Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar
ilustraciones, diagramas
- Autores:
-
Garcia Acero, Angela Maria
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85881
- Palabra clave:
- 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
570 - Biología::572 - Bioquímica
Levadura
yeasts
Levaduras no-convencionales
Fermentación
Inhibidores
Adaptación
Protección cruzada
Non-conventional yeasts
Fermentation
Inhibitors
Adaptation
Cross-protection
Investigación química
Azúcar
Chemical research
Sugar
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_97186c5c7f73e9ce780aa72d4a16b31f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85881 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
dc.title.translated.eng.fl_str_mv |
Study of the response of xylose-transforming yeasts to stress conditions in sugarcane bagasse hydrolysate |
dc.title.translated.por.fl_str_mv |
Estudo da resposta de leveduras transformadoras de xilose a condições de estresse em hidrolisado de bagaço de cana de açúcar |
title |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
spellingShingle |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos 570 - Biología::572 - Bioquímica Levadura yeasts Levaduras no-convencionales Fermentación Inhibidores Adaptación Protección cruzada Non-conventional yeasts Fermentation Inhibitors Adaptation Cross-protection Investigación química Azúcar Chemical research Sugar |
title_short |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
title_full |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
title_fullStr |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
title_full_unstemmed |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
title_sort |
Estudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcar |
dc.creator.fl_str_mv |
Garcia Acero, Angela Maria |
dc.contributor.advisor.spa.fl_str_mv |
Velasquez Lozano, Mario Enrique Rosa, Carlos Augusto |
dc.contributor.author.spa.fl_str_mv |
Garcia Acero, Angela Maria |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Procesos Químicos y Bioquímicos Taxonomia, Biodiversidade e Biotecnologia de Fungos |
dc.contributor.orcid.spa.fl_str_mv |
Garcia Acero, Angela Maria [0000-0002-2241-9465] |
dc.contributor.cvlac.spa.fl_str_mv |
Garcia Acero, Angela Maria [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001468893] |
dc.contributor.researchgate.spa.fl_str_mv |
Garcia Acero, Angela Maria [https://www.researchgate.net/profile/Angela-Garcia-Acero] |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos 570 - Biología::572 - Bioquímica |
topic |
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos 570 - Biología::572 - Bioquímica Levadura yeasts Levaduras no-convencionales Fermentación Inhibidores Adaptación Protección cruzada Non-conventional yeasts Fermentation Inhibitors Adaptation Cross-protection Investigación química Azúcar Chemical research Sugar |
dc.subject.agrovoc.spa.fl_str_mv |
Levadura |
dc.subject.agrovoc.eng.fl_str_mv |
yeasts |
dc.subject.proposal.spa.fl_str_mv |
Levaduras no-convencionales Fermentación Inhibidores Adaptación Protección cruzada |
dc.subject.proposal.eng.fl_str_mv |
Non-conventional yeasts Fermentation Inhibitors Adaptation Cross-protection |
dc.subject.unesco.spa.fl_str_mv |
Investigación química Azúcar |
dc.subject.unesco.eng.fl_str_mv |
Chemical research Sugar |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09-27 |
dc.date.accessioned.none.fl_str_mv |
2024-04-08T19:32:45Z |
dc.date.available.none.fl_str_mv |
2024-04-08T19:32:45Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85881 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85881 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Agrosavia Agrovoc |
dc.relation.references.spa.fl_str_mv |
