Student profiling model for the "Computer Programming" course
Abstract. The research work presents a student profiling model, and the results after applying it to the "Computer Programming" course, which is developed partially virtual through the Virtual Intelligent Learning Platform, this is an E-Learning system that allows the students to consult t...
- Autores:
-
Peñuela Vega, Camilo Orlando
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/56000
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/56000
http://bdigital.unal.edu.co/51554/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
Minería de datos
Minería educativa
Entorno virtual de aprendizaje
Data mining
Educational data mining
Learning management system
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_97ce087f5cd0ad1b2890dd4e4faaaaf4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/56000 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Student profiling model for the "Computer Programming" course |
title |
Student profiling model for the "Computer Programming" course |
spellingShingle |
Student profiling model for the "Computer Programming" course 0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering Minería de datos Minería educativa Entorno virtual de aprendizaje Data mining Educational data mining Learning management system |
title_short |
Student profiling model for the "Computer Programming" course |
title_full |
Student profiling model for the "Computer Programming" course |
title_fullStr |
Student profiling model for the "Computer Programming" course |
title_full_unstemmed |
Student profiling model for the "Computer Programming" course |
title_sort |
Student profiling model for the "Computer Programming" course |
dc.creator.fl_str_mv |
Peñuela Vega, Camilo Orlando |
dc.contributor.advisor.spa.fl_str_mv |
Gómez Perdomo, Jonatan (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Peñuela Vega, Camilo Orlando |
dc.contributor.spa.fl_str_mv |
León Guzmán, Elizabeth |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering Minería de datos Minería educativa Entorno virtual de aprendizaje Data mining Educational data mining Learning management system |
dc.subject.proposal.spa.fl_str_mv |
Minería de datos Minería educativa Entorno virtual de aprendizaje Data mining Educational data mining Learning management system |
description |
Abstract. The research work presents a student profiling model, and the results after applying it to the "Computer Programming" course, which is developed partially virtual through the Virtual Intelligent Learning Platform, this is an E-Learning system that allows the students to consult the course material and to take the tests. The model identifies the profiles based on socio-economic data (age and gender), and students' behavior when using the Platform (Number of accesses to documents, exercises or videos, percentage of accesses performed in class, average session length and average absence time). The profiles found are analyzed in order to define if they are connected to the academic performance. Data of around 1000 students (those enrolled in 2014) and 20500 sessions, were used. The profiles were found through the k-Means clustering algorithm. Per each profile, the common sequences of navigation were identified. A warnings system is proposed, it uses a lazy classifier to assign a profile to the current student, and based on this profile, give timely feedback by showing alerts. A recommender system is proposed, it shows suggestions of resources that should be accessed, in order to improve the academic performance. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-10-05 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:34:47Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:34:47Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/56000 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/51554/ |
url |
https://repositorio.unal.edu.co/handle/unal/56000 http://bdigital.unal.edu.co/51554/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Peñuela Vega, Camilo Orlando (2015) Student profiling model for the "Computer Programming" course. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/56000/1/camiloorlandope%c3%b1uelavega.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/56000/2/camiloorlandope%c3%b1uelavega.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
5e2b8a6e64e2b0899e9c207fec17bae6 f169a4364635232bb8330c2a46bc032d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089858519400448 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León Guzmán, ElizabethGómez Perdomo, Jonatan (Thesis advisor)9e67f15e-e4cc-4534-b239-52b8cf4a6997-1Peñuela Vega, Camilo Orlando7f2c1fb6-8730-4656-9378-182b1e93c9ce3002019-07-02T11:34:47Z2019-07-02T11:34:47Z2015-10-05https://repositorio.unal.edu.co/handle/unal/56000http://bdigital.unal.edu.co/51554/Abstract. The research work presents a student profiling model, and the results after applying it to the "Computer Programming" course, which is developed partially virtual through the Virtual Intelligent Learning Platform, this is an E-Learning system that allows the students to consult the course material and to take the tests. The model identifies the profiles based on socio-economic data (age and gender), and students' behavior when using the Platform (Number of accesses to documents, exercises or videos, percentage of accesses performed in class, average session length and average absence time). The profiles found are analyzed in order to define if they are connected to the academic performance. Data of around 1000 students (those enrolled in 2014) and 20500 sessions, were used. The profiles were found through the k-Means clustering algorithm. Per each profile, the common sequences of navigation were identified. A warnings system is proposed, it uses a lazy classifier to assign a profile to the current student, and based on this profile, give timely feedback by showing alerts. A recommender system is proposed, it shows suggestions of resources that should be accessed, in order to improve the academic performance.El trabajo de investigación presenta un modelo de perfilamiento de estudiantes, y sus resultados al haberlo aplicado al curso "Programación de Computadores", el cual es dictado de manera parcialmente virtual, por medio de la Plataforma Inteligente de Aprendizaje Virtual, éste es un Sistema en Línea, que permite la consulta del material de estudio y la presentación de los exámenes. El modelo identifica los perfiles a partir de datos socioeconómicos (edad y género), y el comportamiento en la Plataforma (Cantidad de consultas a documentos, ejercicios o videos, porcentaje de consultas realizadas en clase, tamaño promedio de la sesión y tiempo promedio de ausencia). Los perfiles son analizados para definir si están relacionados con el rendimiento académico. Se utilizaron los datos de aproximadamente 1000 estudiantes (inscritos en 2014) y 20500 sesiones. Los perfiles fueron identificados por medio del algoritmo de agrupación k-Means, y para cada uno, se identificaron las secuencias comunes de navegación. Se propone un sistema de alertas, que utiliza un clasificador perezoso para asignar al estudiante actual un perfil, y a partir de éste, da sugerencias de manera oportuna. Se propone un sistema de recomendación, que muestra al estudiante sugerencias sobre cuáles recursos se deberían consultar, con el objetivo de mejorar su rendimiento académico.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasPeñuela Vega, Camilo Orlando (2015) Student profiling model for the "Computer Programming" course. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general works37 Educación / Education62 Ingeniería y operaciones afines / EngineeringMinería de datosMinería educativaEntorno virtual de aprendizajeData miningEducational data miningLearning management systemStudent profiling model for the "Computer Programming" courseTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALcamiloorlandopeñuelavega.2015.pdfapplication/pdf1251967https://repositorio.unal.edu.co/bitstream/unal/56000/1/camiloorlandope%c3%b1uelavega.2015.pdf5e2b8a6e64e2b0899e9c207fec17bae6MD51THUMBNAILcamiloorlandopeñuelavega.2015.pdf.jpgcamiloorlandopeñuelavega.2015.pdf.jpgGenerated Thumbnailimage/jpeg4277https://repositorio.unal.edu.co/bitstream/unal/56000/2/camiloorlandope%c3%b1uelavega.2015.pdf.jpgf169a4364635232bb8330c2a46bc032dMD52unal/56000oai:repositorio.unal.edu.co:unal/560002024-03-20 23:11:41.186Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |