Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón p...
- Autores:
-
Barragán Jacksson, Camila María
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86296
- Palabra clave:
- 560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Contaminación ambiental
Oceanografía
Foraminíferos bentónicos
Offshore del cinturón plegado del Sinú
Intensidad de filtración
Filtraciones frías
Caribe Sur
Zona de transición sulfato- metano
Benthic foraminifera
Offshore of the Sinú folded belt
Cold seeps
South Caribbean
Sulfate and methane transition zone
Filtration intensity
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_9843509ea7d74d4600d14f3249c62269 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86296 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
dc.title.translated.none.fl_str_mv |
Response and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt. |
title |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
spellingShingle |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. 560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Contaminación ambiental Oceanografía Foraminíferos bentónicos Offshore del cinturón plegado del Sinú Intensidad de filtración Filtraciones frías Caribe Sur Zona de transición sulfato- metano Benthic foraminifera Offshore of the Sinú folded belt Cold seeps South Caribbean Sulfate and methane transition zone Filtration intensity |
title_short |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
title_full |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
title_fullStr |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
title_full_unstemmed |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
title_sort |
Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú. |
dc.creator.fl_str_mv |
Barragán Jacksson, Camila María |
dc.contributor.advisor.none.fl_str_mv |
Bernal Franco, Gladys Rocío |
dc.contributor.author.none.fl_str_mv |
Barragán Jacksson, Camila María |
dc.contributor.researchgroup.spa.fl_str_mv |
Oceánicos |
dc.contributor.orcid.spa.fl_str_mv |
Barragán Jacksson, Camila María [0000000157086106] |
dc.subject.ddc.spa.fl_str_mv |
560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología |
topic |
560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Contaminación ambiental Oceanografía Foraminíferos bentónicos Offshore del cinturón plegado del Sinú Intensidad de filtración Filtraciones frías Caribe Sur Zona de transición sulfato- metano Benthic foraminifera Offshore of the Sinú folded belt Cold seeps South Caribbean Sulfate and methane transition zone Filtration intensity |
dc.subject.lemb.none.fl_str_mv |
Contaminación ambiental Oceanografía |
dc.subject.proposal.spa.fl_str_mv |
Foraminíferos bentónicos Offshore del cinturón plegado del Sinú Intensidad de filtración Filtraciones frías Caribe Sur Zona de transición sulfato- metano |
dc.subject.proposal.eng.fl_str_mv |
Benthic foraminifera Offshore of the Sinú folded belt Cold seeps South Caribbean Sulfate and methane transition zone Filtration intensity |
description |
Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente) |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-25T19:16:18Z |
dc.date.available.none.fl_str_mv |
2024-06-25T19:16:18Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86296 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86296 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002 Amato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10. Amiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283 Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300 Aristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1). Badesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557 Barreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23). Barry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1 Basso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723 Bastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR. Bernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112 Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208 Bernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20. Bernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirev Bernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6 Bernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930 Bernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290 Bhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18 Bhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008 Buttitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7 Cai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020 Campbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018 Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632. Canfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659. Carson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9 Carvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3 Carvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdf Carvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511 Conrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems. Cosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016 Dantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727 Debenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM. Dessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765 Detlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025 Deville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers. Di Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225 Dimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591 Dueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552 Elvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag. Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296 Fatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-X Feng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001 Fentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4 Flinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246 Fontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006 Fontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5 Gamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.x Gay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003 Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12 Gieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032 Glock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023 Gómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175 Gonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition. Gooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1 Gooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5 Gooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8 Gracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421 Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm. Herguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457 Hernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036 Herrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111. Hill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-X Hill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012 Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805. Horikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results. Houghton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232 Idárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801 Jones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press. Jørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5 Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016 Jorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174. Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-X Jorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3 Judd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294 Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2 Kaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0 Katz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia. Kay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620 Kelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1). Kelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0). Kellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA. Kiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887 Kurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014 Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130 Kopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093 Kranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8 Langlet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818 Lee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26). Leprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3 Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247 Linke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20). Lintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623 Lopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401 Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9 Lovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*. Lu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879 Machain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006 Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0 Martin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629 Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024 McGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011 Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1 Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeo Molina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113 Montoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003 Moodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1). Mora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612 Murray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390 Naehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010 Naehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164). Ni, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871 Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879 Ojeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114. Oksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4). Osorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121 Otero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016 Palmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621 Pan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1 Panieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008 Panieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020 Panieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006 Panieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005 Panieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006 Panieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002 Parada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327. Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627 Parnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.x Pierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005 Puerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793 Quintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT. R Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0). Rathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0 Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595 Restrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390 Restrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14 Rincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800 Rodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862 Rossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001 Rovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013 Rueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-X Sahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010 Santa-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863 Schwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-z Sen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9 Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536 Slowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3). Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017 Takata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724 Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.x Tarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1 Theodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001 Thomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319 Tinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270 Torres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048 Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824 Toto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2). Trejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782 Valentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351 Valentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.x Van Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press. Vernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-P Villareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.co Vinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008 Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92). Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeo Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012 Wollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004 WoRMS Editorial Board. (2024, January 31). World Register of Marine Species. Wurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004 Yang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026 Zhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007 Zhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7 Zyakun. (1992). Isotopes and their possible use as biomarkers of microbial products. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
