia.Kay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620Kelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1).Kelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0).Kellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA.Kiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887Kurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130Kopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093Kranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8Langlet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818Lee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26).Leprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247Linke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20).Lintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623Lopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9Lovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*.Lu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879Machain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0Martin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024McGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeoMolina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113Montoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003Moodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1).Mora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612Murray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390Naehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010Naehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164).Ni, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879Ojeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114.Oksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4).Osorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121Otero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016Palmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621Pan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1Panieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008Panieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020Panieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006Panieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005Panieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006Panieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002Parada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327.Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627Parnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.xPierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005Puerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793Quintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT.R Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0).Rathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595Restrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390Restrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14Rincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800Rodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862Rossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001Rovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013Rueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-XSahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010Santa-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863Schwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-zSen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536Slowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3).Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017Takata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.xTarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1Theodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001Thomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319Tinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270Torres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824Toto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2).Trejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782Valentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351Valentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.xVan Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press.Vernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-PVillareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.coVinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92).Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeoWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012Wollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004WoRMS Editorial Board. (2024, January 31). World Register of Marine Species.Wurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004Yang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026Zhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007Zhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7Zyakun. (1992). Isotopes and their possible use as biomarkers of microbial products.Methane Seep Hunting a multi-scale and multi-method approachMincienciasANHUniversidad Nacional de ColombiaEstudiantesInvestigadoresPúblico generalORIGINAL1053859882.2024.pdf1053859882.2024.pdftesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf7569741https://repositorio.unal.edu.co/bitstream/unal/86296/5/1053859882.2024.pdf7de91b065a32d395ad7738d1f215793fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86296/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1053859882.2024.pdf.jpg1053859882.2024.pdf.jpgGenerated Thumbnailimage/jpeg5683https://repositorio.unal.edu.co/bitstream/unal/86296/6/1053859882.2024.pdf.jpg139e95cd474355002b5038a81b8f23b2MD56unal/86296oai:repositorio.unal.edu.co:unal/862962024-08-25 23:11:44.908Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=