Modeling techniques for photovoltaic systems under mismatching conditions

There is a growing interest in photovoltaic (PV) systems since they represent a strong option for power supply around the world. Therefore, there is also a growing necessity for developing tools to analyze the behavior of the PV systems under realistic conditions. Hence, better planning, design and...

Full description

Autores:
Trejos Grisales, Luz Adriana
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/64172
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/64172
http://bdigital.unal.edu.co/65004/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Photovoltaic
Module
Array
Modeling
Shading
Mismatching
Bypass diode
Equivalent circuit
Algorithm
Fotovoltaico
Módulo
Arreglo
Modelado
Sombra
Irregular
Diodo de bypass
Circuito equivalente
Slgoritmo
Sistemas fotovoltaicos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_981b56ec033f4ce2a8b87b46552b28f2
oai_identifier_str oai:repositorio.unal.edu.co:unal/64172
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modeling techniques for photovoltaic systems under mismatching conditions
title Modeling techniques for photovoltaic systems under mismatching conditions
spellingShingle Modeling techniques for photovoltaic systems under mismatching conditions
62 Ingeniería y operaciones afines / Engineering
Photovoltaic
Module
Array
Modeling
Shading
Mismatching
Bypass diode
Equivalent circuit
Algorithm
Fotovoltaico
Módulo
Arreglo
Modelado
Sombra
Irregular
Diodo de bypass
Circuito equivalente
Slgoritmo
Sistemas fotovoltaicos
title_short Modeling techniques for photovoltaic systems under mismatching conditions
title_full Modeling techniques for photovoltaic systems under mismatching conditions
title_fullStr Modeling techniques for photovoltaic systems under mismatching conditions
title_full_unstemmed Modeling techniques for photovoltaic systems under mismatching conditions
title_sort Modeling techniques for photovoltaic systems under mismatching conditions
dc.creator.fl_str_mv Trejos Grisales, Luz Adriana
dc.contributor.advisor.spa.fl_str_mv Ramos Paja, Carlos Andrés (Thesis advisor)
Spagnuolo, Giovanni (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Trejos Grisales, Luz Adriana
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Photovoltaic
Module
Array
Modeling
Shading
Mismatching
Bypass diode
Equivalent circuit
Algorithm
Fotovoltaico
Módulo
Arreglo
Modelado
Sombra
Irregular
Diodo de bypass
Circuito equivalente
Slgoritmo
Sistemas fotovoltaicos
dc.subject.proposal.spa.fl_str_mv Photovoltaic
Module
Array
Modeling
Shading
Mismatching
Bypass diode
Equivalent circuit
Algorithm
Fotovoltaico
Módulo
Arreglo
Modelado
Sombra
Irregular
Diodo de bypass
Circuito equivalente
Slgoritmo
Sistemas fotovoltaicos
description There is a growing interest in photovoltaic (PV) systems since they represent a strong option for power supply around the world. Therefore, there is also a growing necessity for developing tools to analyze the behavior of the PV systems under realistic conditions. Hence, better planning, design and operative strategies can be developed. This thesis addresses the issues related with the modeling of PV systems operating under uniform and mismatched irradiance conditions. Moreover, this work considers the PV array connected in different configurations. In this way, the first part of the thesis presents the state-of-the-art in modeling techniques, it including circuital representations of PV cells and modules and its behavior under different scenarios, operation characteristics of different configurations, the effects of the operation under shading conditions, available modeling techniques, among others. The Series-Parallel (SP) is one of the most studied configuration, then some modeling techniques for SP arrays are introduced in this thesis. Such procedures allowed to understand the operation of PV arrays to detect the main aspects that need to be considered in a modeling process. The first technique is based on the ideal single diode model but considers the operation of the modules in the second quadrant by using a linear model to represent the bypass diodes. The approach allows to avoid introducing errors which may cause overestimation in the predicted power when the array is exposed to partial shading conditions. A second approach introduces a combination between the single diode model to represent the modules and a linear model to represent the bypass diodes; the mathematical relationships between the voltages and currents in the modules are typically implicit expression which requires the use of special functions as the Lambert-W function. However, the approach introduced a procedure to avoid the use of such a function, which allows to reduce the computation bur- den. The third approach is based on the single diode model for representing the PV modules and the Schottky model for representing the bypass diode; it proposes a procedure to calculate the maximum power point (MPP) for a given condition operation, without the need of calculating the whole power vs. voltage curve as it is typically performed. Instead, the procedure calculates some points in the neighborhood of the local maximum power points (LMPP) to define the MPP, it providing a fast calculation of the power delivered by the array for a given operating condition. Moreover, the procedure applies the mathematical treatment introduced in the second approach to avoid using the Lambert-W function. Finally, the fourth approach is based on simplified versions of the single diode model and the Schottky model; such versions are named ideal single diode model and ideal switch model, respectively. The main purpose of the approach is to introduce a procedure for modeling the shading considering its dynamic behavior which enables to achieve a more realistic operating condition to calculate the power provided by the array. Other PV configurations, such as the Total Cross Tied (TCT) or the Bridge Linked (BL), may present better performances in comparison with the SP configuration for some opera- ting conditions. However, there is no detailed procedures for modeling such configurations. In fact, the available techniques allow to analyze only one configuration which means that for each configuration a modeling algorithm is required, it making the evaluation of several configuration a complex and time consuming task. In other words, there is not a modeling procedure capable to represent any configuration. Therefore, a general modeling procedure for analyzing any PV configuration operating under uniform or shading conditions is introduced in this thesis. The possibility of studying any connection allows to consider structures without any connection pattern, in this way the thesis introduces the concept of irregular structure as a new option for obtaining improved power profiles at a particular operating condition. The general modeling procedure is a useful tool for reconfigurations analysis, planning and design of PV arrays. All the modeling approaches presented in this work were validated through simulations and experimental tests. Most of them were implemented using Matlab scripts based on widely known programming structures and mathematical functions, those codes can be reproduced in languages such as C and C + +
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018
dc.date.accessioned.spa.fl_str_mv 2019-07-02T22:35:36Z
dc.date.available.spa.fl_str_mv 2019-07-02T22:35:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/64172
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/65004/
url https://repositorio.unal.edu.co/handle/unal/64172
http://bdigital.unal.edu.co/65004/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura
Facultad de Ingeniería y Arquitectura
dc.relation.references.spa.fl_str_mv Trejos Grisales, Luz Adriana (2018) Modeling techniques for photovoltaic systems under mismatching conditions. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/64172/1/7913008.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/64172/2/7913008.2018.pdf.jpg
bitstream.checksum.fl_str_mv 681dc98f3fee694e45747619ad6f3b99
595f0904db4844049cf89c01e2b1437f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886546645712896
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramos Paja, Carlos Andrés (Thesis advisor)f1338b2c-11fb-4591-b9b5-f8cee8a6c1d7-1Spagnuolo, Giovanni (Thesis advisor)32acbaec-1872-44b2-bb4c-a8f584dc90fd-1Trejos Grisales, Luz Adriana5ac0e9c8-da18-479f-ab7d-eb0d788a3bd53002019-07-02T22:35:36Z2019-07-02T22:35:36Z2018https://repositorio.unal.edu.co/handle/unal/64172http://bdigital.unal.edu.co/65004/There is a growing interest in photovoltaic (PV) systems since they represent a strong option for power supply around the world. Therefore, there is also a growing necessity for developing tools to analyze the behavior of the PV systems under realistic conditions. Hence, better planning, design and operative strategies can be developed. This thesis addresses the issues related with the modeling of PV systems operating under uniform and mismatched irradiance conditions. Moreover, this work considers the PV array connected in different configurations. In this way, the first part of the thesis presents the state-of-the-art in modeling techniques, it including circuital representations of PV cells and modules and its behavior under different scenarios, operation characteristics of different configurations, the effects of the operation under shading conditions, available modeling techniques, among others. The Series-Parallel (SP) is one of the most studied configuration, then some modeling techniques for SP arrays are introduced in this thesis. Such procedures allowed to understand the operation of PV arrays to detect the main aspects that need to be considered in a modeling process. The first technique is based on the ideal single diode model but considers the operation of the modules in the second quadrant by using a linear model to represent the bypass diodes. The approach allows to avoid introducing errors which may cause overestimation in the predicted power when the array is exposed to partial shading conditions. A second approach introduces a combination between the single diode model to represent the modules and a linear model to represent the bypass diodes; the mathematical relationships between the voltages and currents in the modules are typically implicit expression which requires the use of special functions as the Lambert-W function. However, the approach introduced a procedure to avoid the use of such a function, which allows to reduce the computation bur- den. The third approach is based on the single diode model for representing the PV modules and the Schottky model for representing the bypass diode; it proposes a procedure to calculate the maximum power point (MPP) for a given condition operation, without the need of calculating the whole power vs. voltage curve as it is typically performed. Instead, the procedure calculates some points in the neighborhood of the local maximum power points (LMPP) to define the MPP, it providing a fast calculation of the power delivered by the array for a given operating condition. Moreover, the procedure applies the mathematical treatment introduced in the second approach to avoid using the Lambert-W function. Finally, the fourth approach is based on simplified versions of the single diode model and the Schottky model; such versions are named ideal single diode model and ideal switch model, respectively. The main purpose of the approach is to introduce a procedure for modeling the shading considering its dynamic behavior which enables to achieve a more realistic operating condition to calculate the power provided by the array. Other PV configurations, such as the Total Cross Tied (TCT) or the Bridge Linked (BL), may present better performances in comparison with the SP configuration for some opera- ting conditions. However, there is no detailed procedures for modeling such configurations. In fact, the available techniques allow to analyze only one configuration which means that for each configuration a modeling algorithm is required, it making the evaluation of several configuration a complex and time consuming task. In other words, there is not a modeling procedure capable to represent any configuration. Therefore, a general modeling procedure for analyzing any PV configuration operating under uniform or shading conditions is introduced in this thesis. The possibility of studying any connection allows to consider structures without any connection pattern, in this way the thesis introduces the concept of irregular structure as a new option for obtaining improved power profiles at a particular operating condition. The general modeling procedure is a useful tool for reconfigurations analysis, planning and design of PV arrays. All the modeling approaches presented in this work were validated through simulations and experimental tests. Most of them were implemented using Matlab scripts based on widely known programming structures and mathematical functions, those codes can be reproduced in languages such as C and C + +Resumen: Hay un creciente interés en los sistemas fotovoltaicos (PV) debido a que ellos representan una opción fuerte para abastecimiento al rededor del mundo. Por esto, también hay una necesidad creciente de desarrollar herramientas para analizar el comportamiento de dichos sistemas bajo condiciones realistas. Por tanto, mejor planeamiento, diseño y estrategias de operación pueden desarrollarse. Esta tesis aborda los problemas relacionados con el modelado de sistemas fotovoltaicos operando bajo condiciones uniformes y no uniformes. Más aun, este trabajo considera el arreglo fotovoltaico conectado en diferentes configuraciones. De esta forma, la primera parte de la tesis presenta el estado del arte en técnicas de modelado, esto incluyendo las representaciones circuitales de las celdas y modelos fotovoltaicos y su comportamiento en diferentes escenarios, características de operación de diferentes configuraciones, los efectos de la operación bajo condiciones de sombreado, técnicas de modelado disponible, entre otros. La configuración serie paralelo (SP) es una de las estudiadas, por tanto, algunas técnicas para modelar arreglos SP son introducidas en esta tesis. Tales