Kaolin quality determination through an algorithm based on non-parametric fuzzy logic

In this article we describe a new fuzzy supervised classification method that is a modification of the fuzzy pattern-matching multidensity classifier. The latter has been demonstrated to be one of the most effective classifiers for non-convex classes. Implementing a non- parametric density estimator...

Full description

Autores:
Ordóñez, Celestino
Saavedra, Angeles
Araújo, María
Giráldez, Eduardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/40595
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/40595
http://bdigital.unal.edu.co/30692/
Palabra clave:
classification
fuzzy set
non-parametric fuzzy logic
kaolin quality
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this article we describe a new fuzzy supervised classification method that is a modification of the fuzzy pattern-matching multidensity classifier. The latter has been demonstrated to be one of the most effective classifiers for non-convex classes. Implementing a non- parametric density estimator in one stage of the parametric method, we developed a fuzzy non-parametric classifier that manages to avoid some of the problems associated with the parametric method. The method was applied to a mineralogy problem consistingof classifying kaolin samples according to different ceramic quality levels. Our results produced error percentages that were lower than those for the parametric method.