Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial

Ilustraciones, fotografías, tablas

Autores:
Cortes Quiceno, Manuel Alejandro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85670
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85670
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Capsicum annuum
Fenotipado
Phenotyping
Inteligencia artificial
Artificial intelligence
Variación fenotípica
Phenotypic variation
Fotosíntesis
Marchitez Vascular
Fenología
Componentes de rendimiento
Fenotipado de alto rendimiento
Número de frutos
Aprendizaje automático
Aprendizaje profundo
Agricultura 4.0.
Machine learning
Deep learning
Photosynthesis
Vascular wilt
Phenology
Number of fruits
High-throughput phenotyping
Machine learning
Deep learning
Agriculture 4.0
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_972db1865994fbd49a4dfdf73e57347d
oai_identifier_str oai:repositorio.unal.edu.co:unal/85670
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
dc.title.translated.eng.fl_str_mv Indirect detection of phytosanitary, phenological, and productive parameters of Cayenne pepper cultivation through the use of phenotyping platforms and artificial intelligence
title Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
spellingShingle Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
630 - Agricultura y tecnologías relacionadas
Capsicum annuum
Fenotipado
Phenotyping
Inteligencia artificial
Artificial intelligence
Variación fenotípica
Phenotypic variation
Fotosíntesis
Marchitez Vascular
Fenología
Componentes de rendimiento
Fenotipado de alto rendimiento
Número de frutos
Aprendizaje automático
Aprendizaje profundo
Agricultura 4.0.
Machine learning
Deep learning
Photosynthesis
Vascular wilt
Phenology
Number of fruits
High-throughput phenotyping
Machine learning
Deep learning
Agriculture 4.0
title_short Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
title_full Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
title_fullStr Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
title_full_unstemmed Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
title_sort Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificial
dc.creator.fl_str_mv Cortes Quiceno, Manuel Alejandro
dc.contributor.advisor.none.fl_str_mv Gómez López, Eyder Daniel
Ramirez Gil, Joaquin Guillermo
dc.contributor.author.none.fl_str_mv Cortes Quiceno, Manuel Alejandro
dc.contributor.researcher.none.fl_str_mv Conejo Rodríguez Diego Felipe
dc.contributor.orcid.spa.fl_str_mv 0000-0002-8030-8624
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Capsicum annuum
Fenotipado
Phenotyping
Inteligencia artificial
Artificial intelligence
Variación fenotípica
Phenotypic variation
Fotosíntesis
Marchitez Vascular
Fenología
Componentes de rendimiento
Fenotipado de alto rendimiento
Número de frutos
Aprendizaje automático
Aprendizaje profundo
Agricultura 4.0.
Machine learning
Deep learning
Photosynthesis
Vascular wilt
Phenology
Number of fruits
High-throughput phenotyping
Machine learning
Deep learning
Agriculture 4.0
dc.subject.agrovoc.none.fl_str_mv Capsicum annuum
Fenotipado
Phenotyping
Inteligencia artificial
Artificial intelligence
Variación fenotípica
Phenotypic variation
dc.subject.proposal.spa.fl_str_mv Fotosíntesis
Marchitez Vascular
Fenología
Componentes de rendimiento
Fenotipado de alto rendimiento
Número de frutos
Aprendizaje automático
Aprendizaje profundo
Agricultura 4.0.
dc.subject.proposal.eng.fl_str_mv Machine learning
Deep learning
Photosynthesis
Vascular wilt
Phenology
Number of fruits
High-throughput phenotyping
Machine learning
Deep learning
Agriculture 4.0
description Ilustraciones, fotografías, tablas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11
dc.date.accessioned.none.fl_str_mv 2024-02-09T13:40:38Z
dc.date.available.none.fl_str_mv 2024-02-09T13:40:38Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85670
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85670
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agronet, (2023). (Ministerio de Agricultura, Estadísticas). Recuperado de HTPPs://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=2
Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial Intelligence, IoT, and Machine Learning. In Agriculture 5.0: Artificial Intelligence, IoT, and Machine Learning. CRC Press. HTPPs://doi.org/10.1201/9781003125433
Aklilu, S., Abebie, B., Wogari, D., & T/Wolde, A. (2016). Genetic variability and association of characters in Ethiopian hot pepper (Capsicum annum L.) landraces. Journal of Agricultural Sciences, Belgrade, 61(1), 19–36. HTPPs://doi.org/10.2298/jas1601019a
Alameen, A. (2022). Improving the Accuracy of Multi-Valued Datasets in Agriculture Using Logistic Regression and LSTM-RNN Method. TEM Journal, 11(1), 454–462. HTPPs://doi.org/10.18421/TEM111-58
Alkemade, J. A., Messmer, M. M., Arncken, C., Leska, A., Annicchiarico, P., Nazzicari, N., Książkiewicz, M., Voegele, R. T., Finckh, M. R., & Hohmann, P. (2021). A high-throughput phenotyping tool to identify field-relevant anthracnose resistance in white lupin. Plant Disease, 105(6). HTPPs://doi.org/10.1094/PDIS-07-20-1531-RE
Ampatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sensing, 11(4). HTPPs://doi.org/10.3390/rs11040410
Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., Salvucci, M. E., & White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68–79. HTPPs://doi.org/10.1071/FP13126
Aqel, D., Al-Zubi, S., Mughaid, A., & Jararweh, Y. (2022). Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture. Cluster Computing, 25(3), 2007–2020. HTPPs://doi.org/10.1007/s10586-021-03397-y
Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. In Trends in Plant Science (Vol. 19, Issue 1, pp. 52–61). HTPPs://doi.org/10.1016/j.tplants.2013.09.008
Arellano, J. B. (2023). Non-photochemical quenching of photosystem I as an adaptive response to prolonged drought. Journal of Experimental Botany, 74(1), 16–18. HTPPs://doi.org/10.1093/jxb/erac438
Arora, H., Sharma, A., Sharma, S., Haron, F. F., Gafur, A., Sayyed, R. Z., & Datta, R. (2021). Pythium damping-off and root rot of capsicum annuum l.: Impacts, diagnosis, and management. In Microorganisms (Vol. 9, Issue 4). MDPI AG. HTPPs://doi.org/10.3390/microorganisms9040823
Avenson, T. J., Kanazawa, A., Cruz, J. A., Takizawa, K., Ettinger, W. E., & Kramer, D. M. (2005). Integrating the proton circuit into photosynthesis: Progress and challenges. In Plant, Cell and Environment (Vol. 28, Issue 1, pp. 97–109). HTPPs://doi.org/10.1111/j.1365-3040.2005.01294.x
Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. HTPPs://doi.org/10.1146/annurev.arplant.59.032607.092759
Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. HTPPs://doi.org/10.1080/02757259509532298
Ben-Jabeur, M., Romero, A. G., Vicente, R., Kthiri, Z., Kefauver, S. C., Serret, M. D., Ortega, J. L. A., & Hamada, W. (2021). MultispeQ for Tracing Biostimulants Effect on Growth Promoting and Water Stress Tolerance in Wheat. Environmental Science and Engineering, 1207–1211. HTPPs://doi.org/10.1007/978-3-030-51210-1_191
Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. In Journal of Experimental Botany (Vol. 58, Issues 15–16, pp. 4019–4026). HTPPs://doi.org/10.1093/jxb/erm298
Bhutia L, K., VK, K., Meetei NG, T., & Bhutia D, N. (2018). Effects Of Climate Change On Growth And Development Of Chilli. Agrotechnology, 07(02). HTPPs://doi.org/10.4172/2168-9881.1000180
Boiarskii, B. (2019). Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, spl1(4). HTPPs://doi.org/10.26782/jmcms.spl.4/2019.11.00003
Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Cluster Computing. HTPPs://doi.org/10.1007/s10586-022-03627-x
Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment. www.elsevier.com/locate/rse
Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. In Sensors (Vol. 21, Issue 6, pp. 1–22). MDPI AG. HTPPs://doi.org/10.3390/s21062129
Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245. HTPPs://doi.org/10.1016/j.rse.2013.07.031
Candel, A., Ledell, E., & Bartz, A. (2016). Deep Learning with H2O. HTPP://h2o.ai/resources/
Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. sp. lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3). HTPPs://doi.org/10.17584/rcch.2021v15i3.12822
Castro Clavijo, S. D. (2014). Búsqueda de resistencia a la pudrición causada por Fusarium spp. en Capsicum [ Maestría tesis, Universidad Nacional de Colombia sede Palmira]. HTPPs://repositorio.unal.edu.co/handle/unal/53137
Chang, S., Lee, U., Hong, M. J., Jo, Y. D., & Kim, J. B. (2021). Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis. Frontiers in Plant Science, 12. HTPPs://doi.org/10.3389/fpls.2021.721512
Chen, A., Meng, F., Mao, J., Ricciuto, D., & Knapp, A. K. (2022). Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere. Agricultural and Forest Meteorology, 323. HTPPs://doi.org/10.1016/j.agrformet.2022.109027
Conejo Rodriguez, D. F., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better-performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.1008666
Courbier, S., & Pierik, R. (2019). Canopy Light Quality Modulates Stress Responses in Plants. CellPress. HTPPs://doi.org/10.1016/j.isci
Crippen, R. E. (1990). Calculating the Vegetation Index Faster. Remote Sensing of Environment, 34, 71–73. HTPPs://doi.org/doi:10.1016/0034-4257(90)90085-z
Cruz, J. A., & Avenson, T. J. (2021). Photosynthesis: a multiscopic view. Journal of Plant Research, 134(4), 665–682. HTPPs://doi.org/10.1007/s10265-021-01321-4
de Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. HTPPs://doi.org/10.3389/fpls.2020.00037
DeSalvio, A. J., Adak, A., Murray, S. C., Wilde, S. C., & Isakeit, T. (2022). Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. Scientific Reports, 12(1). HTPPs://doi.org/10.1038/s41598-022-11591-0
Dong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., Morrison, M. J., Zhang, C., Liu, Y., Shi, Y., Pan, H., & Zhou, G. (2019). Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11(22). HTPPs://doi.org/10.3390/rs11222706
dos Anjos, I. V., Silva, L. P., Silva, L. R., Araújo, K. L., Silva, A. F., Barelli, M. A. A., & Neves, L. G. (2018). Reação de acessos de Capsicum spp. ao fungo Fusarium solani. 16, 344–349.
Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10). HTPPs://doi.org/10.3390/rs10101513
Eke, P., Dinango, V. N., Nana Wakam, L., Toghueo, R. M. K., Kouokap, L. R. K., Mabou, L. C. N., Wankeu, T. H. K., Ngomsi, P., & Boyom, F. F. (2021). Diagnosis and bioefficacy of endospheric trichoderma strains of selected medicinal plant on pepper root rot and vascular wilt in Cameroon. Archives of Phytopathology and Plant Protection, 54(13–14), 794–812. HTPPs://doi.org/10.1080/03235408.2020.1844524
Elvanidi, A., & Katsoulas, N. (2022). Performance of Gradient Boosting Learning Algorithm for Crop Stress Identification in Greenhouse Cultivation. 25. HTPPs://doi.org/10.3390/iecho2022-12508
Eng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The use of VARI, GLI, And VIgreen formulas in detecting vegetation in aerial images. International Journal of Technology, 10(7), 1385–1394. HTPPs://doi.org/10.14716/ijtech.v10i7.3275
Escadafal, R. (1994). SOIL SPECTRAL PROPERTIES AND THEIR RELATIONSHIPS WITH ENVIRON-MENTAL PARAMETERS-EXAMPLES FROM ARID REGIONS. In J. M. J. Hill (Ed.), Imaging Spectrometry — a Tool for Environmental Observations: Vol. vol 4 (Springer, Dordrecht). HTPPs://doi.org/HTPPs://doi.org/10.1007/978-0-585-33173-7_5
Farihadina, A. A., & Sutarman. (2022). Application of Biological Agents of Trichoderma and Aspergillus on Cayenne Chilli Plants in Endemic Land with Fusarium Wilt. IOP Conference Series: Earth and Environmental Science, 1104(1). HTPPs://doi.org/10.1088/1755-1315/1104/1/012003
Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., Duan, F., Chen, R., & Ma, Y. (2023). UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24(1), 187–212. HTPPs://doi.org/10.1007/s11119-022-09938-8
Feldmann, F., & Rutikanga, A. (2021). Phenological growth stages and BBCH-identification keys of Chilli (Capsicum annuum L., Capsicum chinense JACQ., Capsicum baccatum L.). Journal of Plant Diseases and Protection, 128(2), 549–555. HTPPs://doi.org/10.1007/s41348-020-00395-x
Feng, L., Chen, S., Zhang, C., Zhang, Y., & He, Y. (2021). A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. In Computers and Electronics in Agriculture (Vol. 182). Elsevier B.V. HTPPs://doi.org/10.1016/j.compag.2021.106033
Fernández-Calleja, M., Monteagudo, A., Casas, A. M., Boutin, C., Pin, P. A., Morales, F., & Igartua, E. (2020). Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid—parent barley germplasm set. Sensors (Switzerland), 20(5). HTPPs://doi.org/10.3390/s20051486
Flexas, J., Escalona, M., Evain, S., Gulías, J., Moya, I., Osmond, C. B., & Medrano, H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO 2 assimilation and stomatal conductance during water-stress in C 3 plants.
Furbank, R. T., & Tester, M. (2011). Phenomics - technologies to relieve the phenotyping bottleneck. In Trends in Plant Science (Vol. 16, Issue 12, pp. 635–644). HTPPs://doi.org/10.1016/j.tplants.2011.09.005
Gabrekiristos, E., & Demiyo, T. (2020). Hot Pepper Fusarium Wilt (Fusarium oxysporum f. sp. capsici): Epidemics, Characteristic Features and Management Options. Journal of Agricultural Science, 12(10), 347. HTPPs://doi.org/10.5539/jas.v12n10p347
Galli, G., Horne, D. W., Collins, S. D., Jung, J., Chang, A., Fritsche-Neto, R., & Rooney, W. L. (2020). Optimization of UAS-based high-throughput phenotyping to estimate plant health and grain yield in sorghum. Plant Phenome Journal, 3(1). HTPPs://doi.org/10.1002/ppj2.20010
Gedeon, T. D. (1997). DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND FUNCTIONAL MEASURES. International Journal of Neural Systems, 8 No. 2, 209–218. www.worldscientific.com
Gholipoor, M., & Nadali, F. (2019). Fruit yield prediction of pepper using artificial neural network. Scientia Horticulturae, 250, 249–253. HTPPs://doi.org/10.1016/j.scienta.2019.02.040
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. In J. Plant Physiol (Vol. 160). HTPP://www.urbanfischer.de/journals/jpp
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. www.elsevier.com/locate/rse
Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), 1–4. HTPPs://doi.org/10.1029/2005GL022688
González-Gordo, S., Rodríguez-Ruiz, M., Palma, J. M., & Corpas, F. J. (2020). Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Frontiers in Plant Science, 11. HTPPs://doi.org/10.3389/fpls.2020.00485
Gordon, T. R. (2017). Annual Review of Phytopathology Fusarium oxysporum and the Fusarium Wilt Syndrome. HTPPs://doi.org/10.1146/annurev-phyto-080615
Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2). HTPPs://doi.org/10.3390/drones5020034
Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y. J., Song, Y. C., & Sun, Y. (2022). Granal thylakoid structure and function: explaining an enduring mystery of higher plants. New Phytologist, 236(2), 319–329. HTPPs://doi.org/10.1111/nph.18371
Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y. J., Song, Y. C., & Sun, Y. (2023). An exploratory steady-state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. Plant Cell and Environment. HTPPs://doi.org/10.1111/pce.14563
Guadagno, C. R., Beverly, D. P., & Ewers, B. E. (2021). The love–hate relationship between chlorophyll a and water in psii affects fluorescence products. Photosynthetica, 59(Special Issue), 409–421. HTPPs://doi.org/10.32615/ps.2021.023
Guimarães, M., Queiroz, M., & Alfenas, R. (2021). RGB-based phenotyping of foliar disease severity under controlled conditions. OSFPREPRINTS, 1–29. HTPPs://doi.org/10.31219/osf.io/fs4vm
Guo, Y., Fu, Y., Hao, F., Zhang, X., Wu, W., Jin, X., Robin Bryant, C., & Senthilnath, J. (2021). Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators, 120. HTPPs://doi.org/10.1016/j.ecolind.2020.106935
Haghighi, M., Sharifani, M. J., & Parnianifard, F. (2023). Physiological changes of sweet pepper under low irrigation regimes applied in three phenological stages of vegetative growth, reproductive growth, and fruit set. New Zealand Journal of Crop and Horticultural Science. HTPPs://doi.org/10.1080/01140671.2023.2171440
Harfouche, A. L., Nakhle, F., Harfouche, A. H., Sardella, O. G., Dart, E., & Jacobson, D. (2022). A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey. In Trends in Plant Science. Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2022.08.021
Hazir, M. H. M., & Muda, T. M. T. (2020). The viability of remote sensing for extracting rubber smallholding information: A case study in Malaysia. Egyptian Journal of Remote Sensing and Space Science, 23(1), 35–47. HTPPs://doi.org/10.1016/j.ejrs.2018.05.001
He, J., Zhang, N., Su, X., Lu, J., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2019). Estimating leaf area index with a new vegetation index considering the influence of rice panicles. Remote Sensing, 11(15). HTPPs://doi.org/10.3390/rs11151809
He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212. HTPPs://doi.org/10.1016/j.knosys.2020.106622
Hernández-Pérez, T., Gómez-García, M. del R., Valverde, M. E., & Paredes-López, O. (2020). Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2972–2993. HTPPs://doi.org/10.1111/1541-4337.12634
Herts, A., Tsidylo, I., Herts, N., Barna, L., & Mazur, S. I. (2020). PhotosynQ - Cloud platform powered by IoT devices. E3S Web of Conferences, 166. HTPPs://doi.org/10.1051/e3sconf/202016605001
Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2002). Chlorophyll disappearance and chlorophyllase activity during ripening of Capsicum annuum L fruits. Journal of the Science of Food and Agriculture, 82(13), 1564–1570. HTPPs://doi.org/10.1002/jsfa.1231
Huang, W., Guan, Q., Luo, J., Zhang, J., Zhao, J., Liang, D., Huang, L., & Zhang, D. (2014). New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2516–2524. HTPPs://doi.org/10.1109/JSTARS.2013.2294961
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. www.elsevier.com/locate/rse
Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. In Frontiers in Plant Science (Vol. 12). Frontiers Media S.A. HTPPs://doi.org/10.3389/fpls.2021.628611
Jangra, S., Chaudhary, V., Yadav, R. C., & Yadav, N. R. (2021). High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement. Phenomics, 1(2), 31–53. HTPPs://doi.org/10.1007/s43657-020-00007-
Jhajharia, K., Mathur, P., Jain, S., & Nijhawan, S. (2023). Crop Yield Prediction using Machine Learning and Deep Learning Techniques. Procedia Computer Science, 218, 406–417. HTPPs://doi.org/10.1016/j.procs.2023.01.023
Jing, H., Wang, X., Haoyu, W., Xingrong, F., & Mwngzhen, K. (2017). Prediction of crop phenology - a component of parallel agriculture management. Chinese Automation Congress (CAC), 7704-7708). HTPPs://doi.org/10.1109/CAC.2017.8244172.
Jones, H. G., & Rotenberg, E. (2001). Energy, Radiation and Temperature Regulation in Plants. In eLS. Wiley. HTPPs://doi.org/10.1038/npg.els.0003199
Kaiser, E., Galvis, V. C., & Armbruster, U. (2019). Efficient photosynthesis in dynamic light environments: A chloroplast’s perspective. Biochemical Journal, 476(19), 2725–2741. HTPPs://doi.org/10.1042/BCJ20190134
Kalogiannidis, S., Kalfas, D., Chatzitheodoridis, F., & Papaevangelou, O. (2022). Role of Crop-Protection Technologies in Sustainable Agricultural Productivity and Management. Land, 11(10). HTPPs://doi.org/10.3390/land11101680
Kanazawa, A., Chattopadhyay, A., Kuhlgert, S., Tuitupou, H., Maiti, T., & Kramer, D. M. (2021). Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? Royal Society Open Science, 8(12). HTPPs://doi.org/10.1098/rsos.211102
Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D. D., Sato-Cruz, M., Savage, L., Cruz, J. A., Fisher, N., Froehlich, J. E., & Kramer, D. M. (2017). Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for photosystem I and photosystem II photoprotection. Frontiers in Plant Science, 8. HTPPs://doi.org/10.3389/fpls.2017.00719
Karadağ, K., Tenekeci, M. E., Taşaltın, R., & Bilgili, A. (2020). Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing: Informatics and Systems, 28. HTPPs://doi.org/10.1016/j.suscom.2019.01.001
Kavga, A., Strati, I. F., Sinanoglou, V. J., Fotakis, C., Sotiroudis, G., Christodoulou, P., & Zoumpoulakis, P. (2019). Evaluating the experimental cultivation of peppers in low-energy-demand greenhouses. An interdisciplinary study. Journal of the Science of Food and Agriculture, 99(2), 781–789. HTPPs://doi.org/10.1002/jsfa.9246
Kim, J. H., Bhandari, S. R., Chae, S. Y., Cho, M. C., & Lee, J. G. (2019). Application of maximum quantum yield, a parameter of chlorophyll fluorescence, for early determination of bacterial wilt in tomato seedlings. Horticulture Environment and Biotechnology, 60(6), 821–829. HTPPs://doi.org/10.1007/s13580-019-00182-0
Kim, J. Y. (2020). Roadmap to High Throughput Phenotyping for Plant Breeding. Journal of Biosystems Engineering, 45(1), 43–55. HTPPs://doi.org/10.1007/s42853-020-00043-0
Koide, D., Ide, R., & Oguma, H. (2019). Detection of autumn leaf phenology and color brightness from repeat photography: Accurate, robust, and sensitive indexes and modeling under unstable field observations. Ecological Indicators, 106. HTPPs://doi.org/10.1016/j.ecolind.2019.105482
Koide, D., Ide, R., & Oguma, H. (2019). Detection of autumn leaf phenology and color brightness from repeat photography: Accurate, robust, and sensitive indexes and modeling under unstable field observations. Ecological Indicators, 106. HTPPs://doi.org/10.1016/j.ecolind.2019.105482
Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. In Photosynthesis Research (Vol. 79).
Kromdijk, J., & Walter, J. (2023). Relaxing non-photochemical quenching (NPQ) to improve photosynthesis in crops (pp. 113–130). HTPPs://doi.org/10.19103/as.2022.0119.09
Kubota-Kawai, H., Mutoh, R., Shinmura, K., Sétif, P., Nowaczyk, M. M., Rögner, M., Ikegami, T., Tanaka, H., & Kurisu, G. (2018). X-ray structure of an asymmetrical trimeric ferredoxin-photosystem i complex. Nature Plants, 4(4), 218–224. HTPPs://doi.org/10.1038/s41477-018-0130-0
Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M. I., Roth, M. G., Bi, K., TerAvest, D., Weebadde, P., & Kramer, D. M. (2016). MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open photosynQ network. Royal Society Open Science, 3(10). HTPPs://doi.org/10.1098/rsos.160592
Kurbanov, R., & Litvinov, M. (2020). Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro. IOP Conference Series: Materials Science and Engineering, 1001(1). HTPPs://doi.org/10.1088/1757-899X/1001/1/012062
Ledell, E., & Poirier, S. (2020). H2O AutoML: Scalable Automatic Machine Learning. HTPPs://scinet.usda.gov/user/geospatial/#tools-and-software
Lenk, S., Dieleman, J. A., Lefebvre, V., Heuvelink, E., Magán, J. J., Palloix, A., van Eeuwijk, F. A., & Barócsi, A. (2020). Phenotyping with fast fluorescence sensors approximates yield component measurements in pepper (Capsicum annuum l.). Photosynthetica, 58(Special Issue), 622–637. HTPPs://doi.org/10.32615/ps.2020.016
León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. HTPPs://doi.org/10.1007/s40858-021-00460-2
Li, H. Y., Guo, W., Liu, D., & Li, M. Q. (2018). First report of fusarium semitectum causing root rot of greenhouse pepper (Capsicum Annuum) in China. In Plant Disease (Vol. 102, Issue 10, p. 2032). American Phytopathological Society. HTPPs://doi.org/10.1094/PDIS-11-17-1704-PDN
Li, Y., Tao, F., Hao, Y., Tong, J., Xiao, Y., He, Z., & Reynolds, M. (2023). Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis. Annals of Botany. HTPPs://doi.org/10.1093/aob/mcad003
Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. HTPPs://doi.org/10.1109/ACCESS.2020.2980310
Lizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 100138. HTPPs://doi.org/10.1016/j.atech.2022.100138
Main, R., Cho, M. A., Mathieu, R., O’Kennedy, M. M., Ramoelo, A., & Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 751–761. HTPPs://doi.org/10.1016/j.isprsjprs.2011.08.001
Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. HTPPs://doi.org/10.1016/j.sjbs.2019.05.007
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2014). Advanced methods of plant disease detection. A review. In Agronomy for Sustainable Development (Vol. 35, Issue 1, pp. 1–25). Springer-Verlag France. HTPPs://doi.org/10.1007/s13593-014-0246-1
Mathieu, R., Pouget, M., Cervelle, B., & Escadafal, R. (1998). Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environment, , 17–28. HTPPs://doi.org/doi:10.1016/s0034-4257(98)00030-3
Matias, F. I., Caraza-Harter, M. V., & Endelman, J. B. (2020). FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome Journal, 3(1). HTPPs://doi.org/10.1002/ppj2.20005
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P. D., Schnock, U., Stauß, R., van den Boom, T., Weber, E., Zwerger, P., & Peter Zwerger, C. (2009). The BBCH system to coding the phenological growth stages of plants. Journal Für Kulturpflanzen, 61(2), 41–52. HTPPs://www.zuechtungskunde.de/artikel.dll/meier-et-al_OTAyMjUy.PDF
Mezenner, A., Nemmour, H., Chibani, Y., & Hafiane, A. (2022). Tomato Plant Leaf Disease Classification based on CNN features and Support Vector Machines. 2022 2nd International Conference on Advanced Electrical Engineering, ICAEE 2022. HTPPs://doi.org/10.1109/ICAEE53772.2022.9962070
Miyake, C. (2020). Molecular mechanism of oxidation of p700 and suppression of ROS production in photosystem I in response to electron-sink limitations in C3 plants. In Antioxidants (Vol. 9, Issue 3). MDPI. HTPPs://doi.org/10.3390/antiox9030230
Miyake, C., Amako, K., Shiraishi, N., & Sugimoto, T. (2009). Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system-relationship among the fraction of open PSII centers, non-photochemical quenching of Chl Fluorescence and the maximum quantum yield of PSII in the dark. Plant and Cell Physiology, 50(4), 730–743. HTPPs://doi.org/10.1093/pcp/pcp032
Moradi, S., Bokani, A., & Hassan, J. (2022). UAV-based Smart Agriculture: a Review of UAV Sensing and Applications. 2022 32nd International Telecommunication Networks and Applications Conference, ITNAC 2022, 181–184. HTPPs://doi.org/10.1109/ITNAC55475.2022.9998411
Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F. E., Leite, P. T. P., Mendoza, I., Rocha, N. M. W. B., Soares, N. C., Silva, T. S. F., Staggemeier, V. G., Streher, A. S., Vargas, B. C., & Peres, C. A. (2016). Linking plant phenology to conservation biology. In Biological Conservation (Vol. 195, pp. 60–72). Elsevier Ltd. HTPPs://doi.org/10.1016/j.biocon.2015.12.033
Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. In Journal of Experimental Botany (Vol. 64, Issue 13, pp. 3983–3998). HTPPs://doi.org/10.1093/jxb/ert208
Nabwire, S., Suh, H. K., Kim, M. S., Baek, I., & Cho, B. K. (2021). Review: Application of artificial intelligence in phenomics. In Sensors (Vol. 21, Issue 13). MDPI AG. HTPPs://doi.org/10.3390/s21134363
Naser, M. Z., & Alavi, A. H. (2021). Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Architecture, Structures and Construction. HTPPs://doi.org/10.1007/s44150-021-00015-8
Noon, S. K., Amjad, M., Qureshi, M. A., & Mannan, A. (2020). Use of deep learning techniques for identification of plant leaf stresses: A review. Sustainable Computing: Informatics and Systems, 28. HTPPs://doi.org/10.1016/j.suscom.2020.100443
Nur Anisa, M., Rokhmatuloh, & Hernina, R. (2020). UAV application to estimate oil palm trees health using Visible Atmospherically Resistant Index (VARI) (Case study of Cikabayan Research Farm, Bogor City). E3S Web of Conferences, 211. HTPPs://doi.org/10.1051/e3sconf/202021105001
Nurcahyani, E., Sholekhah, Sumardi, & Qudus, H. I. (2021). Analysis of Total Carbohydrate and Chlorophyll Content of the Orchid Plantlet [Phalaenopsis amabilis (L.) Bl.] Resistant Fusarium Wilt Disease. Journal of Physics: Conference Series, 1751(1). HTPPs://doi.org/10.1088/1742-6596/1751/1/012061
Ortiz, J. C. M., Carvajal, L. M. H., & Fernandez, V. B. (2019). Detection of significant wavelengths for identifying and classifying Fusarium oxysporum during the incubation period and water stress in Solanum lycopersicum plants using reflectance spectroscopy. Journal of Plant Protection Research, 59(2). HTPPs://doi.org/10.24425/jppr.2019.129290
Panova, G. G., Heißner, A., Grosch, R., & Kläring, H. P. (2012). Pythium aphanidermatum May Reduce Cucumber Growth without Affecting Leaf Photosynthesis. Journal of Phytopathology, 160(1), 37–40. HTPPs://doi.org/10.1111/j.1439-0434.2011.01849.x
Pérez-Gutiérrez, A., Garruña, R., Vázquez, P., Latournerie-Moreno, L., Andrade, J. L., & Us-Santamaría, R. (2017). Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agronómica, 66(2). HTPPs://doi.org/10.15446/acag.v66n2.55897
Pramanik, K., Mohapatra, P. P., Pradhan, J., Acharya, L. K., & Jena, C. (2020). Factors Influencing Performance of Capsicum under Protected Cultivation: A Review. International Journal of Environment and Climate Change, 572–588. HTPPs://doi.org/10.9734/ijecc/2020/v10i1230339
Pugh, N. A., Han, X., Collins, S. D., Thomasson, J. A., Cope, D., Chang, A., Jung, J., Isakeit, T. S., Prom, L. K., Carvalho, G., Gates, I. T., Vree, A., Bagnall, G. C., & Rooney, W. L. (2018). Estimation of plant health in a sorghum field infected with anthracnose using a fixed-wing unmanned aerial system. Journal of Crop Improvement, 32(6), 861–877. HTPPs://doi.org/10.1080/15427528.2018.1535462
Qu, C., Boubin, J., Gafurov, D., Zhou, J., Aloysius, N., Nguyen, H., & Calyam, P. (2022). UAV Swarms in Smart Agriculture: Experiences and Opportunities. 2022 IEEE 18th International Conference on E-Science (e-Science), 148–158. HTPPs://doi.org/10.1109/eScience55777.2022.00029
Rahaman, M. M., Ahsan, M. A., & Chen, M. (2019). Data-mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification. Scientific Reports, 9(1). HTPPs://doi.org/10.1038/s41598-019-55609-6
Ramchiary, N., & Chittaranjan, K. (2019). Compendium of Plant Genomes The Capsicum Genome (N. Ramchiary & K. Chittaranjan, Eds.; 2019th ed.). Springer International Publishing. HTPP://www.springer.com/series/11805
Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). HTPPs://doi.org/10.3390/plants9060790
Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2020). Development and validation of severity scales of avocado wilt complex caused by Phytophthora cinnamomi, Verticillium dahliae and hypoxiaanoxia disorder and their physiological responses in avocado plants. Agronomia Colombiana, 38(1), 12–27. HTPPs://doi.org/10.15446/agron.colomb.v38n1.78527
Ravichandran, N. K., Wijesinghe, R. E., Shirazi, M. F., Park, K., Lee, S. Y., Jung, H. Y., Jeon, M., & Kim, J. (2016). In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. Journal of Spectroscopy, 2016. HTPPs://doi.org/10.1155/2016/1093734
Rekah, Y., Shtienberg, D., & Katan, J. (1999). Spatial Distribution and Temporal Development of Fusarium Crown and Root Rot of Tomato and Pathogen Dissemination in Field Soil (Vol. 89, Issue 9).
Resti, Y., Saraswati, D. H., Zayanti, D. A., & Eliyati, N. (2022). CLASSIFICATION OF DISEASES AND PESTS OF MAIZE USING MULTINOMIAL LOGISTIC REGRESSION BASED ON RESAMPLING TECHNIQUE OF K-FOLD CROSS-VALIDATION. Indonesian Journal of Engineering and Science, 3(3), 069–076. HTPPs://doi.org/10.51630/ijes.v3i3.83
Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing Vegetation from Soil Background Information* A gray mapping technique allows delineation of any Landsat scene into vegetative cover stages, degrees of soil brightness, and water. Photogrammetric Engineering and Remote Sensing, 43(12), 1541–1552.
Ripley, B. D. (2007). Pattern Recognition via Neural Networks. Cambridge university press.
Robles-Zazueta, C. A., Pinto, F., Molero, G., Foulkes, M. J., Reynolds, M. P., & Murchie, E. H. (2022). Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.828451
Rodrigues, L., Magalhães, S. A., da Silva, D. Q., dos Santos, F. N., & Cunha, M. (2023). Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy, 13(2). HTPPs://doi.org/10.3390/agronomy13020463
Rodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184. HTPPs://doi.org/10.1016/j.compag.2021.106061
Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. In Frontiers in Plant Science (Vol. 5, Issue FEB). Frontiers Research Foundation. HTPPs://doi.org/10.3389/fpls.2014.00017
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). I OF NATURAL VEGETATION.
Salaria, P., Jain, S., Bhardwaj, R. D., Rani, R., & Jhanji, S. (2023). Physiological and biochemical responses of chilli pepper (Capsicum annuum L.) to sudden wilt syndrome. Physiological and Molecular Plant Pathology, 126. HTPPs://doi.org/10.1016/j.pmpp.2023.102038
Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) Using Multispectral Images Obtained from UAV in the Coast of Peru. Agronomy, 12(11). HTPPs://doi.org/10.3390/agronomy12112630
Sarkar, S., Cazenave, A. B., Oakes, J., McCall, D., Thomason, W., Abbott, L., & Balota, M. (2021). Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Scientific Reports, 11(1). HTPPs://doi.org/10.1038/s41598-021-00936-w
Schneider, M., Vedder, L., Oyiga, B. C., Mathew, B., Schoof, H., Léon, J., & Naz, A. A. (2022). Transcriptome profiling of barley and tomato shoot and root meristems unravels physiological variations underlying photoperiodic sensitivity. PLoS ONE, 17(9 September). HTPPs://doi.org/10.1371/journal.pone.0265981
Shaheen, N., Khan, U. M., Azhar, M. T., Tan, D. K. Y., Atif, R. M., Israr, M., Yang, S. H., Chung, G., & Rana, I. A. (2021). Genetics and genomics of fusarium wilt of chilies: A review. In Agronomy (Vol. 11, Issue 11). MDPI. HTPPs://doi.org/10.3390/agronomy11112162
Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. In Current Opinion in Plant Biology (Vol. 38, pp. 184–192). Elsevier Ltd. HTPPs://doi.org/10.1016/j.pbi.2017.05.006
Sharma, L. K., Bu, H., Denton, A., & Franzen, D. W. (2015). Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in north Dakota, U.S.A. Sensors (Switzerland), 15(11), 27832–27853. HTPPs://doi.org/10.3390/s151127832
Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine Learning for High-Throughput Stress Phenotyping in Plants. In Trends in Plant Science (Vol. 21, Issue 2, pp. 110–124). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2015.10.015
Singh, A., Jones, S., Ganapathysubramanian, B., Sarkar, S., Mueller, D., Sandhu, K., & Nagasubramanian, K. (2021). Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. In Trends in Plant Science (Vol. 26, Issue 1, pp. 53–69). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2020.07.010
Singh, A. K., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2018). Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. In Trends in Plant Science (Vol. 23, Issue 10, pp. 883–898). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2018.07.004
Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. HTPPs://doi.org/10.1016/j.aiia.2020.10.002
Sosa-Herrera, J. A., Alvarez-Jarquin, N., Cid-Garcia, N. M., López-Araujo, D. J., & Vallejo-Pérez, M. R. (2022). Automated Health Estimation of Capsicum annuum L. Crops by Means of Deep Learning and RGB Aerial Images. Remote Sensing, 14(19). HTPPs://doi.org/10.3390/rs14194943
Sosa-Herrera, J. A., Vallejo-Pérez, M. R., Álvarez-Jarquín, N., Cid-García, N. M., & López-Araujo, D. J. (2019). Geographic object-based analysis of airborne multispectral images for health assessment of Capsicum annuum L. Crops. Sensors (Switzerland), 19(21). HTPPs://doi.org/10.3390/s19214817
Srikanth, D., Rekha, G. K., Lakshmi, A. P., & Vimatha, P. (2019). Impact of Climate Change in Capsicum Production: A Review. Current Journal of Applied Science and Technology, 1–5. HTPPs://doi.org/10.9734/cjast/2019/v33i330075
Srivastav, A. L., Dubei, A. K., Kumar, A., Narang, S. K., & Khan, M. A. (Eds.). (2022). Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence. Elsevier.
Srivastava, A. K., Safaei, N., Khaki, S., Lopez, G., Zeng, W., Ewert, F., Gaiser, T., & Rahimi, J. (2022). Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Scientific Reports, 12(1). HTPPs://doi.org/10.1038/s41598-022-06249-w
Stanton, C., Starek, M. J., Elliott, N., Brewer, M., Maeda, M. M., & Chu, T. (2017). Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. Journal of Applied Remote Sensing, 11(2), 026035. HTPPs://doi.org/10.1117/1.jrs.11.026035
Stemkovski, M., Bell, J. R., Ellwood, E. R., Inouye, B. D., Kobori, H., Lee, S. D., Lloyd-Evans, T., Primack, R. B., Templ, B., & Pearse, W. D. (2023). Disorder or a new order: How climate change affects phenological variability. Ecology, 104(1). HTPPs://doi.org/10.1002/ecy.3846
Sujatha, R., Chatterjee, J. M., Jhanjhi, N. Z., & Brohi, S. N. (2021). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocessors and Microsystems, 80. HTPPs://doi.org/10.1016/j.micpro.2020.103615
Tang, R., Supit, I., Hutjes, R., Zhang, F., Wang, X., Chen, X., Zhang, F., & Chen, X. (2023). Modelling growth of chili pepper (Capsicum annuum L.) with the WOFOST model. Agricultural Systems, 209, 103688. HTPPs://doi.org/10.1016/j.agsy.2023.103688
Tanner, F., Tonn, S., de Wit, J., Van den Ackerveken, G., Berger, B., & Plett, D. (2022). Sensor-based phenotyping of above-ground plant-pathogen interactions. In Plant Methods (Vol. 18, Issue 1). BioMed Central Ltd. HTPPs://doi.org/10.1186/s13007-022-00853-7
Tayade, R., Yoon, J., Lay, L., Khan, A. L., Yoon, Y., & Kim, Y. (2022). Utilization of Spectral Indices for High-Throughput Phenotyping. In Plants (Vol. 11, Issue 13). MDPI. HTPPs://doi.org/10.3390/plants11131712
Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022). Trends in vision-based machine learning techniques for plant disease identification: A systematic review. In Expert Systems with Applications (Vol. 208). Elsevier Ltd. HTPPs://doi.org/10.1016/j.eswa.2022.118117
Tietz, S., Hall, C. C., Cruz, J. A., & Kramer, D. M. (2017). NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell and Environment, 40(8), 1243–1255. HTPPs://doi.org/10.1111/pce.12924
Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., & Farivar, R. (2019). Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, 2019-November, 1471–1479. HTPPs://doi.org/10.1109/ICTAI.2019.00209
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. HTPPs://doi.org/10.1016/0034-4257(79)90013-0
Ubaidillah, A., Rochman, E. M. S., Fatah, D. A., & Rachmad, A. (2022). Classification of Corn Diseases using Random Forest, Neural Network, and Naive Bayes Methods. Journal of Physics: Conference Series, 2406(1). HTPPs://doi.org/10.1088/1742-6596/2406/1/012023
Uddin, M. N., & Gaskins, J. T. (2023). Shared Bayesian variable shrinkage in multinomial logistic regression. Computational Statistics and Data Analysis, 177. HTPPs://doi.org/10.1016/j.csda.2022.107568
Velarde-Félix, S., Garzón-Tiznado, J. A., Hernández-Verdugo, S., López-Orona, C. A., & Retes-Manjarrez, J. E. (2018). Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Canadian Journal of Plant Pathology, 40(2), 238–247. HTPPs://doi.org/10.1080/07060661.2017.1420693
Velasco Belalcazar, M. lucia. (2016). CARACTERIZACIÓN DE BACTERIAS ANTAGÓNICAS A Fusarium sp, ASOCIADAS A Capsicum frutescens EN GUACARÍ Y BOLIVAR, VALLE DEL CAUCA. Universidad Nacional de Colombia sede Palmira.
Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9(5), 303–319. HTPPs://doi.org/10.1007/s11119-008-9075-z
Wang, C., Wu, Y., Hu, Q., Hu, J., Chen, Y., Lin, S., & Xie, Q. (2022). Comparison of Vegetation Phenology Derived from Solar-Induced Chlorophyll Fluorescence and Enhanced Vegetation Index, and Their Relationship with Climatic Limitations. Remote Sensing, 14(13). HTPPs://doi.org/10.3390/rs14133018
WANG, F., HUANG, J., TANG, Y., & WANG, X. (2007). New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Science, 14(3), 195–203. HTPPs://doi.org/10.1016/s1672-6308(07)60027-4
Wang, Y., Tan, S., Jia, X., Qi, L., Liu, S., Lu, H., Wang, C., Liu, W., Zhao, X., He, L., Chen, J., Yang, C., Wang, X., Chen, J., Qin, Y., Yu, J., & Ma, X. (2023). Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral–Textural Analysis. Agronomy, 13(6), 1541. HTPPs://doi.org/10.3390/agronomy13061541
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11). HTPPs://doi.org/10.1242/bio.035279
Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 43, Issue 9, pp. 3037–3054). IEEE Computer Society. HTPPs://doi.org/10.1109/TPAMI.2021.3051276
Worrall, G., Judge, J., Boote, K., & Rangarajan, A. (2022). In‐Season Crop Phenology using Remote Sensing and Model‐guided Machine Learning. Agronomy Journal. HTPPs://doi.org/10.1002/agj2.21230
Xiao, Y., Dong, Y., Huang, W., Liu, L., & Ma, H. (2021). Wheat fusarium head blight detection using uav-based spectral and texture features in optimal window size. Remote Sensing, 13(13). HTPPs://doi.org/10.3390/rs13132437
Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based sensors. In Computers and Electronics in Agriculture (Vol. 178). Elsevier B.V. HTPPs://doi.org/10.1016/j.compag.2020.105731
Yalcin, H. (2015). Phenology Monitoring Of Agricultural Plants Using Texture Analysis. Cuarta Conferencia Internacional Sobre Agro-Geoinformática (Agro-Geoinformatics), 338–342. HTPPs://doi.org/doi: 10.1109/Agro-Geoinformatics.2015.7248114 .
Yalcin, H. (2018). Phenology Recognition using Deep Learning. Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), 1–5. HTPPs://doi.org/doi: 10.1109/EBBT.2018.8391423.
Yamamoto, H., Cheuk, A., Shearman, J., Nixon, P. J., Meier, T., & Shikanai, T. (2023). Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. Plant Physiology, 192(2), 1221–1233. HTPPs://doi.org/10.1093/plphys/kiad043
Yang, Q., Shi, L., Han, J., Yu, J., & Huang, K. (2020). A near real-time deep learning approach for detecting rice phenology based on UAV images. Agricultural and Forest Meteorology, 287. HTPPs://doi.org/10.1016/j.agrformet.2020.107938
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. In Molecular Plant (Vol. 13, Issue 2, pp. 187–214). Cell Press. HTPPs://doi.org/10.1016/j.molp.2020.01.008
Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., & Jin, Y. (2020). Recognition of banana Fusarium wilt based on UAV remote sensing. Remote Sensing, 12(6). HTPPs://doi.org/10.3390/rs12060938
Ye, H., Huang, W., Huang, S., Nie, C., Guo, J., & Cui, B. (2021). Application of UAV Remote Sensing in Monitoring Banana Fusarium Wilt. In M. Marghany (Ed.), Recent Remote Sensing Sensor Applications. HTPPs://doi.org/10.5772/intechopen.99950
Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M. R., & De Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271–287. HTPPs://doi.org/10.1016/j.rse.2005.09.002
Zeng, L., Yang, X., & Zhou, J. (2020). The xanthophyll cycle as an early pathogenic target to deregulate guard cells during Sclerotinia sclerotiorum infection. Plant Signaling and Behavior, 15(1). HTPPs://doi.org/10.1080/15592324.2019.1691704
Zhang, H., Wang, L., Jin, X., Bian, L., & Ge, Y. (2023). High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing. The Crop Journal. HTPPs://doi.org/10.1016/j.cj.2023.04.014
Zhang, S., Li, X., Ba, Y., Lyu, X., Zhang, M., & Li, M. (2022). Banana Fusarium Wilt Disease Detection by Supervised and Unsupervised Methods from UAV-Based Multispectral Imagery. Remote Sensing, 14(5). HTPPs://doi.org/10.3390/rs14051231
Zhao, X., Zhang, J., Tang, A., Yu, Y., Yan, L., Chen, D., & Yuan, L. (2022). The Stress Detection and Segmentation Strategy in Tea Plant at Canopy Level. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.949054
Zhou, J., Zeng, L., Liu, J., & Xing, D. (2015). Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS Pathogens, 11(5). HTPPs://doi.org/10.1371/journal.ppat.1004878
Zhou, M., Zheng, H., He, C., Liu, P., Awan, G. M., Wang, X., Cheng, T., Zhu, Y., Cao, W., & Yao, X. (2023). Wheat phenology detection with the methodology of classification based on the time-series UAV images. Field Crops Research, 292. HTPPs://doi.org/10.1016/j.fcr.2022.108798
Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. HTPPs://doi.org/10.1016/j.jag.2018.10.012
Zhu, Q., Chen, L., Chen, T., Xu, Q., He, T., Wang, Y., Deng, X., Zhang, S., Pan, Y., & Jin, A. (2021). Integrated transcriptome and metabolome analyses of biochar-induced pathways in response to Fusarium wilt infestation in pepper. Genomics, 113(4), 2085–2095. HTPPs://doi.org/10.1016/j.ygeno.2021.04.031
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 83 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85670/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85670/2/1113657355.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85670/3/1113657355.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fb592559947bcbbd3486b6f6ff605472
f62a430d304fbffb88de4d5e6c5e77bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090244412145664
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez López, Eyder Daniel0ebbc74a-9df6-43c5-89b9-0f16bbd2e6cc600Ramirez Gil, Joaquin Guillermob5f71d9e-5831-4c59-8a9a-36e5b7526918600Cortes Quiceno, Manuel Alejandro 1f7eb784-760d-4ccc-ac84-92ed857145a2600Conejo Rodríguez Diego Felipe0000-0002-8030-86242024-02-09T13:40:38Z2024-02-09T13:40:38Z2023-11https://repositorio.unal.edu.co/handle/unal/85670Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, tablasEl ají (Capsicum annuum L.) es un cultivo relevante a nivel mundial, el cual en Colombia en los últimos años se ha convertido en una alternativa productiva debido a sus usos culinarios, propiedades medicinales y potencial de exportación. Sin embargo, este sistema productivo presenta limitantes productivos y tecnológicos, en especial enfrenta desafíos fitosanitarios, como el marchitamiento vascular (MV) asociado al agente causal Fusarium sp. Igualmente, aspectos asociados a la variabilidad del clima afectan la fenología de las plantas y los parámetros productivos, como el número de frutos, lo cual hace que se incremente la incertidumbre en las inversiones y la sostenibilidad en los sistemas agrícolas. En los últimos años se ha incrementado la capacidad de poder adquirir múltiples variables respuesta de forma masiva a nivel de plantas mediante un concepto denominado fenotipado de alto rendimiento (HTPP), la cual presenta múltiples aplicaciones, incluidas conocer y caracterizar las respuestas a fuentes de estrés bióticas y abióticas, parámetros fenológicos y productivos. Este enfoque, representa minería de rasgos fenotípicos y requiere métodos avanzados de análisis de datos como las herramientas de inteligencia artificial para la identificación de rasgos fenotípicos de mayor importancia a partir del uso de métodos como el aprendizaje automático (machine learning) y aprendizaje profundo (deep learning). El objetivo de nuestro trabajo fue detectar indirectamente parámetros fitosanitarios (MV), fenológicos (PF) y productivos (PP) del cultivo de ají Cayenne utilizando plataformas de fenotipado e inteligencia artificial. En un lote comercial de ají, el área de estudio fue de 1.145 m2 divididas en 96 parcelas iguales, midiendo 3 plantas por parcela, y registrando periódicamente múltiples rasgos fotosintéticos usando el sensor proximal MultispeQ. Igualmente se evaluaron las respuestas espectrales en tres etapas del ciclo del cultivo utilizando un Vehículo Aéreo no Tripulado (VANT) de tipo DJI Phantom 4 con una cámara multiespectral acoplada con 5 bandas. Estas bandas, incluyen el espectro visible (RGB) junto con la banda del infrarrojo cercano (NIR) y, la banda de borde rojo (RE). Se utilizó la función AutoML para evaluar diferentes modelos de aprendizaje automático (ML) y un enfoque de aprendizaje profundo (DL) para detectar la MV y predecir la fenología y el número de frutos. Los resultados mostraron que los rasgos fotosintéticos, espectrales y geométricos como Fv/Fm, NPQt, LDT, RelaChlo, Phi2, geometría del dosel, EVI, NDRE, CIRE y la banda de borde rojo fueron los más informativos y de mayor importancia para detectar la MV en el ají. Por su parte, para la estimación de PF y PP, los rasgos de mayor importancia fueron gH+, RelaChlo, PS1ActCent, FoPrime, EVI, VARI, CIrededge y CIRE. El enfoque basado en ML y el DL, demostró ser eficiente en la identificación de rasgos fotosintéticos clave que permiten la detección de MV y estimación de PF y PP. El presente trabajo presenta un avance relevante en aras de la implementación y validación de herramientas de agricultura 4.0, como base para mejorar las decisiones basadas en evidencia. (Texto tomado de la fuente)Chili pepper (Capsicum annuum L.) is a valuable crop around the world, and in Colombia, it has recently emerged as a viable alternative due to its culinary applications, medicinal benefits, and export potential. However, this production system has productivity and technological limits, particularly when dealing with phytosanitary issues such as vascular wilt (VW) caused by the causative agent Fusarium sp. Similarly, climate variability affects plant phenology and production parameters, such as fruit yield, increasing the uncertainty of investment and sustainability in agricultural systems. In recent years, the ability to collect multiple response variables at the plant level has increased thanks to a concept known as high-throughput phenotyping (HTPP), which has a variety of applications, including understanding and characterizing responses to biotic and abiotic stress sources, as well as phenological and yield parameters. This strategy is known as phenotypic trait mining, and it involves advanced data analysis methods such as artificial intelligence tools to identify phenotypic traits of major importance using methods such as machine learning and deep learning. Our study aimed to use phenotyping and artificial intelligence platforms to indirectly detect phytosanitary (VW), phenological (PF), and productive (PP) factors in the Cayenne chili pepper crop. The study area in a commercial chili pepper plot was 1,145 m2 , divided into 96 identical plots, with three plants per plot and several photosynthetic traits recorded at regular intervals using the MultispeQ proximal sensor. Spectral responses were also assessed at three stages of the crop cycle using a DJI Phantom 4 Unmanned Aerial Vehicle (UAV) equipped with a multispectral sensor and 5 bands of light. These bands comprise the visible spectrum (RGB), near infrared (NIR), and rededge band (RE). The AutoML function was used to assess various machine learning (ML) models and a deep learning (DL) technique for detecting MV, predicting phenology, and fruit number. The results revealed that photosynthetic, spectral, and geometric features such as Fv/Fm, NPQt, LDT, RelaChlo, Phi2, canopy geometry, EVI, NDRE, CIRE, and red-edge band were the most informative and important for detecting MV in chili pepper. For FP and PP estimation, the most essential traits were gH+, RelaChlo, PS1ActCent, FoPrime, EVI, VARI, CIrededge, and CIRE. The ML and DLbased technique demonstrated to be efficient in identifying important photosynthetic traits that allow for MV detection and PF and PP quantification. The current effort represents a significant step forward in the application and validation of agriculture 4.0 tools as a foundation for better evidencebased decision-making.MaestríaMagíster en Ciencias Agrariasse uso fenotipado de alto rendimiento, minería de rasgos fenotípicos e inteligencia artificial para identificar rasgos clave que permiten la detección de parámetros fitosanitarios, fenológicos y productivos en cultivos comerciales de ají CayenneProtección de cultivosCiencias Agropecuarias.Sede Palmiraxviii, 83 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasCapsicum annuumFenotipadoPhenotypingInteligencia artificialArtificial intelligenceVariación fenotípicaPhenotypic variationFotosíntesisMarchitez VascularFenologíaComponentes de rendimientoFenotipado de alto rendimientoNúmero de frutosAprendizaje automáticoAprendizaje profundoAgricultura 4.0.Machine learningDeep learningPhotosynthesisVascular wiltPhenologyNumber of fruitsHigh-throughput phenotypingMachine learningDeep learningAgriculture 4.0Detección indirecta de parámetros fitosanitarios, fenológicos y productivos del cultivo de ají Cayenne mediante el uso de plataformas de fenotipado e inteligencia artificialIndirect detection of phytosanitary, phenological, and productive parameters of Cayenne pepper cultivation through the use of phenotyping platforms and artificial intelligenceTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgronet, (2023). (Ministerio de Agricultura, Estadísticas). Recuperado de HTPPs://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=2Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial Intelligence, IoT, and Machine Learning. In Agriculture 5.0: Artificial Intelligence, IoT, and Machine Learning. CRC Press. HTPPs://doi.org/10.1201/9781003125433Aklilu, S., Abebie, B., Wogari, D., & T/Wolde, A. (2016). Genetic variability and association of characters in Ethiopian hot pepper (Capsicum annum L.) landraces. Journal of Agricultural Sciences, Belgrade, 61(1), 19–36. HTPPs://doi.org/10.2298/jas1601019aAlameen, A. (2022). Improving the Accuracy of Multi-Valued Datasets in Agriculture Using Logistic Regression and LSTM-RNN Method. TEM Journal, 11(1), 454–462. HTPPs://doi.org/10.18421/TEM111-58Alkemade, J. A., Messmer, M. M., Arncken, C., Leska, A., Annicchiarico, P., Nazzicari, N., Książkiewicz, M., Voegele, R. T., Finckh, M. R., & Hohmann, P. (2021). A high-throughput phenotyping tool to identify field-relevant anthracnose resistance in white lupin. Plant Disease, 105(6). HTPPs://doi.org/10.1094/PDIS-07-20-1531-REAmpatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sensing, 11(4). HTPPs://doi.org/10.3390/rs11040410Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., Salvucci, M. E., & White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68–79. HTPPs://doi.org/10.1071/FP13126Aqel, D., Al-Zubi, S., Mughaid, A., & Jararweh, Y. (2022). Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture. Cluster Computing, 25(3), 2007–2020. HTPPs://doi.org/10.1007/s10586-021-03397-yAraus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. In Trends in Plant Science (Vol. 19, Issue 1, pp. 52–61). HTPPs://doi.org/10.1016/j.tplants.2013.09.008Arellano, J. B. (2023). Non-photochemical quenching of photosystem I as an adaptive response to prolonged drought. Journal of Experimental Botany, 74(1), 16–18. HTPPs://doi.org/10.1093/jxb/erac438Arora, H., Sharma, A., Sharma, S., Haron, F. F., Gafur, A., Sayyed, R. Z., & Datta, R. (2021). Pythium damping-off and root rot of capsicum annuum l.: Impacts, diagnosis, and management. In Microorganisms (Vol. 9, Issue 4). MDPI AG. HTPPs://doi.org/10.3390/microorganisms9040823Avenson, T. J., Kanazawa, A., Cruz, J. A., Takizawa, K., Ettinger, W. E., & Kramer, D. M. (2005). Integrating the proton circuit into photosynthesis: Progress and challenges. In Plant, Cell and Environment (Vol. 28, Issue 1, pp. 97–109). HTPPs://doi.org/10.1111/j.1365-3040.2005.01294.xBaker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. HTPPs://doi.org/10.1146/annurev.arplant.59.032607.092759Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. HTPPs://doi.org/10.1080/02757259509532298Ben-Jabeur, M., Romero, A. G., Vicente, R., Kthiri, Z., Kefauver, S. C., Serret, M. D., Ortega, J. L. A., & Hamada, W. (2021). MultispeQ for Tracing Biostimulants Effect on Growth Promoting and Water Stress Tolerance in Wheat. Environmental Science and Engineering, 1207–1211. HTPPs://doi.org/10.1007/978-3-030-51210-1_191Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. In Journal of Experimental Botany (Vol. 58, Issues 15–16, pp. 4019–4026). HTPPs://doi.org/10.1093/jxb/erm298Bhutia L, K., VK, K., Meetei NG, T., & Bhutia D, N. (2018). Effects Of Climate Change On Growth And Development Of Chilli. Agrotechnology, 07(02). HTPPs://doi.org/10.4172/2168-9881.1000180Boiarskii, B. (2019). Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, spl1(4). HTPPs://doi.org/10.26782/jmcms.spl.4/2019.11.00003Bouguettaya, A., Zarzour, H., Kechida, A., & Taberkit, A. M. (2022). A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Cluster Computing. HTPPs://doi.org/10.1007/s10586-022-03627-xBroge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment. www.elsevier.com/locate/rseBuja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. In Sensors (Vol. 21, Issue 6, pp. 1–22). MDPI AG. HTPPs://doi.org/10.3390/s21062129Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245. HTPPs://doi.org/10.1016/j.rse.2013.07.031Candel, A., Ledell, E., & Bartz, A. (2016). Deep Learning with H2O. HTPP://h2o.ai/resources/Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., Gómez-Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2021). Protection of tomato plants against Fusarium oxysporum f. sp. lycopersici induced by chitosan. Revista Colombiana de Ciencias Hortícolas, 15(3). HTPPs://doi.org/10.17584/rcch.2021v15i3.12822Castro Clavijo, S. D. (2014). Búsqueda de resistencia a la pudrición causada por Fusarium spp. en Capsicum [ Maestría tesis, Universidad Nacional de Colombia sede Palmira]. HTPPs://repositorio.unal.edu.co/handle/unal/53137Chang, S., Lee, U., Hong, M. J., Jo, Y. D., & Kim, J. B. (2021). Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis. Frontiers in Plant Science, 12. HTPPs://doi.org/10.3389/fpls.2021.721512Chen, A., Meng, F., Mao, J., Ricciuto, D., & Knapp, A. K. (2022). Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere. Agricultural and Forest Meteorology, 323. HTPPs://doi.org/10.1016/j.agrformet.2022.109027Conejo Rodriguez, D. F., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better-performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.1008666Courbier, S., & Pierik, R. (2019). Canopy Light Quality Modulates Stress Responses in Plants. CellPress. HTPPs://doi.org/10.1016/j.isciCrippen, R. E. (1990). Calculating the Vegetation Index Faster. Remote Sensing of Environment, 34, 71–73. HTPPs://doi.org/doi:10.1016/0034-4257(90)90085-zCruz, J. A., & Avenson, T. J. (2021). Photosynthesis: a multiscopic view. Journal of Plant Research, 134(4), 665–682. HTPPs://doi.org/10.1007/s10265-021-01321-4de Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. HTPPs://doi.org/10.3389/fpls.2020.00037DeSalvio, A. J., Adak, A., Murray, S. C., Wilde, S. C., & Isakeit, T. (2022). Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. Scientific Reports, 12(1). HTPPs://doi.org/10.1038/s41598-022-11591-0Dong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., Morrison, M. J., Zhang, C., Liu, Y., Shi, Y., Pan, H., & Zhou, G. (2019). Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11(22). HTPPs://doi.org/10.3390/rs11222706dos Anjos, I. V., Silva, L. P., Silva, L. R., Araújo, K. L., Silva, A. F., Barelli, M. A. A., & Neves, L. G. (2018). Reação de acessos de Capsicum spp. ao fungo Fusarium solani. 16, 344–349.Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10). HTPPs://doi.org/10.3390/rs10101513Eke, P., Dinango, V. N., Nana Wakam, L., Toghueo, R. M. K., Kouokap, L. R. K., Mabou, L. C. N., Wankeu, T. H. K., Ngomsi, P., & Boyom, F. F. (2021). Diagnosis and bioefficacy of endospheric trichoderma strains of selected medicinal plant on pepper root rot and vascular wilt in Cameroon. Archives of Phytopathology and Plant Protection, 54(13–14), 794–812. HTPPs://doi.org/10.1080/03235408.2020.1844524Elvanidi, A., & Katsoulas, N. (2022). Performance of Gradient Boosting Learning Algorithm for Crop Stress Identification in Greenhouse Cultivation. 25. HTPPs://doi.org/10.3390/iecho2022-12508Eng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The use of VARI, GLI, And VIgreen formulas in detecting vegetation in aerial images. International Journal of Technology, 10(7), 1385–1394. HTPPs://doi.org/10.14716/ijtech.v10i7.3275Escadafal, R. (1994). SOIL SPECTRAL PROPERTIES AND THEIR RELATIONSHIPS WITH ENVIRON-MENTAL PARAMETERS-EXAMPLES FROM ARID REGIONS. In J. M. J. Hill (Ed.), Imaging Spectrometry — a Tool for Environmental Observations: Vol. vol 4 (Springer, Dordrecht). HTPPs://doi.org/HTPPs://doi.org/10.1007/978-0-585-33173-7_5Farihadina, A. A., & Sutarman. (2022). Application of Biological Agents of Trichoderma and Aspergillus on Cayenne Chilli Plants in Endemic Land with Fusarium Wilt. IOP Conference Series: Earth and Environmental Science, 1104(1). HTPPs://doi.org/10.1088/1755-1315/1104/1/012003Fei, S., Hassan, M. A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., Duan, F., Chen, R., & Ma, Y. (2023). UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24(1), 187–212. HTPPs://doi.org/10.1007/s11119-022-09938-8Feldmann, F., & Rutikanga, A. (2021). Phenological growth stages and BBCH-identification keys of Chilli (Capsicum annuum L., Capsicum chinense JACQ., Capsicum baccatum L.). Journal of Plant Diseases and Protection, 128(2), 549–555. HTPPs://doi.org/10.1007/s41348-020-00395-xFeng, L., Chen, S., Zhang, C., Zhang, Y., & He, Y. (2021). A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. In Computers and Electronics in Agriculture (Vol. 182). Elsevier B.V. HTPPs://doi.org/10.1016/j.compag.2021.106033Fernández-Calleja, M., Monteagudo, A., Casas, A. M., Boutin, C., Pin, P. A., Morales, F., & Igartua, E. (2020). Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid—parent barley germplasm set. Sensors (Switzerland), 20(5). HTPPs://doi.org/10.3390/s20051486Flexas, J., Escalona, M., Evain, S., Gulías, J., Moya, I., Osmond, C. B., & Medrano, H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO 2 assimilation and stomatal conductance during water-stress in C 3 plants.Furbank, R. T., & Tester, M. (2011). Phenomics - technologies to relieve the phenotyping bottleneck. In Trends in Plant Science (Vol. 16, Issue 12, pp. 635–644). HTPPs://doi.org/10.1016/j.tplants.2011.09.005Gabrekiristos, E., & Demiyo, T. (2020). Hot Pepper Fusarium Wilt (Fusarium oxysporum f. sp. capsici): Epidemics, Characteristic Features and Management Options. Journal of Agricultural Science, 12(10), 347. HTPPs://doi.org/10.5539/jas.v12n10p347Galli, G., Horne, D. W., Collins, S. D., Jung, J., Chang, A., Fritsche-Neto, R., & Rooney, W. L. (2020). Optimization of UAS-based high-throughput phenotyping to estimate plant health and grain yield in sorghum. Plant Phenome Journal, 3(1). HTPPs://doi.org/10.1002/ppj2.20010Gedeon, T. D. (1997). DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND FUNCTIONAL MEASURES. International Journal of Neural Systems, 8 No. 2, 209–218. www.worldscientific.comGholipoor, M., & Nadali, F. (2019). Fruit yield prediction of pepper using artificial neural network. Scientia Horticulturae, 250, 249–253. HTPPs://doi.org/10.1016/j.scienta.2019.02.040Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. In J. Plant Physiol (Vol. 160). HTPP://www.urbanfischer.de/journals/jppGitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. www.elsevier.com/locate/rseGitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), 1–4. HTPPs://doi.org/10.1029/2005GL022688González-Gordo, S., Rodríguez-Ruiz, M., Palma, J. M., & Corpas, F. J. (2020). Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Frontiers in Plant Science, 11. HTPPs://doi.org/10.3389/fpls.2020.00485Gordon, T. R. (2017). Annual Review of Phytopathology Fusarium oxysporum and the Fusarium Wilt Syndrome. HTPPs://doi.org/10.1146/annurev-phyto-080615Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2). HTPPs://doi.org/10.3390/drones5020034Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y. J., Song, Y. C., & Sun, Y. (2022). Granal thylakoid structure and function: explaining an enduring mystery of higher plants. New Phytologist, 236(2), 319–329. HTPPs://doi.org/10.1111/nph.18371Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y. J., Song, Y. C., & Sun, Y. (2023). An exploratory steady-state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. Plant Cell and Environment. HTPPs://doi.org/10.1111/pce.14563Guadagno, C. R., Beverly, D. P., & Ewers, B. E. (2021). The love–hate relationship between chlorophyll a and water in psii affects fluorescence products. Photosynthetica, 59(Special Issue), 409–421. HTPPs://doi.org/10.32615/ps.2021.023Guimarães, M., Queiroz, M., & Alfenas, R. (2021). RGB-based phenotyping of foliar disease severity under controlled conditions. OSFPREPRINTS, 1–29. HTPPs://doi.org/10.31219/osf.io/fs4vmGuo, Y., Fu, Y., Hao, F., Zhang, X., Wu, W., Jin, X., Robin Bryant, C., & Senthilnath, J. (2021). Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators, 120. HTPPs://doi.org/10.1016/j.ecolind.2020.106935Haghighi, M., Sharifani, M. J., & Parnianifard, F. (2023). Physiological changes of sweet pepper under low irrigation regimes applied in three phenological stages of vegetative growth, reproductive growth, and fruit set. New Zealand Journal of Crop and Horticultural Science. HTPPs://doi.org/10.1080/01140671.2023.2171440Harfouche, A. L., Nakhle, F., Harfouche, A. H., Sardella, O. G., Dart, E., & Jacobson, D. (2022). A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey. In Trends in Plant Science. Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2022.08.021Hazir, M. H. M., & Muda, T. M. T. (2020). The viability of remote sensing for extracting rubber smallholding information: A case study in Malaysia. Egyptian Journal of Remote Sensing and Space Science, 23(1), 35–47. HTPPs://doi.org/10.1016/j.ejrs.2018.05.001He, J., Zhang, N., Su, X., Lu, J., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2019). Estimating leaf area index with a new vegetation index considering the influence of rice panicles. Remote Sensing, 11(15). HTPPs://doi.org/10.3390/rs11151809He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212. HTPPs://doi.org/10.1016/j.knosys.2020.106622Hernández-Pérez, T., Gómez-García, M. del R., Valverde, M. E., & Paredes-López, O. (2020). Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2972–2993. HTPPs://doi.org/10.1111/1541-4337.12634Herts, A., Tsidylo, I., Herts, N., Barna, L., & Mazur, S. I. (2020). PhotosynQ - Cloud platform powered by IoT devices. E3S Web of Conferences, 166. HTPPs://doi.org/10.1051/e3sconf/202016605001Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2002). Chlorophyll disappearance and chlorophyllase activity during ripening of Capsicum annuum L fruits. Journal of the Science of Food and Agriculture, 82(13), 1564–1570. HTPPs://doi.org/10.1002/jsfa.1231Huang, W., Guan, Q., Luo, J., Zhang, J., Zhao, J., Liang, D., Huang, L., & Zhang, D. (2014). New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2516–2524. HTPPs://doi.org/10.1109/JSTARS.2013.2294961Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. www.elsevier.com/locate/rseJangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. In Frontiers in Plant Science (Vol. 12). Frontiers Media S.A. HTPPs://doi.org/10.3389/fpls.2021.628611Jangra, S., Chaudhary, V., Yadav, R. C., & Yadav, N. R. (2021). High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement. Phenomics, 1(2), 31–53. HTPPs://doi.org/10.1007/s43657-020-00007-Jhajharia, K., Mathur, P., Jain, S., & Nijhawan, S. (2023). Crop Yield Prediction using Machine Learning and Deep Learning Techniques. Procedia Computer Science, 218, 406–417. HTPPs://doi.org/10.1016/j.procs.2023.01.023Jing, H., Wang, X., Haoyu, W., Xingrong, F., & Mwngzhen, K. (2017). Prediction of crop phenology - a component of parallel agriculture management. Chinese Automation Congress (CAC), 7704-7708). HTPPs://doi.org/10.1109/CAC.2017.8244172.Jones, H. G., & Rotenberg, E. (2001). Energy, Radiation and Temperature Regulation in Plants. In eLS. Wiley. HTPPs://doi.org/10.1038/npg.els.0003199Kaiser, E., Galvis, V. C., & Armbruster, U. (2019). Efficient photosynthesis in dynamic light environments: A chloroplast’s perspective. Biochemical Journal, 476(19), 2725–2741. HTPPs://doi.org/10.1042/BCJ20190134Kalogiannidis, S., Kalfas, D., Chatzitheodoridis, F., & Papaevangelou, O. (2022). Role of Crop-Protection Technologies in Sustainable Agricultural Productivity and Management. Land, 11(10). HTPPs://doi.org/10.3390/land11101680Kanazawa, A., Chattopadhyay, A., Kuhlgert, S., Tuitupou, H., Maiti, T., & Kramer, D. M. (2021). Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? Royal Society Open Science, 8(12). HTPPs://doi.org/10.1098/rsos.211102Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D. D., Sato-Cruz, M., Savage, L., Cruz, J. A., Fisher, N., Froehlich, J. E., & Kramer, D. M. (2017). Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for photosystem I and photosystem II photoprotection. Frontiers in Plant Science, 8. HTPPs://doi.org/10.3389/fpls.2017.00719Karadağ, K., Tenekeci, M. E., Taşaltın, R., & Bilgili, A. (2020). Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing: Informatics and Systems, 28. HTPPs://doi.org/10.1016/j.suscom.2019.01.001Kavga, A., Strati, I. F., Sinanoglou, V. J., Fotakis, C., Sotiroudis, G., Christodoulou, P., & Zoumpoulakis, P. (2019). Evaluating the experimental cultivation of peppers in low-energy-demand greenhouses. An interdisciplinary study. Journal of the Science of Food and Agriculture, 99(2), 781–789. HTPPs://doi.org/10.1002/jsfa.9246Kim, J. H., Bhandari, S. R., Chae, S. Y., Cho, M. C., & Lee, J. G. (2019). Application of maximum quantum yield, a parameter of chlorophyll fluorescence, for early determination of bacterial wilt in tomato seedlings. Horticulture Environment and Biotechnology, 60(6), 821–829. HTPPs://doi.org/10.1007/s13580-019-00182-0Kim, J. Y. (2020). Roadmap to High Throughput Phenotyping for Plant Breeding. Journal of Biosystems Engineering, 45(1), 43–55. HTPPs://doi.org/10.1007/s42853-020-00043-0Koide, D., Ide, R., & Oguma, H. (2019). Detection of autumn leaf phenology and color brightness from repeat photography: Accurate, robust, and sensitive indexes and modeling under unstable field observations. Ecological Indicators, 106. HTPPs://doi.org/10.1016/j.ecolind.2019.105482Koide, D., Ide, R., & Oguma, H. (2019). Detection of autumn leaf phenology and color brightness from repeat photography: Accurate, robust, and sensitive indexes and modeling under unstable field observations. Ecological Indicators, 106. HTPPs://doi.org/10.1016/j.ecolind.2019.105482Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. In Photosynthesis Research (Vol. 79).Kromdijk, J., & Walter, J. (2023). Relaxing non-photochemical quenching (NPQ) to improve photosynthesis in crops (pp. 113–130). HTPPs://doi.org/10.19103/as.2022.0119.09Kubota-Kawai, H., Mutoh, R., Shinmura, K., Sétif, P., Nowaczyk, M. M., Rögner, M., Ikegami, T., Tanaka, H., & Kurisu, G. (2018). X-ray structure of an asymmetrical trimeric ferredoxin-photosystem i complex. Nature Plants, 4(4), 218–224. HTPPs://doi.org/10.1038/s41477-018-0130-0Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M. I., Roth, M. G., Bi, K., TerAvest, D., Weebadde, P., & Kramer, D. M. (2016). MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open photosynQ network. Royal Society Open Science, 3(10). HTPPs://doi.org/10.1098/rsos.160592Kurbanov, R., & Litvinov, M. (2020). Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro. IOP Conference Series: Materials Science and Engineering, 1001(1). HTPPs://doi.org/10.1088/1757-899X/1001/1/012062Ledell, E., & Poirier, S. (2020). H2O AutoML: Scalable Automatic Machine Learning. HTPPs://scinet.usda.gov/user/geospatial/#tools-and-softwareLenk, S., Dieleman, J. A., Lefebvre, V., Heuvelink, E., Magán, J. J., Palloix, A., van Eeuwijk, F. A., & Barócsi, A. (2020). Phenotyping with fast fluorescence sensors approximates yield component measurements in pepper (Capsicum annuum l.). Photosynthetica, 58(Special Issue), 622–637. HTPPs://doi.org/10.32615/ps.2020.016León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. HTPPs://doi.org/10.1007/s40858-021-00460-2Li, H. Y., Guo, W., Liu, D., & Li, M. Q. (2018). First report of fusarium semitectum causing root rot of greenhouse pepper (Capsicum Annuum) in China. In Plant Disease (Vol. 102, Issue 10, p. 2032). American Phytopathological Society. HTPPs://doi.org/10.1094/PDIS-11-17-1704-PDNLi, Y., Tao, F., Hao, Y., Tong, J., Xiao, Y., He, Z., & Reynolds, M. (2023). Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis. Annals of Botany. HTPPs://doi.org/10.1093/aob/mcad003Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. HTPPs://doi.org/10.1109/ACCESS.2020.2980310Lizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 100138. HTPPs://doi.org/10.1016/j.atech.2022.100138Main, R., Cho, M. A., Mathieu, R., O’Kennedy, M. M., Ramoelo, A., & Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 751–761. HTPPs://doi.org/10.1016/j.isprsjprs.2011.08.001Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. HTPPs://doi.org/10.1016/j.sjbs.2019.05.007Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2014). Advanced methods of plant disease detection. A review. In Agronomy for Sustainable Development (Vol. 35, Issue 1, pp. 1–25). Springer-Verlag France. HTPPs://doi.org/10.1007/s13593-014-0246-1Mathieu, R., Pouget, M., Cervelle, B., & Escadafal, R. (1998). Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environment, , 17–28. HTPPs://doi.org/doi:10.1016/s0034-4257(98)00030-3Matias, F. I., Caraza-Harter, M. V., & Endelman, J. B. (2020). FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome Journal, 3(1). HTPPs://doi.org/10.1002/ppj2.20005Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P. D., Schnock, U., Stauß, R., van den Boom, T., Weber, E., Zwerger, P., & Peter Zwerger, C. (2009). The BBCH system to coding the phenological growth stages of plants. Journal Für Kulturpflanzen, 61(2), 41–52. HTPPs://www.zuechtungskunde.de/artikel.dll/meier-et-al_OTAyMjUy.PDFMezenner, A., Nemmour, H., Chibani, Y., & Hafiane, A. (2022). Tomato Plant Leaf Disease Classification based on CNN features and Support Vector Machines. 2022 2nd International Conference on Advanced Electrical Engineering, ICAEE 2022. HTPPs://doi.org/10.1109/ICAEE53772.2022.9962070Miyake, C. (2020). Molecular mechanism of oxidation of p700 and suppression of ROS production in photosystem I in response to electron-sink limitations in C3 plants. In Antioxidants (Vol. 9, Issue 3). MDPI. HTPPs://doi.org/10.3390/antiox9030230Miyake, C., Amako, K., Shiraishi, N., & Sugimoto, T. (2009). Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system-relationship among the fraction of open PSII centers, non-photochemical quenching of Chl Fluorescence and the maximum quantum yield of PSII in the dark. Plant and Cell Physiology, 50(4), 730–743. HTPPs://doi.org/10.1093/pcp/pcp032Moradi, S., Bokani, A., & Hassan, J. (2022). UAV-based Smart Agriculture: a Review of UAV Sensing and Applications. 2022 32nd International Telecommunication Networks and Applications Conference, ITNAC 2022, 181–184. HTPPs://doi.org/10.1109/ITNAC55475.2022.9998411Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F. E., Leite, P. T. P., Mendoza, I., Rocha, N. M. W. B., Soares, N. C., Silva, T. S. F., Staggemeier, V. G., Streher, A. S., Vargas, B. C., & Peres, C. A. (2016). Linking plant phenology to conservation biology. In Biological Conservation (Vol. 195, pp. 60–72). Elsevier Ltd. HTPPs://doi.org/10.1016/j.biocon.2015.12.033Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. In Journal of Experimental Botany (Vol. 64, Issue 13, pp. 3983–3998). HTPPs://doi.org/10.1093/jxb/ert208Nabwire, S., Suh, H. K., Kim, M. S., Baek, I., & Cho, B. K. (2021). Review: Application of artificial intelligence in phenomics. In Sensors (Vol. 21, Issue 13). MDPI AG. HTPPs://doi.org/10.3390/s21134363Naser, M. Z., & Alavi, A. H. (2021). Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Architecture, Structures and Construction. HTPPs://doi.org/10.1007/s44150-021-00015-8Noon, S. K., Amjad, M., Qureshi, M. A., & Mannan, A. (2020). Use of deep learning techniques for identification of plant leaf stresses: A review. Sustainable Computing: Informatics and Systems, 28. HTPPs://doi.org/10.1016/j.suscom.2020.100443Nur Anisa, M., Rokhmatuloh, & Hernina, R. (2020). UAV application to estimate oil palm trees health using Visible Atmospherically Resistant Index (VARI) (Case study of Cikabayan Research Farm, Bogor City). E3S Web of Conferences, 211. HTPPs://doi.org/10.1051/e3sconf/202021105001Nurcahyani, E., Sholekhah, Sumardi, & Qudus, H. I. (2021). Analysis of Total Carbohydrate and Chlorophyll Content of the Orchid Plantlet [Phalaenopsis amabilis (L.) Bl.] Resistant Fusarium Wilt Disease. Journal of Physics: Conference Series, 1751(1). HTPPs://doi.org/10.1088/1742-6596/1751/1/012061Ortiz, J. C. M., Carvajal, L. M. H., & Fernandez, V. B. (2019). Detection of significant wavelengths for identifying and classifying Fusarium oxysporum during the incubation period and water stress in Solanum lycopersicum plants using reflectance spectroscopy. Journal of Plant Protection Research, 59(2). HTPPs://doi.org/10.24425/jppr.2019.129290Panova, G. G., Heißner, A., Grosch, R., & Kläring, H. P. (2012). Pythium aphanidermatum May Reduce Cucumber Growth without Affecting Leaf Photosynthesis. Journal of Phytopathology, 160(1), 37–40. HTPPs://doi.org/10.1111/j.1439-0434.2011.01849.xPérez-Gutiérrez, A., Garruña, R., Vázquez, P., Latournerie-Moreno, L., Andrade, J. L., & Us-Santamaría, R. (2017). Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agronómica, 66(2). HTPPs://doi.org/10.15446/acag.v66n2.55897Pramanik, K., Mohapatra, P. P., Pradhan, J., Acharya, L. K., & Jena, C. (2020). Factors Influencing Performance of Capsicum under Protected Cultivation: A Review. International Journal of Environment and Climate Change, 572–588. HTPPs://doi.org/10.9734/ijecc/2020/v10i1230339Pugh, N. A., Han, X., Collins, S. D., Thomasson, J. A., Cope, D., Chang, A., Jung, J., Isakeit, T. S., Prom, L. K., Carvalho, G., Gates, I. T., Vree, A., Bagnall, G. C., & Rooney, W. L. (2018). Estimation of plant health in a sorghum field infected with anthracnose using a fixed-wing unmanned aerial system. Journal of Crop Improvement, 32(6), 861–877. HTPPs://doi.org/10.1080/15427528.2018.1535462Qu, C., Boubin, J., Gafurov, D., Zhou, J., Aloysius, N., Nguyen, H., & Calyam, P. (2022). UAV Swarms in Smart Agriculture: Experiences and Opportunities. 2022 IEEE 18th International Conference on E-Science (e-Science), 148–158. HTPPs://doi.org/10.1109/eScience55777.2022.00029Rahaman, M. M., Ahsan, M. A., & Chen, M. (2019). Data-mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification. Scientific Reports, 9(1). HTPPs://doi.org/10.1038/s41598-019-55609-6Ramchiary, N., & Chittaranjan, K. (2019). Compendium of Plant Genomes The Capsicum Genome (N. Ramchiary & K. Chittaranjan, Eds.; 2019th ed.). Springer International Publishing. HTPP://www.springer.com/series/11805Ramírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). HTPPs://doi.org/10.3390/plants9060790Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2020). Development and validation of severity scales of avocado wilt complex caused by Phytophthora cinnamomi, Verticillium dahliae and hypoxiaanoxia disorder and their physiological responses in avocado plants. Agronomia Colombiana, 38(1), 12–27. HTPPs://doi.org/10.15446/agron.colomb.v38n1.78527Ravichandran, N. K., Wijesinghe, R. E., Shirazi, M. F., Park, K., Lee, S. Y., Jung, H. Y., Jeon, M., & Kim, J. (2016). In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. Journal of Spectroscopy, 2016. HTPPs://doi.org/10.1155/2016/1093734Rekah, Y., Shtienberg, D., & Katan, J. (1999). Spatial Distribution and Temporal Development of Fusarium Crown and Root Rot of Tomato and Pathogen Dissemination in Field Soil (Vol. 89, Issue 9).Resti, Y., Saraswati, D. H., Zayanti, D. A., & Eliyati, N. (2022). CLASSIFICATION OF DISEASES AND PESTS OF MAIZE USING MULTINOMIAL LOGISTIC REGRESSION BASED ON RESAMPLING TECHNIQUE OF K-FOLD CROSS-VALIDATION. Indonesian Journal of Engineering and Science, 3(3), 069–076. HTPPs://doi.org/10.51630/ijes.v3i3.83Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing Vegetation from Soil Background Information* A gray mapping technique allows delineation of any Landsat scene into vegetative cover stages, degrees of soil brightness, and water. Photogrammetric Engineering and Remote Sensing, 43(12), 1541–1552.Ripley, B. D. (2007). Pattern Recognition via Neural Networks. Cambridge university press.Robles-Zazueta, C. A., Pinto, F., Molero, G., Foulkes, M. J., Reynolds, M. P., & Murchie, E. H. (2022). Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.828451Rodrigues, L., Magalhães, S. A., da Silva, D. Q., dos Santos, F. N., & Cunha, M. (2023). Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops. Agronomy, 13(2). HTPPs://doi.org/10.3390/agronomy13020463Rodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184. HTPPs://doi.org/10.1016/j.compag.2021.106061Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. In Frontiers in Plant Science (Vol. 5, Issue FEB). Frontiers Research Foundation. HTPPs://doi.org/10.3389/fpls.2014.00017Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). I OF NATURAL VEGETATION.Salaria, P., Jain, S., Bhardwaj, R. D., Rani, R., & Jhanji, S. (2023). Physiological and biochemical responses of chilli pepper (Capsicum annuum L.) to sudden wilt syndrome. Physiological and Molecular Plant Pathology, 126. HTPPs://doi.org/10.1016/j.pmpp.2023.102038Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) Using Multispectral Images Obtained from UAV in the Coast of Peru. Agronomy, 12(11). HTPPs://doi.org/10.3390/agronomy12112630Sarkar, S., Cazenave, A. B., Oakes, J., McCall, D., Thomason, W., Abbott, L., & Balota, M. (2021). Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Scientific Reports, 11(1). HTPPs://doi.org/10.1038/s41598-021-00936-wSchneider, M., Vedder, L., Oyiga, B. C., Mathew, B., Schoof, H., Léon, J., & Naz, A. A. (2022). Transcriptome profiling of barley and tomato shoot and root meristems unravels physiological variations underlying photoperiodic sensitivity. PLoS ONE, 17(9 September). HTPPs://doi.org/10.1371/journal.pone.0265981Shaheen, N., Khan, U. M., Azhar, M. T., Tan, D. K. Y., Atif, R. M., Israr, M., Yang, S. H., Chung, G., & Rana, I. A. (2021). Genetics and genomics of fusarium wilt of chilies: A review. In Agronomy (Vol. 11, Issue 11). MDPI. HTPPs://doi.org/10.3390/agronomy11112162Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. In Current Opinion in Plant Biology (Vol. 38, pp. 184–192). Elsevier Ltd. HTPPs://doi.org/10.1016/j.pbi.2017.05.006Sharma, L. K., Bu, H., Denton, A., & Franzen, D. W. (2015). Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in north Dakota, U.S.A. Sensors (Switzerland), 15(11), 27832–27853. HTPPs://doi.org/10.3390/s151127832Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine Learning for High-Throughput Stress Phenotyping in Plants. In Trends in Plant Science (Vol. 21, Issue 2, pp. 110–124). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2015.10.015Singh, A., Jones, S., Ganapathysubramanian, B., Sarkar, S., Mueller, D., Sandhu, K., & Nagasubramanian, K. (2021). Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. In Trends in Plant Science (Vol. 26, Issue 1, pp. 53–69). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2020.07.010Singh, A. K., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2018). Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. In Trends in Plant Science (Vol. 23, Issue 10, pp. 883–898). Elsevier Ltd. HTPPs://doi.org/10.1016/j.tplants.2018.07.004Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. HTPPs://doi.org/10.1016/j.aiia.2020.10.002Sosa-Herrera, J. A., Alvarez-Jarquin, N., Cid-Garcia, N. M., López-Araujo, D. J., & Vallejo-Pérez, M. R. (2022). Automated Health Estimation of Capsicum annuum L. Crops by Means of Deep Learning and RGB Aerial Images. Remote Sensing, 14(19). HTPPs://doi.org/10.3390/rs14194943Sosa-Herrera, J. A., Vallejo-Pérez, M. R., Álvarez-Jarquín, N., Cid-García, N. M., & López-Araujo, D. J. (2019). Geographic object-based analysis of airborne multispectral images for health assessment of Capsicum annuum L. Crops. Sensors (Switzerland), 19(21). HTPPs://doi.org/10.3390/s19214817Srikanth, D., Rekha, G. K., Lakshmi, A. P., & Vimatha, P. (2019). Impact of Climate Change in Capsicum Production: A Review. Current Journal of Applied Science and Technology, 1–5. HTPPs://doi.org/10.9734/cjast/2019/v33i330075Srivastav, A. L., Dubei, A. K., Kumar, A., Narang, S. K., & Khan, M. A. (Eds.). (2022). Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence. Elsevier.Srivastava, A. K., Safaei, N., Khaki, S., Lopez, G., Zeng, W., Ewert, F., Gaiser, T., & Rahimi, J. (2022). Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Scientific Reports, 12(1). HTPPs://doi.org/10.1038/s41598-022-06249-wStanton, C., Starek, M. J., Elliott, N., Brewer, M., Maeda, M. M., & Chu, T. (2017). Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. Journal of Applied Remote Sensing, 11(2), 026035. HTPPs://doi.org/10.1117/1.jrs.11.026035Stemkovski, M., Bell, J. R., Ellwood, E. R., Inouye, B. D., Kobori, H., Lee, S. D., Lloyd-Evans, T., Primack, R. B., Templ, B., & Pearse, W. D. (2023). Disorder or a new order: How climate change affects phenological variability. Ecology, 104(1). HTPPs://doi.org/10.1002/ecy.3846Sujatha, R., Chatterjee, J. M., Jhanjhi, N. Z., & Brohi, S. N. (2021). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocessors and Microsystems, 80. HTPPs://doi.org/10.1016/j.micpro.2020.103615Tang, R., Supit, I., Hutjes, R., Zhang, F., Wang, X., Chen, X., Zhang, F., & Chen, X. (2023). Modelling growth of chili pepper (Capsicum annuum L.) with the WOFOST model. Agricultural Systems, 209, 103688. HTPPs://doi.org/10.1016/j.agsy.2023.103688Tanner, F., Tonn, S., de Wit, J., Van den Ackerveken, G., Berger, B., & Plett, D. (2022). Sensor-based phenotyping of above-ground plant-pathogen interactions. In Plant Methods (Vol. 18, Issue 1). BioMed Central Ltd. HTPPs://doi.org/10.1186/s13007-022-00853-7Tayade, R., Yoon, J., Lay, L., Khan, A. L., Yoon, Y., & Kim, Y. (2022). Utilization of Spectral Indices for High-Throughput Phenotyping. In Plants (Vol. 11, Issue 13). MDPI. HTPPs://doi.org/10.3390/plants11131712Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022). Trends in vision-based machine learning techniques for plant disease identification: A systematic review. In Expert Systems with Applications (Vol. 208). Elsevier Ltd. HTPPs://doi.org/10.1016/j.eswa.2022.118117Tietz, S., Hall, C. C., Cruz, J. A., & Kramer, D. M. (2017). NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell and Environment, 40(8), 1243–1255. HTPPs://doi.org/10.1111/pce.12924Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., & Farivar, R. (2019). Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, 2019-November, 1471–1479. HTPPs://doi.org/10.1109/ICTAI.2019.00209Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. HTPPs://doi.org/10.1016/0034-4257(79)90013-0Ubaidillah, A., Rochman, E. M. S., Fatah, D. A., & Rachmad, A. (2022). Classification of Corn Diseases using Random Forest, Neural Network, and Naive Bayes Methods. Journal of Physics: Conference Series, 2406(1). HTPPs://doi.org/10.1088/1742-6596/2406/1/012023Uddin, M. N., & Gaskins, J. T. (2023). Shared Bayesian variable shrinkage in multinomial logistic regression. Computational Statistics and Data Analysis, 177. HTPPs://doi.org/10.1016/j.csda.2022.107568Velarde-Félix, S., Garzón-Tiznado, J. A., Hernández-Verdugo, S., López-Orona, C. A., & Retes-Manjarrez, J. E. (2018). Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Canadian Journal of Plant Pathology, 40(2), 238–247. HTPPs://doi.org/10.1080/07060661.2017.1420693Velasco Belalcazar, M. lucia. (2016). CARACTERIZACIÓN DE BACTERIAS ANTAGÓNICAS A Fusarium sp, ASOCIADAS A Capsicum frutescens EN GUACARÍ Y BOLIVAR, VALLE DEL CAUCA. Universidad Nacional de Colombia sede Palmira.Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9(5), 303–319. HTPPs://doi.org/10.1007/s11119-008-9075-zWang, C., Wu, Y., Hu, Q., Hu, J., Chen, Y., Lin, S., & Xie, Q. (2022). Comparison of Vegetation Phenology Derived from Solar-Induced Chlorophyll Fluorescence and Enhanced Vegetation Index, and Their Relationship with Climatic Limitations. Remote Sensing, 14(13). HTPPs://doi.org/10.3390/rs14133018WANG, F., HUANG, J., TANG, Y., & WANG, X. (2007). New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Science, 14(3), 195–203. HTPPs://doi.org/10.1016/s1672-6308(07)60027-4Wang, Y., Tan, S., Jia, X., Qi, L., Liu, S., Lu, H., Wang, C., Liu, W., Zhao, X., He, L., Chen, J., Yang, C., Wang, X., Chen, J., Qin, Y., Yu, J., & Ma, X. (2023). Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral–Textural Analysis. Agronomy, 13(6), 1541. HTPPs://doi.org/10.3390/agronomy13061541Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11). HTPPs://doi.org/10.1242/bio.035279Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 43, Issue 9, pp. 3037–3054). IEEE Computer Society. HTPPs://doi.org/10.1109/TPAMI.2021.3051276Worrall, G., Judge, J., Boote, K., & Rangarajan, A. (2022). In‐Season Crop Phenology using Remote Sensing and Model‐guided Machine Learning. Agronomy Journal. HTPPs://doi.org/10.1002/agj2.21230Xiao, Y., Dong, Y., Huang, W., Liu, L., & Ma, H. (2021). Wheat fusarium head blight detection using uav-based spectral and texture features in optimal window size. Remote Sensing, 13(13). HTPPs://doi.org/10.3390/rs13132437Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based sensors. In Computers and Electronics in Agriculture (Vol. 178). Elsevier B.V. HTPPs://doi.org/10.1016/j.compag.2020.105731Yalcin, H. (2015). Phenology Monitoring Of Agricultural Plants Using Texture Analysis. Cuarta Conferencia Internacional Sobre Agro-Geoinformática (Agro-Geoinformatics), 338–342. HTPPs://doi.org/doi: 10.1109/Agro-Geoinformatics.2015.7248114 .Yalcin, H. (2018). Phenology Recognition using Deep Learning. Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), 1–5. HTPPs://doi.org/doi: 10.1109/EBBT.2018.8391423.Yamamoto, H., Cheuk, A., Shearman, J., Nixon, P. J., Meier, T., & Shikanai, T. (2023). Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. Plant Physiology, 192(2), 1221–1233. HTPPs://doi.org/10.1093/plphys/kiad043Yang, Q., Shi, L., Han, J., Yu, J., & Huang, K. (2020). A near real-time deep learning approach for detecting rice phenology based on UAV images. Agricultural and Forest Meteorology, 287. HTPPs://doi.org/10.1016/j.agrformet.2020.107938Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. In Molecular Plant (Vol. 13, Issue 2, pp. 187–214). Cell Press. HTPPs://doi.org/10.1016/j.molp.2020.01.008Ye, H., Huang, W., Huang, S., Cui, B., Dong, Y., Guo, A., Ren, Y., & Jin, Y. (2020). Recognition of banana Fusarium wilt based on UAV remote sensing. Remote Sensing, 12(6). HTPPs://doi.org/10.3390/rs12060938Ye, H., Huang, W., Huang, S., Nie, C., Guo, J., & Cui, B. (2021). Application of UAV Remote Sensing in Monitoring Banana Fusarium Wilt. In M. Marghany (Ed.), Recent Remote Sensing Sensor Applications. HTPPs://doi.org/10.5772/intechopen.99950Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M. R., & De Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271–287. HTPPs://doi.org/10.1016/j.rse.2005.09.002Zeng, L., Yang, X., & Zhou, J. (2020). The xanthophyll cycle as an early pathogenic target to deregulate guard cells during Sclerotinia sclerotiorum infection. Plant Signaling and Behavior, 15(1). HTPPs://doi.org/10.1080/15592324.2019.1691704Zhang, H., Wang, L., Jin, X., Bian, L., & Ge, Y. (2023). High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing. The Crop Journal. HTPPs://doi.org/10.1016/j.cj.2023.04.014Zhang, S., Li, X., Ba, Y., Lyu, X., Zhang, M., & Li, M. (2022). Banana Fusarium Wilt Disease Detection by Supervised and Unsupervised Methods from UAV-Based Multispectral Imagery. Remote Sensing, 14(5). HTPPs://doi.org/10.3390/rs14051231Zhao, X., Zhang, J., Tang, A., Yu, Y., Yan, L., Chen, D., & Yuan, L. (2022). The Stress Detection and Segmentation Strategy in Tea Plant at Canopy Level. Frontiers in Plant Science, 13. HTPPs://doi.org/10.3389/fpls.2022.949054Zhou, J., Zeng, L., Liu, J., & Xing, D. (2015). Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS Pathogens, 11(5). HTPPs://doi.org/10.1371/journal.ppat.1004878Zhou, M., Zheng, H., He, C., Liu, P., Awan, G. M., Wang, X., Cheng, T., Zhu, Y., Cao, W., & Yao, X. (2023). Wheat phenology detection with the methodology of classification based on the time-series UAV images. Field Crops Research, 292. HTPPs://doi.org/10.1016/j.fcr.2022.108798Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. HTPPs://doi.org/10.1016/j.jag.2018.10.012Zhu, Q., Chen, L., Chen, T., Xu, Q., He, T., Wang, Y., Deng, X., Zhang, S., Pan, Y., & Jin, A. (2021). Integrated transcriptome and metabolome analyses of biochar-induced pathways in response to Fusarium wilt infestation in pepper. Genomics, 113(4), 2085–2095. HTPPs://doi.org/10.1016/j.ygeno.2021.04.031LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85670/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1113657355.2023.pdf1113657355.2023.pdfapplication/pdf3724070https://repositorio.unal.edu.co/bitstream/unal/85670/2/1113657355.2023.pdffb592559947bcbbd3486b6f6ff605472MD52THUMBNAIL1113657355.2023.pdf.jpg1113657355.2023.pdf.jpgGenerated Thumbnailimage/jpeg5546https://repositorio.unal.edu.co/bitstream/unal/85670/3/1113657355.2023.pdf.jpgf62a430d304fbffb88de4d5e6c5e77bfMD53unal/85670oai:repositorio.unal.edu.co:unal/856702024-02-09 23:10:42.711Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=