112 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86296/5/1053859882.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86296/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86296/6/1053859882.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
7de91b065a32d395ad7738d1f215793f eb34b1cf90b7e1103fc9dfd26be24b4a 139e95cd474355002b5038a81b8f23b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089202184224768 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Franco, Gladys Rocíof151dbb3c55ee606e69d3eac64d371ddBarragán Jacksson, Camila María4804073f132d82d14627c50970e57ae2OceánicosBarragán Jacksson, Camila María [0000000157086106]2024-06-25T19:16:18Z2024-06-25T19:16:18Z2024https://repositorio.unal.edu.co/handle/unal/86296Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Los foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente)Benthic foraminifera have proven to be local tools for understanding the dynamics of methane seepage worldwide. This study characterizes the filtration level of 18 stations within a filtration field between the continental shelf and the slope of the Sinú fold belt based on the spatial variability of benthic foraminifera (BF) populations in relation to filtrations and fluid migration activity.The spatial variability of the leaks was identified in 4 activity zones, based on the dominance of the assemblages of the dominant species and the variables obtained from BF in conjunction with cluster analysis and PCA. The assemblage of Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum and C. poeyanum, represents the zone of low activity; the assemblage of L. ungeriana, C. mundulus, C. pseudoungerianus that of moderate filtration; the assemblage of L. soldanii, B. irregularis and B. cf aspratilis with moderate-high filtration; while the high filtration zone is identified with C. mundulus and other hyaline species. Furthermore, physiological adaptations such as symbiosis, type of substrate, and methane transport turn out to have an impact on the abundances of these species in the different filtration zones, indicating the favoring of greater abundances of BF in zones of moderate activity. Finally, the relationship of BF with methane and other environmental variables was identified from a redundancy analysis (RDA) where the BF populations studied respond mainly to the type of substrate, salinity and methane seepage.MaestríaMagíster en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambiente112 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaContaminación ambientalOceanografíaForaminíferos bentónicosOffshore del cinturón plegado del SinúIntensidad de filtraciónFiltraciones fríasCaribe SurZona de transición sulfato- metanoBenthic foraminiferaOffshore of the Sinú folded beltCold seepsSouth CaribbeanSulfate and methane transition zoneFiltration intensityRespuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.Response and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002Amato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10.Amiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300Aristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1).Badesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557Barreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23).Barry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1Basso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723Bastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR.Bernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208Bernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20.Bernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirevBernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6Bernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930Bernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290Bhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18Bhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008Buttitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7Cai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020Campbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632.Canfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659.Carson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9Carvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3Carvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdfCarvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511Conrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems.Cosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016Dantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727Debenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM.Dessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765Detlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025Deville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers.Di Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225Dimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591Dueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552Elvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag.Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296Fatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-XFeng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001Fentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4Flinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246Fontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006Fontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5Gamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.xGay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12Gieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032Glock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023Gómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175Gonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition.Gooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1Gooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5Gooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8Gracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.Herguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457Hernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036Herrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111.Hill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-XHill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012Hinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.Horikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results.Houghton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232Idárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801Jones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press.Jørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5Jørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016Jorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174.Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-XJorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3Judd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2Kaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0Katz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia.Kay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620Kelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1).Kelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0).Kellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA.Kiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887Kurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130Kopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093Kranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8Langlet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818Lee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26).Leprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3Li, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247Linke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20).Lintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623Lopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9Lovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*.Lu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879Machain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0Martin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024McGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeoMolina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113Montoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003Moodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1).Mora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612Murray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390Naehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010Naehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164).Ni, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879Ojeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114.Oksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4).Osorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121Otero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016Palmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621Pan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1Panieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008Panieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020Panieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006Panieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005Panieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006Panieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002Parada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327.Pardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627Parnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.xPierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005Puerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793Quintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT.R Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0).Rathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595Restrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390Restrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14Rincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800Rodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862Rossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001Rovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013Rueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-XSahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010Santa-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863Schwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-zSen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536Slowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3).Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017Takata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.xTarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1Theodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001Thomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319Tinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270Torres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824Toto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2).Trejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782Valentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351Valentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.xVan Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press.Vernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-PVillareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.coVinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92).Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeoWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012Wollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004WoRMS Editorial Board. (2024, January 31). World Register of Marine Species.Wurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004Yang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026Zhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007Zhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7Zyakun. (1992). Isotopes and their possible use as biomarkers of microbial products.Methane Seep Hunting a multi-scale and multi-method approachMincienciasANHUniversidad Nacional de ColombiaEstudiantesInvestigadoresPúblico generalORIGINAL1053859882.2024.pdf1053859882.2024.pdftesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf7569741https://repositorio.unal.edu.co/bitstream/unal/86296/5/1053859882.2024.pdf7de91b065a32d395ad7738d1f215793fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86296/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1053859882.2024.pdf.jpg1053859882.2024.pdf.jpgGenerated Thumbnailimage/jpeg5683https://repositorio.unal.edu.co/bitstream/unal/86296/6/1053859882.2024.pdf.jpg139e95cd474355002b5038a81b8f23b2MD56unal/86296oai:repositorio.unal.edu.co:unal/862962024-08-25 23:11:44.908Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |