Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks

ilustraciones, diagramas, tablas

Autores:
Mosquera Tobar, Jhessica Daniela
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86855
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86855
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
CULTIVOS MIXTOS
SUELOS ENCAPSULADOS
PLANTAS PARA TRATAMIENTO DE RESIDUOS
EQUIPOS DE TRATAMIENTO DEL AGUA
TECNOLOGIA AMBIENTAL
Companion crops
Potting soils
Waste treatment plants
Water treatment equipment
Environmental technology
Polyhydroxyalkanoates
Volatile fatty acids
Life cycle assessment
Bioprocesses simulation
Polihidroxialcanoatos
Ácidos grasos volátiles
Análisis de ciclo de vida
Simulación de bioprocesos
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_97d70b74d5bbc86207deb734d790fb19
oai_identifier_str oai:repositorio.unal.edu.co:unal/86855
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
dc.title.translated.spa.fl_str_mv Evaluación técnico-ambiental del potencial de producción de polihidroxialcanoatos PHA a partir de cultivos microbianos mixtos y sustratos de origen residual
title Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
spellingShingle Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
CULTIVOS MIXTOS
SUELOS ENCAPSULADOS
PLANTAS PARA TRATAMIENTO DE RESIDUOS
EQUIPOS DE TRATAMIENTO DEL AGUA
TECNOLOGIA AMBIENTAL
Companion crops
Potting soils
Waste treatment plants
Water treatment equipment
Environmental technology
Polyhydroxyalkanoates
Volatile fatty acids
Life cycle assessment
Bioprocesses simulation
Polihidroxialcanoatos
Ácidos grasos volátiles
Análisis de ciclo de vida
Simulación de bioprocesos
title_short Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
title_full Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
title_fullStr Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
title_full_unstemmed Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
title_sort Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks
dc.creator.fl_str_mv Mosquera Tobar, Jhessica Daniela
dc.contributor.advisor.spa.fl_str_mv Moreno Sarmiento, Nubia
Cabeza Rojas, Iván
dc.contributor.author.spa.fl_str_mv Mosquera Tobar, Jhessica Daniela
dc.contributor.researchgroup.spa.fl_str_mv Gema ­ Grupo de Estudio de Materiales
Bioprocesos y Bioprospección
dc.contributor.orcid.spa.fl_str_mv Mosquera, Jhessica [0000000339732439]
dc.contributor.cvlac.spa.fl_str_mv Jhessica Daniela Mosquera Tobar
dc.contributor.scopus.spa.fl_str_mv Mosquera, Jhessica D. [57214898878]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
CULTIVOS MIXTOS
SUELOS ENCAPSULADOS
PLANTAS PARA TRATAMIENTO DE RESIDUOS
EQUIPOS DE TRATAMIENTO DEL AGUA
TECNOLOGIA AMBIENTAL
Companion crops
Potting soils
Waste treatment plants
Water treatment equipment
Environmental technology
Polyhydroxyalkanoates
Volatile fatty acids
Life cycle assessment
Bioprocesses simulation
Polihidroxialcanoatos
Ácidos grasos volátiles
Análisis de ciclo de vida
Simulación de bioprocesos
dc.subject.lemb.spa.fl_str_mv CULTIVOS MIXTOS
SUELOS ENCAPSULADOS
PLANTAS PARA TRATAMIENTO DE RESIDUOS
EQUIPOS DE TRATAMIENTO DEL AGUA
TECNOLOGIA AMBIENTAL
dc.subject.lemb.eng.fl_str_mv Companion crops
Potting soils
Waste treatment plants
Water treatment equipment
Environmental technology
dc.subject.proposal.eng.fl_str_mv Polyhydroxyalkanoates
Volatile fatty acids
Life cycle assessment
Bioprocesses simulation
dc.subject.proposal.spa.fl_str_mv Polihidroxialcanoatos
Ácidos grasos volátiles
Análisis de ciclo de vida
Simulación de bioprocesos
description ilustraciones, diagramas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-23T19:04:01Z
dc.date.available.none.fl_str_mv 2024-09-23T19:04:01Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86855
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86855
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ahring, B.K., Angelidaki, I., De Macario, E.C., Gavala, H.N., Hofman-Bang, J., Macario, A.J.L., Elferink, S.J.W.H.O., Raskin, L., Stams, A.J.M., Westermann, P., Zheng, D. (Eds.), 2003. Biomethanation I, Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45839-5
Albuquerque, M.G.E., Concas, S., Bengtsson, S., Reis, M.A.M., 2010. Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection. Bioresource Technology 101, 7112–7122. https://doi.org/10.1016/j.biortech.2010.04.019
Amulya, K., Jukuri, S., Venkata Mohan, S., 2015. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresource Technology 188, 231–239. https://doi.org/10.1016/j.biortech.2015.01.070
Andhalkar, V.V., Foong, S.Y., Kee, S.H., Lam, S.S., Chan, Y.H., Djellabi, R., Bhubalan, K., Medina, F., Constantí, M., 2023. Integrated Biorefinery Design with Techno-Economic and Life Cycle Assessment Tools in Polyhydroxyalkanoates Processing. Macromolecular Materials and Engineering 308, 2300100. https://doi.org/10.1002/mame.202300100
Arvidsson, R., Tillman, A.-M., Sandén, B.A., Janssen, M., Nordelöf, A., Kushnir, D., Molander, S., 2018. Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. Journal of Industrial Ecology 22, 1286–1294. https://doi.org/10.1111/jiec.12690
Asunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D., 2021. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management 132, 31–43. https://doi.org/10.1016/j.wasman.2021.07.010
Baghchehsaraee, B., Nakhla, G., Karamanev, D., Margaritis, A., Reid, G., 2008. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. International Journal of Hydrogen Energy 33, 4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069
Balakrishna Pillai, A., Kumarapillai, H.K., 2017. Bacterial polyhydroxyalkanoates: Recent trends in production and applications, in: Recent Advances in Applied Microbiology. pp. 19–53. https://doi.org/10.1007/978-981-10-5275-0_2
Bare, J.C., Hofstetter, P., Pennington, D.W., de Haes, H.A.U., 2000. Midpoints versus endpoints: The sacrifices and benefits. Int. J. LCA 5, 319–326. https://doi.org/10.1007/BF02978665
Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45, 65–73.
Battista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A.L., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., Bolzonella, D., 2020. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. Journal of Chemical Technology & Biotechnology 95, 328–338. https://doi.org/10.1002/jctb.6096
Beckers, V., Poblete-Castro, I., Tomasch, J., Wittmann, C., 2016. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microbial Cell Factories 15, 73. https://doi.org/10.1186/s12934-016-0470-2
Bengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., Morgan-Sagastume, F., Anterrieu, S., Arcos-Hernandez, M., Karabegovic, L., Magnusson, P., Werker, A., 2017. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnology 35, 42–53. https://doi.org/10.1016/j.nbt.2016.11.005
Bengtsson, S., Werker, A., Visser, C., Korving, L., 2018. PHARIO. Stepping stone to a value chain for PHA bioplastic using municipal activated sludge | STOWA [WWW Document]. URL https://www.stowa.nl/publicaties/phario-stepping-stone-value-chain-pha-bioplastic-using-municipal-activated-sludge (accessed 7.13.24).
Bluemink, E.D., van Nieuwenhuijzen, A.F., Wypkema, E., Uijterlinde, C.A., 2016. Bio-plastic (poly-hydroxy-alkanoate) production from municipal sewage sludge in the Netherlands: a technology push or a demand driven process? Water Sci Technol 74, 353–358. https://doi.org/10.2166/wst.2016.191
Bolhuis, H., Grego, M., 2024. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology 114. https://doi.org/10.1016/j.cryobiol.2024.104859
Boyle, K., Örmeci, B., 2020. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 12, 2633. https://doi.org/10.3390/w12092633
Campuzano, R., González-Martínez, S., 2016. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management 54, 3–12. https://doi.org/10.1016/j.wasman.2016.05.016
Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresource technology 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7, e623. https://doi.org/10.7717/peerj-cs.623
Choi, S.Y., Rhie, M.N., Kim, H.T., Joo, J.C., Cho, I.J., Son, J., Jo, S.Y., Sohn, Y.J., Baritugo, K.-A., Pyo, J., Lee, Y., Lee, S.Y., Park, S.J., 2020. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, Metabolic Engineering Products Issue 58, 47–81. https://doi.org/10.1016/j.ymben.2019.05.009
Colombo, B., Favini, F., Scaglia, B., Sciarria, T.P., D’Imporzano, G., Pognani, M., Alekseeva, A., Eisele, G., Cosentino, C., Adani, F., 2017. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels 10, 201. https://doi.org/10.1186/s13068-017-0888-8
Crognale, S., Tonanzi, B., Valentino, F., Majone, M., Rossetti, S., 2019. Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Science of The Total Environment 689, 765–773. https://doi.org/10.1016/j.scitotenv.2019.06.491
de Mello, A.F.M., Vandenberghe, L.P. de S., Machado, C.M.B., Brehmer, M.S., de Oliveira, P.Z., Binod, P., Sindhu, R., Soccol, C.R., 2024. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. Bioresource Technology 393, 130078. https://doi.org/10.1016/j.biortech.2023.130078
Dincer, I., Bicer, Y., 2018. 2.1 Ammonia, in: Dincer, I. (Ed.), Comprehensive Energy Systems. Elsevier, Oxford, pp. 1–39. https://doi.org/10.1016/B978-0-12-809597-3.00201-7
Doug, C., Charles, S., Alexandros, K., Demetri, P., 2018. Bioprocess Simulation and Scheduling, in: Emerging Areas in Bioengineering. John Wiley & Sons, Ltd, pp. 723–760. https://doi.org/10.1002/9783527803293.ch42
Ellen MacArthur Foundation, 2013. Towards the circular economy Vol. 1: an economic and business rationale for an accelerated transition [WWW Document]. URL https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed 11.11.23).
Estévez-Alonso, Á., Pei, R., van Loosdrecht, M.C.M., Kleerebezem, R., Werker, A., 2021. Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresource Technology 327, 124790. https://doi.org/10.1016/j.biortech.2021.124790
Foo, D.C.Y., Elyas, R., 2017. Chapter 1 - Introduction to Process Simulation, in: Yee Foo, D.C., Chemmangattuvalappil, N., Ng, D.K.S., Elyas, R., Chen, C.-L., Elms, R.D., Lee, H.-Y., Chien, I.-L., Chong, S., Chong, C.H. (Eds.), Chemical Engineering Process Simulation. Elsevier, pp. 3–21. https://doi.org/10.1016/B978-0-12-803782-9.00001-7
Fu, X., Xu, H., Zhang, Q., Xi, J., Zhang, H., Zheng, M., Xi, B., Hou, L., 2023. A review on polyhydroxyalkanoates production from various organic waste streams: Feedstocks, strains, and production strategy. Resources, Conservation and Recycling 198, 107166. https://doi.org/10.1016/j.resconrec.2023.107166
Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresource Technology 244, 1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187
Garcia-Aguirre, J., Esteban-Gutiérrez, M., Irizar, I., González-Mtnez de Goñi, J., Aymerich, E., 2019. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Bioresource Technology 282, 407–416. https://doi.org/10.1016/j.biortech.2019.03.034
Gottardo, M., Dosta, J., Cavinato, C., Crognale, S., Tonanzi, B., Rossetti, S., Bolzonella, D., Pavan, P., Valentino, F., 2023. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. Journal of Cleaner Production 404. https://doi.org/10.1016/j.jclepro.2023.136919
Gracia, J., Acevedo, O., Acevedo, P., Mosquera, J., Montenegro, C., Cabeza, I., 2024. Statistical modeling and optimization of volatile fatty acids pro-duction by anaerobic digestion of municipal wastewater sludge. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34091-2
Gracia, J., Montenegro, C., Acevedo, P., Cabeza, I., 2023a. Acidogenic Fermentation at a Thermophilic Temperature from Municipal Sewage Sludge for the Production of VFAs. Chemical Engineering Transactions 100, 553–558. https://doi.org/10.3303/CET23100093
Gracia, J., Montenegro, C., Moreno, N., Cabeza, I., 2023b. Production of Polyhydroxyalkanoates using Volatile Fatty Acids from Municipal Wastewater Treatment Plant Sludge. Chemical Engineering Transactions 100, 559–564. https://doi.org/10.3303/CET23100094
Gracia, J., Mosquera, J., Montenegro, C., Acevedo, P., Cabeza, I., 2020. Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions 79, 217–222. https://doi.org/10.3303/CET2079037
Guthrie, S., Giles, S., Dunkerley, F., Tabaqchali, H., Harshfield, A., Loppolo, B., Manville, C., 2018. Impact of ammonia emissions from agriculture on biodiversity: An evidence synthesis 76. https://doi.org/10.7249/RR2695
Guzik, M., Witko, T., Steinbüchel, A., Wojnarowska, M., Sołtysik, M., Wawak, S., 2020. What Has Been Trending in the Research of Polyhydroxyalkanoates? A Systematic Review. Frontiers in Bioengineering and Biotechnology 8.
Hao, J., Wang, H., 2015. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresource Technology 175, 367–373. https://doi.org/10.1016/j.biortech.2014.10.106
Hao, J., Wang, H., Wang, X., 2018. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate. Appl Microbiol Biotechnol 102, 3133–3143. https://doi.org/10.1007/s00253-018-8799-6
Hassan, M.A., Yee, L.-N., Yee, P.L., Ariffin, H., Raha, A.R., Shirai, Y., Sudesh, K., 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass and Bioenergy 50, 1–9. https://doi.org/10.1016/j.biombioe.2012.10.014
Hazen and Sawyer, Nippon Koei, 2017. Informe de selección de alternativas de tratamiento consideradas para la expasión de la PTAR El Salitre.
Heinzle, E., Biwer, A.P., Cooney, C.L., 2007. Development of Sustainable Bioprocesses: Modeling and Assessment, 1st ed. John Wiley & Sons.
Hermann-Krauss, C., Koller, M., Muhr, A., Fasl, H., Stelzer, F., Braunegg, G., 2013. Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products. Archaea 2013, e129268. https://doi.org/10.1155/2013/129268
Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresource Technology 291, 121817. https://doi.org/10.1016/j.biortech.2019.121817
Janesch, E., Pereira, J., Neubauer, P., Junne, S., 2021. Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination? Frontiers in Chemical Engineering 3.
Jankowska, E., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P., 2017. Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH. Chemical Engineering Journal 326, 901–910. https://doi.org/10.1016/j.cej.2017.06.021
Jie, W., Peng, Y., Ren, N., Li, B., 2014. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource Technology 152, 124–129. https://doi.org/10.1016/j.biortech.2013.11.011
JRC European Commission, 2010. ILCD Handbook: General guide for Life Cycle Assessment - Provisions and action steps [WWW Document]. URL (accessed 3.31.24).
Kerckhof, F.-M., Courtens, E.N.P., Geirnaert, A., Hoefman, S., Ho, A., Vilchez-Vargas, R., Pieper, D.H., Jauregui, R., Vlaeminck, S.E., Van De Wiele, T., Vandamme, P., Heylen, K., Boon, N., 2014. Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0099517
Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., Cetecioglu, Z., 2021. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management 119, 374–388. https://doi.org/10.1016/j.wasman.2020.10.008
Kleerebezem, R., van Loosdrecht, M.C., 2007. Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, Energy biotechnology / Environmental biotechnology 18, 207–212. https://doi.org/10.1016/j.copbio.2007.05.001
Koller, M., 2021. Chapter 1 - Production, properties, and processing of microbial polyhydroxyalkanoate (PHA) biopolyesters, in: Das, S., Dash, H.R. (Eds.), Microbial and Natural Macromolecules. Academic Press, pp. 3–55. https://doi.org/10.1016/B978-0-12-820084-1.00001-6
Koller, M. (Ed.), 2020. The Handbook of Polyhydroxyalkanoates: Microbial Biosynthesis and Feedstocks. CRC Press, Boca Raton. https://doi.org/10.1201/9780429296611
Koller, M., 2019. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chemical and Biochemical Engineering Quarterly 32, 413–438. https://doi.org/10.15255/CABEQ.2018.1385
Kourmentza, K., Kachrimanidou, V., Psaki, O., Pateraki, C., Ladakis, D., Koutinas, A., 2020. Competitive Advantage and Market Introduction of PHA Polymers and Potential Use of PHA Monomers, in: The Handbook of Polyhydroxyalkanoates. CRC Press.
Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-J., Bhatia, S.K., Rajesh Banu, J., Kim, S.-H., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427
Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., Andrew Lin, K.-Y., Tsang, D.C.W., Thakur, I.S., 2020. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production 263, 121500. https://doi.org/10.1016/j.jclepro.2020.121500
Langkau, S., Steubing, B., Mutel, C., Ajie, M.P., Erdmann, L., Voglhuber-Slavinsky, A., Janssen, M., 2023. A stepwise approach for Scenario-based Inventory Modelling for Prospective LCA (SIMPL). Int J Life Cycle Assess 28, 1169–1193. https://doi.org/10.1007/s11367-023-02175-9
Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s oceans. Nat Commun 8, 15611. https://doi.org/10.1038/ncomms15611
Lee, S.Y., Lee, Y., 2003. Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(--)-hydroxycarboxylic acids. Appl Environ Microbiol 69, 3421–3426. https://doi.org/10.1128/AEM.69.6.3421-3426.2003
Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97, 6129–6147. https://doi.org/10.1007/s00253-013-5014-7
Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., Sun, Y., 2012. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy 44, 463–468. https://doi.org/10.1016/j.renene.2012.01.092
Lorini, L., Munarin, G., Salvatori, G., Alfano, S., Pavan, P., Majone, M., Valentino, F., 2022. Sewage sludge as carbon source for polyhydroxyalkanoates: a holistic approach at pilot scale level. Journal of Cleaner Production 354, 131728. https://doi.org/10.1016/j.jclepro.2022.131728
Magdouli, S., Brar, S.K., Blais, J.F., Tyagi, R.D., 2015. How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass and Bioenergy 74, 268–279. https://doi.org/10.1016/j.biombioe.2014.12.017
Majone, M., Chronopoulou, L., Lorini, L., Martinelli, A., Palocci, C., Rossetti, S., Valentino, F., Villano, M., 2017. PHA copolymers from microbial mixed cultures: Synthesis, extraction and related properties, in: Current Advances in Biopolymer Processing and Characterization. pp. 223–276.
Markets and Markets, 2023. Polyhydroxyalkanoate (PHA) Market Share, Size | 2023 - 2028 [WWW Document]. MarketsandMarkets. URL https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (accessed 9.10.23).
Matos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021a. Sludge retention time impacts on polyhydroxyalkanoate productivity in uncoupled storage/growth processes. Science of The Total Environment 799, 149363. https://doi.org/10.1016/j.scitotenv.2021.149363
Matos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021b. Combined Strategies to Boost Polyhydroxyalkanoate Production from Fruit Waste in a Three-Stage Pilot Plant. ACS Sustainable Chem. Eng. 9, 8270–8279. https://doi.org/10.1021/acssuschemeng.1c02432
Mazitova, A.K., Aminova, G.K., Zaripov, I.I., Vikhareva, I.N., 2021. Biodegradable polymer materials and modifying additives: State of the art. Part II. Nanotechnologies in Construction 13, 32–38. https://doi.org/10.15828/2075-8545-2021-13-1-32-38
Mendez, D.A., Cabeza, I.O., Moreno, N.C., Riascos, C.A.M., 2016. Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions 49, 277–282. https://doi.org/10.3303/CET1649047
Mengist, W., Soromessa, T., Legese, G., 2020. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777. https://doi.org/10.1016/j.mex.2019.100777
Menon, A., Lyng, J.G., 2021. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids. Reviews in Environmental Science and Biotechnology 20, 189–208. https://doi.org/10.1007/s11157-020-09559-5
Millati, R., Wikandari, R., Ariyanto, T., Hasniah, N., Taherzadeh, M.J., 2023. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresource Technology Reports 21, 101315. https://doi.org/10.1016/j.biteb.2022.101315
Mohamed Shaffril, H.A., Samsuddin, S.F., Abu Samah, A., 2021. The ABC of systematic literature review: the basic methodological guidance for beginners. Quality and Quantity 55, 1319–1346. https://doi.org/10.1007/s11135-020-01059-6
Montiel-Jarillo, G., Morales-Urrea, D.A., Contreras, E.M., López-Córdoba, A., Gómez-Pachón, E.Y., Carrera, J., Suárez-Ojeda, M.E., 2022. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers 14. https://doi.org/10.3390/polym14193938
Moretto, Giulia, Lorini, L., Pavan, P., Crognale, S., Tonanzi, B., Rossetti, S., Majone, M., Valentino, F., 2020. Biopolymers from Urban Organic Waste: Influence of the Solid Retention Time to Cycle Length Ratio in the Enrichment of a Mixed Microbial Culture (MMC). ACS Sustainable Chem. Eng. 8, 14531–14539. https://doi.org/10.1021/acssuschemeng.0c04980
Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F., 2020. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Research 170. https://doi.org/10.1016/j.watres.2019.115371
Morgan-Sagastume, F., Heimersson, S., Laera, G., Werker, A., Svanström, M., 2016. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. Journal of Cleaner Production 137, 1368–1381. https://doi.org/10.1016/j.jclepro.2016.08.008
Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., Karabegovic, L., Alexandersson, T., Johansson, P., Karlsson, A., Bengtsson, S., Arcos-Hernández, M.V., Magnusson, P., Werker, A., 2015. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology 181, 78–89. https://doi.org/10.1016/j.biortech.2015.01.046
Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., Alexandersson, T., Bengtsson, S., Majone, M., Werker, A., 2014. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol 69, 177–184. https://doi.org/10.2166/wst.2013.643
Mosquera, J., Rangel, C., Thomas, J., Santis, A., Acevedo, P., Cabeza, I., 2021. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 9, 1875. https://doi.org/10.3390/pr9111875
Muneer, F., Rasul, I., Azeem, F., Siddique, M.H., Zubair, M., Nadeem, H., 2020. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J Polym Environ 28, 2301–2323. https://doi.org/10.1007/s10924-020-01772-1
Muralikrishna, I.V., Manickam, V., 2017. Chapter Five - Life Cycle Assessment, in: Muralikrishna, I.V., Manickam, V. (Eds.), Environmental Management. Butterworth-Heinemann, pp. 57–75. https://doi.org/10.1016/B978-0-12-811989-1.00005-1
Nguyenhuynh, T., Yoon, L.W., Chow, Y.H., Chua, A.S.M., 2021. An insight into enrichment strategies for mixed culture in polyhydroxyalkanoate production: feedstocks, operating conditions and inherent challenges. Chemical Engineering Journal 420, 130488. https://doi.org/10.1016/j.cej.2021.130488
Ntaikou, I., Valencia Peroni, C., Kourmentza, C., Ilieva, V.I., Morelli, A., Chiellini, E., Lyberatos, G., 2014. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. Journal of Biotechnology 188, 138–147. https://doi.org/10.1016/j.jbiotec.2014.08.015
Obeso Rodríguez, J.I., 2017. Síntesis de polihidroxialcanoatos en “Pseudomonas putida”: estudios bioquímicos, genéticos y ultraestructurales = Synthesis of polyhydroxyalkanoates in Pseudomonas putida: biochemical, genetic and ultrastructural studies. https://doi.org/10.18002/10612/6940
Ospina-Betancourth, C., Echeverri, S., Rodriguez-Gonzalez, C., Wist, J., Combariza, M.Y., Sanabria, J., 2022. Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry. Fermentation 8. https://doi.org/10.3390/fermentation8040180
Palmeiro-Sánchez, T., O’Flaherty, V., Lens, P.N.L., 2022. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology 348, 10–25. https://doi.org/10.1016/j.jbiotec.2022.03.001
Pan, C., Ge, L., Lee, P.-H. (Henry), Tan, G.-Y.A., 2020. An Introduction to the Thermodynamics Calculation of PHA Production in Microbes, in: The Handbook of Polyhydroxyalkanoates. CRC Press.
Pérez, V., Mota, C.R., Muñoz, R., Lebrero, R., 2020. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society. Chemosphere 255, 126929. https://doi.org/10.1016/j.chemosphere.2020.126929
Perez-Zabaleta, M., Atasoy, M., Khatami, K., Eriksson, E., Cetecioglu, Z., 2021. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresource Technology 323, 124604. https://doi.org/10.1016/j.biortech.2020.124604
Pikaar, I., Guest, J., Ganigué, R., Jensen, P., Rabaey, K., Seviour, T., Trimmer, J., van der Kolk, O., Vaneeckhaute, C., Verstraete, W. (Eds.), 2022. Resource Recovery from Water: Principles and Application. IWA Publishing. https://doi.org/10.2166/9781780409566
Pranckutė, R., 2021. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 9, 12. https://doi.org/10.3390/publications9010012
Ramos-Suarez, M., Zhang, Y., Outram, V., 2021. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev Environ Sci Biotechnol 20, 439–478. https://doi.org/10.1007/s11157-021-09566-0
Rangel, C., Sastoque, J., Calderón, J., Gracia, J., Cabeza, I., Villamizar, S., Acevedo, P., 2022. Pilot-Scale Assessment of Biohydrogen and Volatile Fatty Acids Production via Dark Fermentation of Residual Biomass. Chemical Engineering Transactions 92, 61–66. https://doi.org/10.3303/CET2292011
Rangel, C.J., Hernández, M.A., Mosquera, J.D., Castro, Y., Cabeza, I.O., Acevedo, P.A., 2021. Hydrogen production by dark fermentation process from pig manure, cocoa mucilage, and coffee mucilage. Biomass Conversion and Biorefinery 11, 241–250. https://doi.org/10.1007/s13399-020-00618-z
Rathna, G. v. n., Gadgil, B.S.T., Killi, N., 2016. Polyhydroxyalkanoates: The Application of Eco-Friendly Materials, in: Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. John Wiley & Sons, Ltd, pp. 25–54. https://doi.org/10.1002/9781119117360.ch2
Reis, M., Albuquerque, M., Villano, M., Majone, M., 2011. Mixed Culture Processes for Polyhydroxyalkanoate Production from Agro-Industrial Surplus/Wastes as Feedstocks. Comprehensive Biotechnology 6, 669–683. https://doi.org/10.1016/B978-0-08-088504-9.00464-5
Rosmalina, R.T., Widyarani, Hamidah, U., Sintawardani, N., 2020. Determination of volatile fatty acids in tofu wastewater by capillary gas chromatography with flame ionization detection: A Comparison of extraction methods. Presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/483/1/012038
Rossi, E., Pecorini, I., Panico, A., Iannelli, R., 2022. Impact of reactor configuration and relative operating conditions on volatile fatty acids production from organic waste. Environmental Technology Reviews 11, 156–186. https://doi.org/10.1080/21622515.2022.2139641
Rudnik, E., 2013. 13 - Compostable Polymer Properties and Packaging Applications, in: Ebnesajjad, S. (Ed.), Plastic Films in Food Packaging, Plastics Design Library. William Andrew Publishing, Oxford, pp. 217–248. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2
Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., 2021. Evaluation and optimization of the environmental performance of PHA downstream processing. Chemical Engineering Journal 412, 127687. https://doi.org/10.1016/j.cej.2020.127687
Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., Steubing, B., 2023. Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. Journal of Cleaner Production 383, 135331. https://doi.org/10.1016/j.jclepro.2022.135331
Sabapathy, P.C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H.M., Qi, X., 2020. Recent developments in Polyhydroxyalkanoates (PHAs) production – A review. Bioresource Technology 306, 123132. https://doi.org/10.1016/j.biortech.2020.123132
Sabra, W., Zeng, A.-P., 2014. Mixed microbial cultures for industrial biotechnology: Success, chance, and challenges, in: Industrial Biocatalysis. pp. 205–238.
Samani, P., 2023. Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Science of The Total Environment 903, 166611. https://doi.org/10.1016/j.scitotenv.2023.166611
Sarkar, O., Katakojwala, R., Venkata Mohan, S., 2021. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chemistry 23, 561–574. https://doi.org/10.1039/d0gc03063e
Sd, H., C, G., Ml, F., Sd, G., Tc, F., Te, S., 2015. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Environmental technology 36. https://doi.org/10.1080/09593330.2015.1041426
Serafim, L.S., Pereira, J., Lemos, P.C., 2020. Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey So Far and Challenges Ahead, in: The Handbook of Polyhydroxyalkanoates. CRC Press.
Sevella, B., Bertalan, G., 2000. Development of a MATLAB based bioprocess simulation tool. Bioprocess Engineering 23, 621–626. https://doi.org/10.1007/s004490000211
Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., Zhang, Y., 2020. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production 254, 120138. https://doi.org/10.1016/j.jclepro.2020.120138
Silva, F., Matos, M., Pereira, B., Ralo, C., Pequito, D., Marques, N., Carvalho, G., Reis, M.A.M., 2022. An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal 427, 131908. https://doi.org/10.1016/j.cej.2021.131908
Steinbüchel, A., Lütke-Eversloh, T., 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal, Biopolymers 16, 81–96. https://doi.org/10.1016/S1369-703X(03)00036-6
Steinbüchel, A., Valentin, H.E., 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters 128, 219–228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
Szacherska, K., Oleskowicz-Popiel, P., Ciesielski, S., Mozejko-Ciesielska, J., 2021. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers 13, 321. https://doi.org/10.3390/polym13030321
Tayou, L.N., Lauri, R., Incocciati, E., Pietrangeli, B., Majone, M., Micolucci, F., Gottardo, M., Valentino, F., 2022. Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects. Process Safety and Environmental Protection 163, 158–166. https://doi.org/10.1016/j.psep.2022.05.011
Thomassen, G., Dael, M.V., Passel, S.V., You, F., 2019. How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chem. 21, 4868–4886. https://doi.org/10.1039/C9GC02223F
Thonemann, N., Schulte, A., Maga, D., 2020. How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance. Sustainability 12, 1192. https://doi.org/10.3390/su12031192
Unidad Administrativa Especial de Servicios Públicos, 2020. Plan de Gestión Integral de Residuos Sólidos.
Valentino, F., Brusca, A.A., Beccari, M., Nuzzo, A., Zanaroli, G., Majone, M., 2013. Start up of biological sequencing batch reactor (SBR) and short-term biomass acclimation for polyhydroxyalkanoates production. Journal of Chemical Technology and Biotechnology 88, 261–270. https://doi.org/10.1002/jctb.3824
Valentino, F., Gottardo, M., Micolucci, F., Pavan, P., Bolzonella, D., Rossetti, S., Majone, M., 2018. Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustainable Chemistry and Engineering 6, 16375–16385. https://doi.org/10.1021/acssuschemeng.8b03454
Valentino, F., Karabegovic, L., Majone, M., Morgan-Sagastume, F., Werker, A., 2015. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Research 77, 49–63. https://doi.org/10.1016/j.watres.2015.03.016
Valentino, F., Moretto, G., Gottardo, M., Pavan, P., Bolzonella, D., Majone, M., 2019a. Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production 220, 368–375. https://doi.org/10.1016/j.jclepro.2019.02.102
Valentino, F., Moretto, G., Lorini, L., Bolzonella, D., Pavan, P., Majone, M., 2019b. Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind. Eng. Chem. Res. 58, 12149–12158. https://doi.org/10.1021/acs.iecr.9b01831
Valentino, F., Munarin, G., Biasiolo, M., Cavinato, C., Bolzonella, D., Pavan, P., 2021. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. Journal of Environmental Chemical Engineering 9, 106062. https://doi.org/10.1016/j.jece.2021.106062
Valentino, F., Villano, M., Lorini, L., Majone, M., 2020. PHA Production by Mixed Microbial Cultures and Organic Waste of Urban Origin: Pilot Scale Evidence, in: The Handbook of Polyhydroxyalkanoates. CRC Press.
Varghese, V.K., Poddar, B.J., Shah, M.P., Purohit, H.J., Khardenavis, A.A., 2022. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Science of The Total Environment 815, 152500. https://doi.org/10.1016/j.scitotenv.2021.152500
Vea, E.B., Fabbri, S., Spierling, S., Owsianiak, M., 2021. Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics. Science of The Total Environment 788, 147544. https://doi.org/10.1016/j.scitotenv.2021.147544
Veeken, A., Hamelers, B., 1999. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 69, 249–254. https://doi.org/10.1016/S0960-8524(98)00188-6
Vogli, L., Macrelli, S., Marazza, D., Galletti, P., Torri, C., Samorì, C., Righi, S., 2020. Life Cycle Assessment and Energy Balance of a Novel Polyhydroxyalkanoates Production Process with Mixed Microbial Cultures Fed on Pyrolytic Products of Wastewater Treatment Sludge. Energies 13, 2706. https://doi.org/10.3390/en13112706
Werker, A., Bengtsson, S., Johansson, P., Magnusson, P., Gustafsson, E., Hjort, M., Anterrieu, S., Karabegovic, L., Alexandersson, T., Karlsson, A., 2020. Production Quality Control of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent Extraction, in: The Handbook of Polyhydroxyalkanoates. CRC Press.
Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., Johansson, P., Karlsson, A., Karabegovic, L., Magnusson, P., Morgan-Sagastume, F., Sijstermans, L., Tietema, M., Visser, C., Wypkema, E., van der Kooij, Y., Deeke, A., Uijterlinde, C., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci Technol 78, 2256–2269. https://doi.org/10.2166/wst.2018.502
Werker, A., Lorini, L., Villano, M., Valentino, F., Majone, M., 2022. Modelling Mixed Microbial Culture Polyhydroxyalkanoate Accumulation Bioprocess towards Novel Methods for Polymer Production Using Dilute Volatile Fatty Acid Rich Feedstocks. Bioengineering 9, 125. https://doi.org/10.3390/bioengineering9030125
Xiong, H., Chen, J., Wang, H., Shi, H., 2012. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresource Technology 119, 285–292. https://doi.org/10.1016/j.biortech.2012.05.126
Yuan, Y., Hu, X., Chen, H., Zhou, Yaoyu, Zhou, Yefeng, Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of The Total Environment 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741
Zhang, P., Chen, Y., Zhou, Q., 2009. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research 43, 3735–3742. https://doi.org/10.1016/j.watres.2009.05.036
Zhou, Y., Takaoka, M., Wang, W., Liu, X., Oshita, K., 2013. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. J Biosci Bioeng 116, 101–105. https://doi.org/10.1016/j.jbiosc.2013.01.014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 98 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.spa.fl_str_mv Bogotá
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86855/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86855/6/Licencia_Jhessica%20Mosquera_2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86855/4/Thesis_Jhessica%20Mosquera_vf.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/86855/7/1018476626.2024.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/86855/5/1018476626.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
be3d6bb6612ecf97f648d5141fd22278
f0f85fcd0099236de5512420f0c7578f
f0f85fcd0099236de5512420f0c7578f
bcd131db9e9b158b4b0dc154269a7096
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169443499835392
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Sarmiento, Nubia16311b987fedc341cbdf0f51389c4aebCabeza Rojas, Ivánc761706aded687933bcf7d4cd8bb6c63Mosquera Tobar, Jhessica Danielad93f9431ff28f56d845b20e5ad58b629Gema ­ Grupo de Estudio de MaterialesBioprocesos y BioprospecciónMosquera, Jhessica [0000000339732439]Jhessica Daniela Mosquera TobarMosquera, Jhessica D. [57214898878]2024-09-23T19:04:01Z2024-09-23T19:04:01Z2024https://repositorio.unal.edu.co/handle/unal/86855Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasThe scope of this work was to contribute to the assessment of PHA production process from mixed microbial cultures and complex waste streams by process simulation and prospective life cycle assessment to support the scale-up of the process. Therefore, three scenarios were constructed based on the valorisation of waste streams available in Bogotá, Colombia. The scenario development methodology involves the definition of goal and scope as stated in the life cycle assessment methodology: ISO 14040: 2006 and 14044: 2006. Experimental data from literature was used to define process parameters and yields. A three-stage configuration was identified as the most common ensemble for the unit operations and unit procedures required to transform waste into PHA. Operational conditions and operational parameters were defined to construct process flow diagrams for each scenario. The scenarios pursued the evaluation of the valorisation of sewage sludge (Scenario 1, S1), organic fraction of solid waste (Scenario 2, S2), and the mixture of the residues (Scenario 3, S3). Each scenario was evaluated from a technical and environmental perspective, and the functional unit for the evaluation was 1,7 kg CODPHA (1 kg of PHA). The process simulation was performed in SuperPRO Designer, while the prospective life cycle assessment was completed in SimaPro. The average overall yields obtained during the simulation were: S1 30.80, S2 7.80, S3 12.52 kg VS per kg of PHA; the scenario with the highest yield was Scenario 2. The result was a prospective environmental assessment that made possible the identification and reduction of gaps in terms of carbon source production, biomass production, PHA production, and cross-cutting aspects for technology transfer.El objetivo de este trabajo contribuir a la evaluación del proceso de producción de PHA a partir cultivos mixtos y sustratos de origen residual, a partir de la simulación de procesos y el análisis de ciclo de vida para soportar el escalado del proceso. Para lo cual, se construyeron tres escenarios basados en la valorización de corrientes de residuos disponibles en Bogotá, Colombia. La metodología para la construcción de escenarios incluyó la definición objetivo y el alcance, tal como se establece en la metodología de análisis de ciclo de vida: ISO 14040: 2006 y 14044: 2006. Mientras que los datos experimentales tomados de literatura vigente fueron empleados para la definición de parámetros y rendimientos de proceso. Se identificó una configuración de tres etapas como el conjunto más común de operaciones y procedimientos unitarios necesarios para la transformación de sustratos residuales en PHA. Se definieron condiciones y parámetros operativos para construir diagramas de flujo para cada uno de los escenarios. Los escenarios tienen por objeto la evaluación de la valorización de lodos de PTAR (Escenario 1, S1), fracción orgánica de residuos sólidos (Escenario 2, S2), y una mezcla de ambos residuos (Escenario 3, S3). Cada escenario se evaluó desde una perspectiva técnica y ambiental, y la unidad funcional para la evaluación fue 1,7 kg de CODPHA (1 kg de PHA). La simulación del proceso se realizó en SuperPRO Designer, mientras que la evaluación prospectiva del ciclo de vida se completó en SimaPro. Los rendimientos globales medios obtenidos durante la simulación fueron: S1 30,80, S2 7,80, S3 12,82 kg VS por kg de PHA; siendo el Escenario 2 el que presentó un mayor rendimiento. El resultado fue un análisis de ciclo de vida prospectivo que permitió la identificación y reducción de brechas en términos de producción de fuente de carbono, producción de biomasa, producción de PHA y aspectos transversales para la transferencia de tecnología (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - Ingeniería QuímicaBioprocesses98 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCULTIVOS MIXTOSSUELOS ENCAPSULADOSPLANTAS PARA TRATAMIENTO DE RESIDUOSEQUIPOS DE TRATAMIENTO DEL AGUATECNOLOGIA AMBIENTALCompanion cropsPotting soilsWaste treatment plantsWater treatment equipmentEnvironmental technologyPolyhydroxyalkanoatesVolatile fatty acidsLife cycle assessmentBioprocesses simulationPolihidroxialcanoatosÁcidos grasos volátilesAnálisis de ciclo de vidaSimulación de bioprocesosTechnical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocksEvaluación técnico-ambiental del potencial de producción de polihidroxialcanoatos PHA a partir de cultivos microbianos mixtos y sustratos de origen residualTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaAhring, B.K., Angelidaki, I., De Macario, E.C., Gavala, H.N., Hofman-Bang, J., Macario, A.J.L., Elferink, S.J.W.H.O., Raskin, L., Stams, A.J.M., Westermann, P., Zheng, D. (Eds.), 2003. Biomethanation I, Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45839-5Albuquerque, M.G.E., Concas, S., Bengtsson, S., Reis, M.A.M., 2010. Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection. Bioresource Technology 101, 7112–7122. https://doi.org/10.1016/j.biortech.2010.04.019Amulya, K., Jukuri, S., Venkata Mohan, S., 2015. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresource Technology 188, 231–239. https://doi.org/10.1016/j.biortech.2015.01.070Andhalkar, V.V., Foong, S.Y., Kee, S.H., Lam, S.S., Chan, Y.H., Djellabi, R., Bhubalan, K., Medina, F., Constantí, M., 2023. Integrated Biorefinery Design with Techno-Economic and Life Cycle Assessment Tools in Polyhydroxyalkanoates Processing. Macromolecular Materials and Engineering 308, 2300100. https://doi.org/10.1002/mame.202300100Arvidsson, R., Tillman, A.-M., Sandén, B.A., Janssen, M., Nordelöf, A., Kushnir, D., Molander, S., 2018. Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. Journal of Industrial Ecology 22, 1286–1294. https://doi.org/10.1111/jiec.12690Asunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D., 2021. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management 132, 31–43. https://doi.org/10.1016/j.wasman.2021.07.010Baghchehsaraee, B., Nakhla, G., Karamanev, D., Margaritis, A., Reid, G., 2008. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. International Journal of Hydrogen Energy 33, 4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069Balakrishna Pillai, A., Kumarapillai, H.K., 2017. Bacterial polyhydroxyalkanoates: Recent trends in production and applications, in: Recent Advances in Applied Microbiology. pp. 19–53. https://doi.org/10.1007/978-981-10-5275-0_2Bare, J.C., Hofstetter, P., Pennington, D.W., de Haes, H.A.U., 2000. Midpoints versus endpoints: The sacrifices and benefits. Int. J. LCA 5, 319–326. https://doi.org/10.1007/BF02978665Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45, 65–73.Battista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A.L., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., Bolzonella, D., 2020. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. Journal of Chemical Technology & Biotechnology 95, 328–338. https://doi.org/10.1002/jctb.6096Beckers, V., Poblete-Castro, I., Tomasch, J., Wittmann, C., 2016. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microbial Cell Factories 15, 73. https://doi.org/10.1186/s12934-016-0470-2Bengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., Morgan-Sagastume, F., Anterrieu, S., Arcos-Hernandez, M., Karabegovic, L., Magnusson, P., Werker, A., 2017. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnology 35, 42–53. https://doi.org/10.1016/j.nbt.2016.11.005Bengtsson, S., Werker, A., Visser, C., Korving, L., 2018. PHARIO. Stepping stone to a value chain for PHA bioplastic using municipal activated sludge | STOWA [WWW Document]. URL https://www.stowa.nl/publicaties/phario-stepping-stone-value-chain-pha-bioplastic-using-municipal-activated-sludge (accessed 7.13.24).Bluemink, E.D., van Nieuwenhuijzen, A.F., Wypkema, E., Uijterlinde, C.A., 2016. Bio-plastic (poly-hydroxy-alkanoate) production from municipal sewage sludge in the Netherlands: a technology push or a demand driven process? Water Sci Technol 74, 353–358. https://doi.org/10.2166/wst.2016.191Bolhuis, H., Grego, M., 2024. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology 114. https://doi.org/10.1016/j.cryobiol.2024.104859Boyle, K., Örmeci, B., 2020. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 12, 2633. https://doi.org/10.3390/w12092633Campuzano, R., González-Martínez, S., 2016. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management 54, 3–12. https://doi.org/10.1016/j.wasman.2016.05.016Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresource technology 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7, e623. https://doi.org/10.7717/peerj-cs.623Choi, S.Y., Rhie, M.N., Kim, H.T., Joo, J.C., Cho, I.J., Son, J., Jo, S.Y., Sohn, Y.J., Baritugo, K.-A., Pyo, J., Lee, Y., Lee, S.Y., Park, S.J., 2020. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, Metabolic Engineering Products Issue 58, 47–81. https://doi.org/10.1016/j.ymben.2019.05.009Colombo, B., Favini, F., Scaglia, B., Sciarria, T.P., D’Imporzano, G., Pognani, M., Alekseeva, A., Eisele, G., Cosentino, C., Adani, F., 2017. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels 10, 201. https://doi.org/10.1186/s13068-017-0888-8Crognale, S., Tonanzi, B., Valentino, F., Majone, M., Rossetti, S., 2019. Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Science of The Total Environment 689, 765–773. https://doi.org/10.1016/j.scitotenv.2019.06.491de Mello, A.F.M., Vandenberghe, L.P. de S., Machado, C.M.B., Brehmer, M.S., de Oliveira, P.Z., Binod, P., Sindhu, R., Soccol, C.R., 2024. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. Bioresource Technology 393, 130078. https://doi.org/10.1016/j.biortech.2023.130078Dincer, I., Bicer, Y., 2018. 2.1 Ammonia, in: Dincer, I. (Ed.), Comprehensive Energy Systems. Elsevier, Oxford, pp. 1–39. https://doi.org/10.1016/B978-0-12-809597-3.00201-7Doug, C., Charles, S., Alexandros, K., Demetri, P., 2018. Bioprocess Simulation and Scheduling, in: Emerging Areas in Bioengineering. John Wiley & Sons, Ltd, pp. 723–760. https://doi.org/10.1002/9783527803293.ch42Ellen MacArthur Foundation, 2013. Towards the circular economy Vol. 1: an economic and business rationale for an accelerated transition [WWW Document]. URL https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed 11.11.23).Estévez-Alonso, Á., Pei, R., van Loosdrecht, M.C.M., Kleerebezem, R., Werker, A., 2021. Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresource Technology 327, 124790. https://doi.org/10.1016/j.biortech.2021.124790Foo, D.C.Y., Elyas, R., 2017. Chapter 1 - Introduction to Process Simulation, in: Yee Foo, D.C., Chemmangattuvalappil, N., Ng, D.K.S., Elyas, R., Chen, C.-L., Elms, R.D., Lee, H.-Y., Chien, I.-L., Chong, S., Chong, C.H. (Eds.), Chemical Engineering Process Simulation. Elsevier, pp. 3–21. https://doi.org/10.1016/B978-0-12-803782-9.00001-7Fu, X., Xu, H., Zhang, Q., Xi, J., Zhang, H., Zheng, M., Xi, B., Hou, L., 2023. A review on polyhydroxyalkanoates production from various organic waste streams: Feedstocks, strains, and production strategy. Resources, Conservation and Recycling 198, 107166. https://doi.org/10.1016/j.resconrec.2023.107166Garcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresource Technology 244, 1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187Garcia-Aguirre, J., Esteban-Gutiérrez, M., Irizar, I., González-Mtnez de Goñi, J., Aymerich, E., 2019. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Bioresource Technology 282, 407–416. https://doi.org/10.1016/j.biortech.2019.03.034Gottardo, M., Dosta, J., Cavinato, C., Crognale, S., Tonanzi, B., Rossetti, S., Bolzonella, D., Pavan, P., Valentino, F., 2023. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. Journal of Cleaner Production 404. https://doi.org/10.1016/j.jclepro.2023.136919Gracia, J., Acevedo, O., Acevedo, P., Mosquera, J., Montenegro, C., Cabeza, I., 2024. Statistical modeling and optimization of volatile fatty acids pro-duction by anaerobic digestion of municipal wastewater sludge. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34091-2Gracia, J., Montenegro, C., Acevedo, P., Cabeza, I., 2023a. Acidogenic Fermentation at a Thermophilic Temperature from Municipal Sewage Sludge for the Production of VFAs. Chemical Engineering Transactions 100, 553–558. https://doi.org/10.3303/CET23100093Gracia, J., Montenegro, C., Moreno, N., Cabeza, I., 2023b. Production of Polyhydroxyalkanoates using Volatile Fatty Acids from Municipal Wastewater Treatment Plant Sludge. Chemical Engineering Transactions 100, 559–564. https://doi.org/10.3303/CET23100094Gracia, J., Mosquera, J., Montenegro, C., Acevedo, P., Cabeza, I., 2020. Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions 79, 217–222. https://doi.org/10.3303/CET2079037Guthrie, S., Giles, S., Dunkerley, F., Tabaqchali, H., Harshfield, A., Loppolo, B., Manville, C., 2018. Impact of ammonia emissions from agriculture on biodiversity: An evidence synthesis 76. https://doi.org/10.7249/RR2695Guzik, M., Witko, T., Steinbüchel, A., Wojnarowska, M., Sołtysik, M., Wawak, S., 2020. What Has Been Trending in the Research of Polyhydroxyalkanoates? A Systematic Review. Frontiers in Bioengineering and Biotechnology 8.Hao, J., Wang, H., 2015. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresource Technology 175, 367–373. https://doi.org/10.1016/j.biortech.2014.10.106Hao, J., Wang, H., Wang, X., 2018. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate. Appl Microbiol Biotechnol 102, 3133–3143. https://doi.org/10.1007/s00253-018-8799-6Hassan, M.A., Yee, L.-N., Yee, P.L., Ariffin, H., Raha, A.R., Shirai, Y., Sudesh, K., 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass and Bioenergy 50, 1–9. https://doi.org/10.1016/j.biombioe.2012.10.014Hazen and Sawyer, Nippon Koei, 2017. Informe de selección de alternativas de tratamiento consideradas para la expasión de la PTAR El Salitre.Heinzle, E., Biwer, A.P., Cooney, C.L., 2007. Development of Sustainable Bioprocesses: Modeling and Assessment, 1st ed. John Wiley & Sons.Hermann-Krauss, C., Koller, M., Muhr, A., Fasl, H., Stelzer, F., Braunegg, G., 2013. Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products. Archaea 2013, e129268. https://doi.org/10.1155/2013/129268Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresource Technology 291, 121817. https://doi.org/10.1016/j.biortech.2019.121817Janesch, E., Pereira, J., Neubauer, P., Junne, S., 2021. Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination? Frontiers in Chemical Engineering 3.Jankowska, E., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P., 2017. Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH. Chemical Engineering Journal 326, 901–910. https://doi.org/10.1016/j.cej.2017.06.021Jie, W., Peng, Y., Ren, N., Li, B., 2014. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource Technology 152, 124–129. https://doi.org/10.1016/j.biortech.2013.11.011JRC European Commission, 2010. ILCD Handbook: General guide for Life Cycle Assessment - Provisions and action steps [WWW Document]. URL (accessed 3.31.24).Kerckhof, F.-M., Courtens, E.N.P., Geirnaert, A., Hoefman, S., Ho, A., Vilchez-Vargas, R., Pieper, D.H., Jauregui, R., Vlaeminck, S.E., Van De Wiele, T., Vandamme, P., Heylen, K., Boon, N., 2014. Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0099517Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., Cetecioglu, Z., 2021. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management 119, 374–388. https://doi.org/10.1016/j.wasman.2020.10.008Kleerebezem, R., van Loosdrecht, M.C., 2007. Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, Energy biotechnology / Environmental biotechnology 18, 207–212. https://doi.org/10.1016/j.copbio.2007.05.001Koller, M., 2021. Chapter 1 - Production, properties, and processing of microbial polyhydroxyalkanoate (PHA) biopolyesters, in: Das, S., Dash, H.R. (Eds.), Microbial and Natural Macromolecules. Academic Press, pp. 3–55. https://doi.org/10.1016/B978-0-12-820084-1.00001-6Koller, M. (Ed.), 2020. The Handbook of Polyhydroxyalkanoates: Microbial Biosynthesis and Feedstocks. CRC Press, Boca Raton. https://doi.org/10.1201/9780429296611Koller, M., 2019. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chemical and Biochemical Engineering Quarterly 32, 413–438. https://doi.org/10.15255/CABEQ.2018.1385Kourmentza, K., Kachrimanidou, V., Psaki, O., Pateraki, C., Ladakis, D., Koutinas, A., 2020. Competitive Advantage and Market Introduction of PHA Polymers and Potential Use of PHA Monomers, in: The Handbook of Polyhydroxyalkanoates. CRC Press.Kumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-J., Bhatia, S.K., Rajesh Banu, J., Kim, S.