Discrete model of a nonlocal diffusion equation
In this work we prove the existence and uniqueness of solutions as well as the validation of a comparison principle for a discrete model associated to a nonlocal diffusion problem with Neumann conditions. We show that the solutions for the discrete model converge to the solutions of the continuous m...
- Autores:
-
Bogoya, Mauricio
Gómez S., César A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49336
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49336
http://bdigital.unal.edu.co/42793/
- Palabra clave:
- Difusión no local
condiciones de Neumann
discretización
convergencia
Nonlocal Diffusion
Neumann Boundary Conditions
Discretizations
Convergence
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this work we prove the existence and uniqueness of solutions as well as the validation of a comparison principle for a discrete model associated to a nonlocal diffusion problem with Neumann conditions. We show that the solutions for the discrete model converge to the solutions of the continuous model when the mesh parameter goes to zero. Finally, we perform some numerical experiments. |
---|