procedimientos permiten entender la operación de arreglos fotovoltaicos para detectar los aspectos principales que se deben considerar en un proceso de modelado. La primera técnica está basada en el modelo ideal de un solo diodo, pero considera la operación en el segundo cuadrante utilizando un modelo lineal para representar el diodo de bypass. Esta aproximación evita errores que provocan sobre estimación en el cálculo de la potencia cuando el arreglo está expuesto a condiciones de sombreado parcial. Una segunda aproximación introduce una combinación entre el modelo de un solo diodo y un modelo lineal para el diodo de bypass; las relaciones matemáticas entre voltajes y corrientes en el módulo son típicamente implícitas lo cual requiere el uso de funciones especiales como la función Lambert W. Sin embargo, la aproximación introduce un procedimiento para evitar el uso de tal funciona, lo cual permite reducir la carga computacional. La tercera aproximación está basada en el modelo de un solo diodo para representar los módulos y el modelo Schottky para representar los diodos de bypass; se propone un procedimiento para calcular el punto de máxima potencia (MPP) para una condición de operación dada sin la necesidad de calcular toda la curva potencia vs voltaje como es realizado normalmente. En cambio, el procedimiento calcula algunos puntos en la vecindad de los puntos máximos locales (LMPP) para definir el MPP, logrando un cálculo rápido de la potencia entregada por el array en una condición de operación. Más aun, el procedimiento aplica tratamiento matemático introducida en la segunda aproximación para evitar el uso de la función Lambert W. Finalmente, la cuarta aproximación está basada en versiones simplificadas del modelo de un solo diodo y el modelo Schottky; tales versiones son llamadas modelo ideal de un solo diodo y modelo de interruptor ideal, respectivamente. El propósito principal de esta aproximación es introducir un procedimiento para modelar la sombra considerando su comportamiento dinámico lo cual permite obtener una condición de operación más realista para calcular la potencia entregada por el arreglo. Otras configuraciones PV tales como la Total Cross Tied (TCT) o la Bridge Linked (BL) pueden presentar mejor desempeño en comparación con la SP para algunas condiciones de operación. Sin embargo, no hay procedimientos detallados para modelar dichas configuraciones. De hecho, las técnicas disponibles permiten analizar solo una configuración lo cual significa que para cada configuración un algoritmo es requerido. Esto haciendo que la evaluación de diferentes configuraciones sea una tarea compleja y que consume mucho tiempo. En otras palabras, no hay un procedimiento de modelado capaz de representar cualquier configuración. Por esto, un procedimiento de modelado general para analizar cualquier configuración operando bajo condiciones uniformes o de sombrado parcial es introducido en esta tesis. La posibilidad de estudiar cualquier conexión permite considerar estructuras sin ningún patrón de conexión, de esta forma esta tesis introduce el concepto de arreglo irregular como una nueva opción para obtener perfiles de potencia mejorados para ciertas condiciones de operación. El procedimiento de modelado general es una herramienta útil para aplicaciones como reconfiguración, planeamiento y diseño de arreglos fotovoltaicos. Todas las aproximaciones presentadas en este trabajo fueron validadas en pruebas de simulación y experimentales. La mayoría de ellas se implementaron en códigos de Matlab basados en estructuras de programación ampliamente utilizadas, estos códigos pueden ser reproducidos en lenguajes como C o C + +Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y ArquitecturaFacultad de Ingeniería y ArquitecturaTrejos Grisales, Luz Adriana (2018) Modeling techniques for photovoltaic systems under mismatching conditions. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.62 Ingeniería y operaciones afines / EngineeringPhotovoltaicModuleArrayModelingShadingMismatchingBypass diodeEquivalent circuitAlgorithmFotovoltaicoMóduloArregloModeladoSombraIrregularDiodo de bypassCircuito equivalenteSlgoritmoSistemas fotovoltaicosModeling techniques for photovoltaic systems under mismatching conditionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL7913008.2018.pdfapplication/pdf8726728https://repositorio.unal.edu.co/bitstream/unal/64172/1/7913008.2018.pdf681dc98f3fee694e45747619ad6f3b99MD51THUMBNAIL7913008.2018.pdf.jpg7913008.2018.pdf.jpgGenerated Thumbnailimage/jpeg4435https://repositorio.unal.edu.co/bitstream/unal/64172/2/7913008.2018.pdf.jpg595f0904db4844049cf89c01e2b1437fMD52unal/64172oai:repositorio.unal.edu.co:unal/641722023-04-25 23:09:14.019Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co