-H., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., Andrew Lin, K.-Y., Tsang, D.C.W., Thakur, I.S., 2020. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production 263, 121500. https://doi.org/10.1016/j.jclepro.2020.121500Langkau, S., Steubing, B., Mutel, C., Ajie, M.P., Erdmann, L., Voglhuber-Slavinsky, A., Janssen, M., 2023. A stepwise approach for Scenario-based Inventory Modelling for Prospective LCA (SIMPL). Int J Life Cycle Assess 28, 1169–1193. https://doi.org/10.1007/s11367-023-02175-9Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s oceans. Nat Commun 8, 15611. https://doi.org/10.1038/ncomms15611Lee, S.Y., Lee, Y., 2003. Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(--)-hydroxycarboxylic acids. Appl Environ Microbiol 69, 3421–3426. https://doi.org/10.1128/AEM.69.6.3421-3426.2003Liguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97, 6129–6147. https://doi.org/10.1007/s00253-013-5014-7Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., Sun, Y., 2012. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy 44, 463–468. https://doi.org/10.1016/j.renene.2012.01.092Lorini, L., Munarin, G., Salvatori, G., Alfano, S., Pavan, P., Majone, M., Valentino, F., 2022. Sewage sludge as carbon source for polyhydroxyalkanoates: a holistic approach at pilot scale level. Journal of Cleaner Production 354, 131728. https://doi.org/10.1016/j.jclepro.2022.131728Magdouli, S., Brar, S.K., Blais, J.F., Tyagi, R.D., 2015. How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass and Bioenergy 74, 268–279. https://doi.org/10.1016/j.biombioe.2014.12.017Majone, M., Chronopoulou, L., Lorini, L., Martinelli, A., Palocci, C., Rossetti, S., Valentino, F., Villano, M., 2017. PHA copolymers from microbial mixed cultures: Synthesis, extraction and related properties, in: Current Advances in Biopolymer Processing and Characterization. pp. 223–276.Markets and Markets, 2023. Polyhydroxyalkanoate (PHA) Market Share, Size | 2023 - 2028 [WWW Document]. MarketsandMarkets. URL https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (accessed 9.10.23).Matos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021a. Sludge retention time impacts on polyhydroxyalkanoate productivity in uncoupled storage/growth processes. Science of The Total Environment 799, 149363. https://doi.org/10.1016/j.scitotenv.2021.149363Matos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021b. Combined Strategies to Boost Polyhydroxyalkanoate Production from Fruit Waste in a Three-Stage Pilot Plant. ACS Sustainable Chem. Eng. 9, 8270–8279. https://doi.org/10.1021/acssuschemeng.1c02432Mazitova, A.K., Aminova, G.K., Zaripov, I.I., Vikhareva, I.N., 2021. Biodegradable polymer materials and modifying additives: State of the art. Part II. Nanotechnologies in Construction 13, 32–38. https://doi.org/10.15828/2075-8545-2021-13-1-32-38Mendez, D.A., Cabeza, I.O., Moreno, N.C., Riascos, C.A.M., 2016. Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions 49, 277–282. https://doi.org/10.3303/CET1649047Mengist, W., Soromessa, T., Legese, G., 2020. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777. https://doi.org/10.1016/j.mex.2019.100777Menon, A., Lyng, J.G., 2021. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids. Reviews in Environmental Science and Biotechnology 20, 189–208. https://doi.org/10.1007/s11157-020-09559-5Millati, R., Wikandari, R., Ariyanto, T., Hasniah, N., Taherzadeh, M.J., 2023. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresource Technology Reports 21, 101315. https://doi.org/10.1016/j.biteb.2022.101315Mohamed Shaffril, H.A., Samsuddin, S.F., Abu Samah, A., 2021. The ABC of systematic literature review: the basic methodological guidance for beginners. Quality and Quantity 55, 1319–1346. https://doi.org/10.1007/s11135-020-01059-6Montiel-Jarillo, G., Morales-Urrea, D.A., Contreras, E.M., López-Córdoba, A., Gómez-Pachón, E.Y., Carrera, J., Suárez-Ojeda, M.E., 2022. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers 14. https://doi.org/10.3390/polym14193938Moretto, Giulia, Lorini, L., Pavan, P., Crognale, S., Tonanzi, B., Rossetti, S., Majone, M., Valentino, F., 2020. Biopolymers from Urban Organic Waste: Influence of the Solid Retention Time to Cycle Length Ratio in the Enrichment of a Mixed Microbial Culture (MMC). ACS Sustainable Chem. Eng. 8, 14531–14539. https://doi.org/10.1021/acssuschemeng.0c04980Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F., 2020. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Research 170. https://doi.org/10.1016/j.watres.2019.115371Morgan-Sagastume, F., Heimersson, S., Laera, G., Werker, A., Svanström, M., 2016. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. Journal of Cleaner Production 137, 1368–1381. https://doi.org/10.1016/j.jclepro.2016.08.008Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., Karabegovic, L., Alexandersson, T., Johansson, P., Karlsson, A., Bengtsson, S., Arcos-Hernández, M.V., Magnusson, P., Werker, A., 2015. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology 181, 78–89. https://doi.org/10.1016/j.biortech.2015.01.046Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., Alexandersson, T., Bengtsson, S., Majone, M., Werker, A., 2014. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol 69, 177–184. https://doi.org/10.2166/wst.2013.643Mosquera, J., Rangel, C., Thomas, J., Santis, A., Acevedo, P., Cabeza, I., 2021. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 9, 1875. https://doi.org/10.3390/pr9111875Muneer, F., Rasul, I., Azeem, F., Siddique, M.H., Zubair, M., Nadeem, H., 2020. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J Polym Environ 28, 2301–2323. https://doi.org/10.1007/s10924-020-01772-1Muralikrishna, I.V., Manickam, V., 2017. Chapter Five - Life Cycle Assessment, in: Muralikrishna, I.V., Manickam, V. (Eds.), Environmental Management. Butterworth-Heinemann, pp. 57–75. https://doi.org/10.1016/B978-0-12-811989-1.00005-1Nguyenhuynh, T., Yoon, L.W., Chow, Y.H., Chua, A.S.M., 2021. An insight into enrichment strategies for mixed culture in polyhydroxyalkanoate production: feedstocks, operating conditions and inherent challenges. Chemical Engineering Journal 420, 130488. https://doi.org/10.1016/j.cej.2021.130488Ntaikou, I., Valencia Peroni, C., Kourmentza, C., Ilieva, V.I., Morelli, A., Chiellini, E., Lyberatos, G., 2014. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. Journal of Biotechnology 188, 138–147. https://doi.org/10.1016/j.jbiotec.2014.08.015Obeso Rodríguez, J.I., 2017. Síntesis de polihidroxialcanoatos en “Pseudomonas putida”: estudios bioquímicos, genéticos y ultraestructurales = Synthesis of polyhydroxyalkanoates in Pseudomonas putida: biochemical, genetic and ultrastructural studies. https://doi.org/10.18002/10612/6940Ospina-Betancourth, C., Echeverri, S., Rodriguez-Gonzalez, C., Wist, J., Combariza, M.Y., Sanabria, J., 2022. Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry. Fermentation 8. https://doi.org/10.3390/fermentation8040180Palmeiro-Sánchez, T., O’Flaherty, V., Lens, P.N.L., 2022. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology 348, 10–25. https://doi.org/10.1016/j.jbiotec.2022.03.001Pan, C., Ge, L., Lee, P.-H. (Henry), Tan, G.-Y.A., 2020. An Introduction to the Thermodynamics Calculation of PHA Production in Microbes, in: The Handbook of Polyhydroxyalkanoates. CRC Press.Pérez, V., Mota, C.R., Muñoz, R., Lebrero, R., 2020. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society. Chemosphere 255, 126929. https://doi.org/10.1016/j.chemosphere.2020.126929Perez-Zabaleta, M., Atasoy, M., Khatami, K., Eriksson, E., Cetecioglu, Z., 2021. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresource Technology 323, 124604. https://doi.org/10.1016/j.biortech.2020.124604Pikaar, I., Guest, J., Ganigué, R., Jensen, P., Rabaey, K., Seviour, T., Trimmer, J., van der Kolk, O., Vaneeckhaute, C., Verstraete, W. (Eds.), 2022. Resource Recovery from Water: Principles and Application. IWA Publishing. https://doi.org/10.2166/9781780409566Pranckutė, R., 2021. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 9, 12. https://doi.org/10.3390/publications9010012Ramos-Suarez, M., Zhang, Y., Outram, V., 2021. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev Environ Sci Biotechnol 20, 439–478. https://doi.org/10.1007/s11157-021-09566-0Rangel, C., Sastoque, J., Calderón, J., Gracia, J., Cabeza, I., Villamizar, S., Acevedo, P., 2022. Pilot-Scale Assessment of Biohydrogen and Volatile Fatty Acids Production via Dark Fermentation of Residual Biomass. Chemical Engineering Transactions 92, 61–66. https://doi.org/10.3303/CET2292011Rangel, C.J., Hernández, M.A., Mosquera, J.D., Castro, Y., Cabeza, I.O., Acevedo, P.A., 2021. Hydrogen production by dark fermentation process from pig manure, cocoa mucilage, and coffee mucilage. Biomass Conversion and Biorefinery 11, 241–250. https://doi.org/10.1007/s13399-020-00618-zRathna, G. v. n., Gadgil, B.S.T., Killi, N., 2016. Polyhydroxyalkanoates: The Application of Eco-Friendly Materials, in: Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. John Wiley & Sons, Ltd, pp. 25–54. https://doi.org/10.1002/9781119117360.ch2Reis, M., Albuquerque, M., Villano, M., Majone, M., 2011. Mixed Culture Processes for Polyhydroxyalkanoate Production from Agro-Industrial Surplus/Wastes as Feedstocks. Comprehensive Biotechnology 6, 669–683. https://doi.org/10.1016/B978-0-08-088504-9.00464-5Rosmalina, R.T., Widyarani, Hamidah, U., Sintawardani, N., 2020. Determination of volatile fatty acids in tofu wastewater by capillary gas chromatography with flame ionization detection: A Comparison of extraction methods. Presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/483/1/012038Rossi, E., Pecorini, I., Panico, A., Iannelli, R., 2022. Impact of reactor configuration and relative operating conditions on volatile fatty acids production from organic waste. Environmental Technology Reviews 11, 156–186. https://doi.org/10.1080/21622515.2022.2139641Rudnik, E., 2013. 13 - Compostable Polymer Properties and Packaging Applications, in: Ebnesajjad, S. (Ed.), Plastic Films in Food Packaging, Plastics Design Library. William Andrew Publishing, Oxford, pp. 217–248. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., 2021. Evaluation and optimization of the environmental performance of PHA downstream processing. Chemical Engineering Journal 412, 127687. https://doi.org/10.1016/j.cej.2020.127687Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., Steubing, B., 2023. Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. Journal of Cleaner Production 383, 135331. https://doi.org/10.1016/j.jclepro.2022.135331Sabapathy, P.C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H.M., Qi, X., 2020. Recent developments in Polyhydroxyalkanoates (PHAs) production – A review. Bioresource Technology 306, 123132. https://doi.org/10.1016/j.biortech.2020.123132Sabra, W., Zeng, A.-P., 2014. Mixed microbial cultures for industrial biotechnology: Success, chance, and challenges, in: Industrial Biocatalysis. pp. 205–238.Samani, P., 2023. Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Science of The Total Environment 903, 166611. https://doi.org/10.1016/j.scitotenv.2023.166611Sarkar, O., Katakojwala, R., Venkata Mohan, S., 2021. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chemistry 23, 561–574. https://doi.org/10.1039/d0gc03063eSd, H., C, G., Ml, F., Sd, G., Tc, F., Te, S., 2015. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Environmental technology 36. https://doi.org/10.1080/09593330.2015.1041426Serafim, L.S., Pereira, J., Lemos, P.C., 2020. Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey So Far and Challenges Ahead, in: The Handbook of Polyhydroxyalkanoates. CRC Press.Sevella, B., Bertalan, G., 2000. Development of a MATLAB based bioprocess simulation tool. Bioprocess Engineering 23, 621–626. https://doi.org/10.1007/s004490000211Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., Zhang, Y., 2020. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production 254, 120138. https://doi.org/10.1016/j.jclepro.2020.120138Silva, F., Matos, M., Pereira, B., Ralo, C., Pequito, D., Marques, N., Carvalho, G., Reis, M.A.M., 2022. An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal 427, 131908. https://doi.org/10.1016/j.cej.2021.131908Steinbüchel, A., Lütke-Eversloh, T., 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal, Biopolymers 16, 81–96. https://doi.org/10.1016/S1369-703X(03)00036-6Steinbüchel, A., Valentin, H.E., 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters 128, 219–228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.xSzacherska, K., Oleskowicz-Popiel, P., Ciesielski, S., Mozejko-Ciesielska, J., 2021. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers 13, 321. https://doi.org/10.3390/polym13030321Tayou, L.N., Lauri, R., Incocciati, E., Pietrangeli, B., Majone, M., Micolucci, F., Gottardo, M., Valentino, F., 2022. Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects. Process Safety and Environmental Protection 163, 158–166. https://doi.org/10.1016/j.psep.2022.05.011Thomassen, G., Dael, M.V., Passel, S.V., You, F., 2019. How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chem. 21, 4868–4886. https://doi.org/10.1039/C9GC02223FThonemann, N., Schulte, A., Maga, D., 2020. How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance. Sustainability 12, 1192. https://doi.org/10.3390/su12031192Unidad Administrativa Especial de Servicios Públicos, 2020. Plan de Gestión Integral de Residuos Sólidos.Valentino, F., Brusca, A.A., Beccari, M., Nuzzo, A., Zanaroli, G., Majone, M., 2013. Start up of biological sequencing batch reactor (SBR) and short-term biomass acclimation for polyhydroxyalkanoates production. Journal of Chemical Technology and Biotechnology 88, 261–270. https://doi.org/10.1002/jctb.3824Valentino, F., Gottardo, M., Micolucci, F., Pavan, P., Bolzonella, D., Rossetti, S., Majone, M., 2018. Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustainable Chemistry and Engineering 6, 16375–16385. https://doi.org/10.1021/acssuschemeng.8b03454Valentino, F., Karabegovic, L., Majone, M., Morgan-Sagastume, F., Werker, A., 2015. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Research 77, 49–63. https://doi.org/10.1016/j.watres.2015.03.016Valentino, F., Moretto, G., Gottardo, M., Pavan, P., Bolzonella, D., Majone, M., 2019a. Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production 220, 368–375. https://doi.org/10.1016/j.jclepro.2019.02.102Valentino, F., Moretto, G., Lorini, L., Bolzonella, D., Pavan, P., Majone, M., 2019b. Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind. Eng. Chem. Res. 58, 12149–12158. https://doi.org/10.1021/acs.iecr.9b01831Valentino, F., Munarin, G., Biasiolo, M., Cavinato, C., Bolzonella, D., Pavan, P., 2021. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. Journal of Environmental Chemical Engineering 9, 106062. https://doi.org/10.1016/j.jece.2021.106062Valentino, F., Villano, M., Lorini, L., Majone, M., 2020. PHA Production by Mixed Microbial Cultures and Organic Waste of Urban Origin: Pilot Scale Evidence, in: The Handbook of Polyhydroxyalkanoates. CRC Press.Varghese, V.K., Poddar, B.J., Shah, M.P., Purohit, H.J., Khardenavis, A.A., 2022. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Science of The Total Environment 815, 152500. https://doi.org/10.1016/j.scitotenv.2021.152500Vea, E.B., Fabbri, S., Spierling, S., Owsianiak, M., 2021. Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics. Science of The Total Environment 788, 147544. https://doi.org/10.1016/j.scitotenv.2021.147544Veeken, A., Hamelers, B., 1999. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 69, 249–254. https://doi.org/10.1016/S0960-8524(98)00188-6Vogli, L., Macrelli, S., Marazza, D., Galletti, P., Torri, C., Samorì, C., Righi, S., 2020. Life Cycle Assessment and Energy Balance of a Novel Polyhydroxyalkanoates Production Process with Mixed Microbial Cultures Fed on Pyrolytic Products of Wastewater Treatment Sludge. Energies 13, 2706. https://doi.org/10.3390/en13112706Werker, A., Bengtsson, S., Johansson, P., Magnusson, P., Gustafsson, E., Hjort, M., Anterrieu, S., Karabegovic, L., Alexandersson, T., Karlsson, A., 2020. Production Quality Control of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent Extraction, in: The Handbook of Polyhydroxyalkanoates. CRC Press.Werker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., Johansson, P., Karlsson, A., Karabegovic, L., Magnusson, P., Morgan-Sagastume, F., Sijstermans, L., Tietema, M., Visser, C., Wypkema, E., van der Kooij, Y., Deeke, A., Uijterlinde, C., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci Technol 78, 2256–2269. https://doi.org/10.2166/wst.2018.502Werker, A., Lorini, L., Villano, M., Valentino, F., Majone, M., 2022. Modelling Mixed Microbial Culture Polyhydroxyalkanoate Accumulation Bioprocess towards Novel Methods for Polymer Production Using Dilute Volatile Fatty Acid Rich Feedstocks. Bioengineering 9, 125. https://doi.org/10.3390/bioengineering9030125Xiong, H., Chen, J., Wang, H., Shi, H., 2012. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresource Technology 119, 285–292. https://doi.org/10.1016/j.biortech.2012.05.126Yuan, Y., Hu, X., Chen, H., Zhou, Yaoyu, Zhou, Yefeng, Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of The Total Environment 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741Zhang, P., Chen, Y., Zhou, Q., 2009. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research 43, 3735–3742. https://doi.org/10.1016/j.watres.2009.05.036Zhou, Y., Takaoka, M., Wang, W., Liu, X., Oshita, K., 2013. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. J Biosci Bioeng 116, 101–105. https://doi.org/10.1016/j.jbiosc.2013.01.014InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86855/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53Licencia_Jhessica Mosquera_2024.pdfLicencia_Jhessica Mosquera_2024.pdfLicencia de publicación con embargoapplication/pdf279887https://repositorio.unal.edu.co/bitstream/unal/86855/6/Licencia_Jhessica%20Mosquera_2024.pdfbe3d6bb6612ecf97f648d5141fd22278MD56THUMBNAILThesis_Jhessica Mosquera_vf.pdf.jpgThesis_Jhessica Mosquera_vf.pdf.jpgGenerated Thumbnailimage/jpeg5605https://repositorio.unal.edu.co/bitstream/unal/86855/4/Thesis_Jhessica%20Mosquera_vf.pdf.jpgf0f85fcd0099236de5512420f0c7578fMD541018476626.2024.pdf.jpg1018476626.2024.pdf.jpgGenerated Thumbnailimage/jpeg5605https://repositorio.unal.edu.co/bitstream/unal/86855/7/1018476626.2024.pdf.jpgf0f85fcd0099236de5512420f0c7578fMD57ORIGINAL1018476626.2024.pdf1018476626.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf2199554https://repositorio.unal.edu.co/bitstream/unal/86855/5/1018476626.2024.pdfbcd131db9e9b158b4b0dc154269a7096MD55unal/86855oai:repositorio.unal.edu.co:unal/868552024-09-25 01:04:14.622Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=