Adeboye, P. T., Bettiga, M., & Olsson, L. (2014). The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. Amb Express, 4(1), 46. Agbogbo, F. K., & Coward-Kelly, G. (2008). Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology letters, 30(9), 1515-1524. Ali, S. S., Al-Tohamy, R., Xie, R., El-Sheekh, M. M., & Sun, J. (2020). Construction of a new lipase-and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresource Technology, 313, 123631. Ali, S. S., Al-Tohamy, R., Koutra, E., Kornaros, M., Khalil, M., Elsamahy, T., El-Shetehy, M.,& Sun, J. (2021). Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for biofuels, 14(1), 1-25. Alfenore, S., & Molina-Jouve, C. (2016). Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochemistry, 51(11), 1747-1756. Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Liu, Z. L., & Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3(1), 2. Altamirano, A., Vazquez, F., & De Figueroa, L. I. C. (2000). Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia microbiologica, 45(3), 255-258. Amorim, J. C., Piccoli, R. H., & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, 518-527. Andrade, M. C., Gorgulho Silva, C. D. O., de Souza Moreira, L. R., & Ferreira Filho, E. X. (2021). Crop residues: applications of lignocellulosic biomass in the context of a biorefinery. Frontiers in Energy, 1-22. Arumugam, N., Boobalan, T., Saravanan, S., Basu, M. J., Arun, A., Devi, T. S., & Kavitha, T. (2020). In silico and in vitro comparison of nicotinamide adenine dinucleotide phosphate dependent xylose reductase rossmaan fold in Debaryomycetaceae yeast family. Biocatalysis and Agricultural Biotechnology, 24, 101508. Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., Chen, W., & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344, 126195. Ask, M., Bettiga, M., Duraiswamy, V. R., & Olsson, L. (2013). Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnology for Biofuels, 6(1), 181. Asocaña. (2022). Informe anual de Asocaña con aspectos generales del Sector Agroindustrial de la Caña de Colombia 2021-2022. http://www.asocana.org/modules/documentos/17611.aspx Atitallah, I. B., Ntaikou, I., Antonopoulou, G., Alexandropoulou, M., Brysch-Herzberg, M., Nasri, M., Lyberatos, G., & Mechichi, T. (2020). Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock. Renewable Energy, 154, 71-81. Bakker, B. M., Overkamp, K. M., Van Maris, A. J., Kötter, P., Luttik, M. A., Van Dijken, J. P., & Pronk, J. T. (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS microbiology reviews, 25(1), 15-37. Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 4(1), 77-93. Banu, J. R., Kavitha, S., Tyagi, V. K., Gunasekaran, M., Karthikeyan, O. P., & Kumar, G. (2021). Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy. Fuel, 302, 121086. Barbosa, M. F., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3(4), 241-251. Barrilli, É. T., Tadioto, V., Milani, L. M., Deoti, J. R., Fogolari, O., Müller, C., Barros, K. O., Rosa C. A., Dos Sandos, A. A., Stambuk, B. U., Treichel, H., & Alves, S. L. (2020). Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Archives of Microbiology, 202(7), 1729-1739. Barros O. K., Garcia-Acero A. M., & Rosa, C. A. (2020) Non-Conventional Yeasts with Potential for Production of Second-Generation Ethanol. In Biofuels: Advances in Research and Applications (pp. 109 -150). Nova Science Publishers. Bazoti, S. F., Golunski, S., Siqueira, D. P., Scapini, T., Barrilli, É. T., Mayer, D. A., Barros, K. O., Rosa, C. A., Stambuk, B. U., Alves, S. L., Valério, A., Oliveira D., & Treichel, H. (2017). Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology, 244, 582-587. Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., & García-Cubero, M. T. (2011). Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource technology, 102(23), 10868-10874. Bianchini, I. D. A., Sene, L., da Cunha, M. A. A., & Felipe, M. D. G. D. A. (2022). Short-term Adaptation Strategy Improved Xylitol Production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate. BioEnergy Research, 15(2), 1182-1194. Biazi, L. E., Santos, S. C., Kaupert Neto, A. A., Sousa, A. S., Soares, L. B., Renzano, E., Velasco, J., Rabelo, S. C., Costa, A. C., & Ienczak, J. L. (2022). Adaptation strategy to increase the tolerance of Scheffersomyces stipitis NRRL Y-7124 to inhibitors of sugarcane bagasse hemicellulosic hydrolysate through comparative studies of proteomics and fermentation. BioEnergy Research, 15(1), 479-492. Blackwell, M. (2017). Made for each other: ascomycete yeasts and insects. Microbiology Spectrum, 5(3), 5-3. Boekhout, T., Amend, A. S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., Robert, V., Tan, C. S., Turchetti, B., Vu, D., Wang, Q., & Yurkov, A. (2021a). Trends in yeast diversity discovery. Fungal Diversity, 1-47. Boekhout, T., Aime, M. C., Begerow, D., Gabaldón, T., Heitman, J., Kemler, M., Khayhan, K., Lachance, M. A., Louis, E. J., Sun, S., Vu, D., & Yurkov, A. (2021b). The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal diversity, 109(1), 27-55. Boontham, W., Angchuan, J., Boonmak, C., & Srisuk, N. (2020). Limtongozyma siamensis gen. nov., sp. nov., a yeast species in the Saccharomycetales and reassignment of Candida cylindracea to the genus Limtongozyma. International Journal of Systematic and Evolutionary Microbiology, 70(1), 199-203. Brandt, B. A., Jansen, T., Görgens, J. F., & van Zyl, W. H. (2019). Overcoming lignocellulose‐ derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox. Biofuels, Bioproducts and Biorefining, 13(6), 1520-1536. Brandt, B. A., Jansen, T., Volschenk, H., Görgens, J. F., Van Zyl, W. H., & Den Haan, R. (2021). Stress modulation as a means to improve yeasts for lignocellulose bioconversion. Applied Microbiology and Biotechnology, 105(12), 4899-4918. Brown, A. J., Larcombe, D. E., & Pradhan, A. (2020). Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal biology, 124(5), 475-481. Brysch-Herzberg, M., Dlauchy, D., Seidel, M., & Péter, G. (2021). Cyberlindnera sylvatica sp. nov., a yeast species isolated from forest habitats. International Journal of Systematic and Evolutionary Microbiology, 71(2), 004477. Cabrera-Orefice, A., Chiquete-Félix, N., Espinasa-Jaramillo, J., Rosas-Lemus, M., Guerrero-Castillo, S., Peña, A., & Uribe-Carvajal, S. (2014). The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837(1), 73-84. Cadete, R. M., Melo, M. A., Dussan, K. J., Rodrigues, R. C., Silva, S. S., Zilli, J. E., Vital, M. J. S., Gomes, F. C.O., Lachance, M. A., & Rosa, C. A. (2012). Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS ONE 7(8): e43135. Cadete, R. M., Cheab, M. A., Santos, R. O., Safar, S. V., Zilli, J. E., Vital, M. J., Basso, L. C., Lee, C., Kurtzman, C. P., Lachance, M. A., & Rosa, C. A. (2015). Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_9), 2968-2974. Cadete, R. M., Melo-Cheab, M. A., Viana, A. L., Oliveira, E. S., Fonseca, C., & Rosa, C. A. (2016). The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World Journal of Microbiology and Biotechnology, 32(12), 1-5. Cadete, R. M., Lopes, M. R., & Rosa, C. A. (2017a). Yeasts associated with decomposing plant material and rotting wood. In Yeasts in natural ecosystems: diversity (pp. 265-292). Springer, Cham. Cadete, R. M., Melo‐Cheab, M. A., Dussán, K. J., Rodrigues, R. C. L. B., Da Silva, S. S., Gomes, F. C. O., & Rosa, C. A. (2017b). Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems. Journal of applied microbiology, 123(5), 1203-1213. Cadete, R. M., & Rosa, C. A. (2018). The yeasts of the genus Spathaspora: potential candidates for second‐generation biofuel production. Yeast, 35(2), 191-199. Calleja, G. B., Levy-Rick, S., Mahmourides, G., Labelle, J., & Schneider, H. (1990). Rapid process for the conversion of xylose to ethanol. https://www.osti.gov/etdeweb/biblio/6842727 CAR. Corporación Autónoma Regional de Cundinamarca (2016). Plan de manejo y conservación del Roble (Quercus humboldtii Bonpl.) en la jurisdicción CAR Cundinamarca. Bogotá D.C., Colombia. https://www.car.gov.co/uploads/files/606359fca0951.pdf Carneiro, C. V. G., Silva, F. C. D. P. E., & Almeida, J. R. (2019). Xylitol production: identification and comparison of new producing yeasts. Microorganisms, 7(11), 484. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell 12, 323–337. CEPF, Critical Ecosystem Partnership Fund (2022). https://www.cepf.net/node/1996 . Acceso 23 Ago 2022. Chandel, A.K., Chandrasekhar, G., Radhika, K., Ravinder, K. & Ravindra, P. (2011). Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology Review, 6:8-20. Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370-381 Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological monographs, 84(1), 45-67. Cheng, K. K., Zhang, J. A., Ling, H. Z., Ping, W. X., Huang, W., Ge, J. P., & Xu, J. M. (2009). Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochemical Engineering Journal, 43(2), 203-207. Cheng, C., Almario, M. P., & Kao, K. C. (2015). Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates. Biotechnology letters, 37(11), 2193-2200. Cho, E. J., Trinh, L. T. P., Song, Y., Lee, Y. G., & Bae, H. J. (2020). Bioconversion of biomass waste into high value chemicals. Bioresource technology, 298, 122386. Choudhary, J., Singh, S., & Nain, L. (2017). Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Journal of bioscience and bioengineering, 123(3), 342-346. CI, Pagina web Conservación Internacional (2022) https://www.conservation.org/priorities/biodiversity-hotspots. Acceso 23 Ago 2022 Conab (2022) Acompanhamento da safra brasileira de cana-de-açúcar - Safra 2022–23 -Segundo levantamento. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar . Acceso 23Ago 2022 - SAFRA 2022/223 Conrad, A. O., McPherson, B. A., Lopez-Nicora, H. D., D'Amico, K. M., Wood, D. L., & Bonello, P. (2019). Disease incidence and spatial distribution of host resistance in a coast live oak/sudden oak death pathosystem. Forest Ecology and Management, 433, 618-624. Converti, A., Perego, P., Sordi, A., & Torre, P. (2002). Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii. Applied biochemistry and biotechnology, 101(1), 15-29. Côrte-Real, M., & Leao, C. (1990). Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Applied and Environmental Microbiology, 56(4), 1109-1113. Cunha, A. C., Santos, R. A., Riaño-Pachon, D. M., Squina, F. M., Oliveira, J. V., Goldman, G. H., Souza, A. T., Gomes, L. S., Godoy-Santos, F., Teixeira, J. A., Faria-Oliveira, F., Rosse, I. C., Castro, I. M., Lucas, C., & Brandão, R. L. (2020). Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation. Genetics and molecular biology, 43. da Silva, D. D. V., Machado, E., Danelussi, O., dos Santos, M. G., da Silva, S. S., & Dussán, K. J. (2022). Repeated-batch fermentation of sugarcane bagasse hemicellulosic hydrolysate to ethanol using two xylose-fermenting yeasts. Biomass Conversion and Biorefinery, 1-11. Dahmen, N., Lewandowski, I., Zibek, S., & Weidtmann, A. (2018). Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. Global Change Biology Bioenergy, 11(1), 107-117. Datta, N., Arendrup, M. C., & Saunte, J. P. (2015). First report of Candida palmioleophila endogenous endophthalmitis. Acta ophthalmologica, 93(6), e517-e518. Daniel, H. M., Lachance, M. A., & Kurtzman, C. P. (2014). On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek, 106(1), 67-84. De Albuquerque, T. L., Gomes, S. D. L., Marques Jr, J. E., da Silva Jr, I. J., & Rocha, M. V. P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 255, 33-40. De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products. Bioresource Technology. 247, 1144-1154. Delgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., & Chaves-López, C. (2020). Functional biodiversity of yeasts isolated from Colombian fermented and dry cocoa beans. Microorganisms, 8(7), 1086. Ding, M. Z., Wang, X., Yang, Y., & Yuan, Y. J. (2012). Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics, 8(2), 232-243. Dong, Y., Hu, J., Fan, L., & Chen, Q. (2017). RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Scientific reports, 7(1), 1-16. Dourou, M., Economou, C. N., Aggeli, L., Janák, M., Valdés, G., Elezi, N., Kakavas, D., Papageorgiou, T., Lianou, A., Vayenas, D. V., Certik, M., & Aggelis, G. (2021). Bioconversion of pomegranate residues into biofuels and bioactive lipids. Journal of Cleaner Production, 323, 129193. Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12(1), 1-17. Duque, A., Álvarez, C., Doménech, P., Manzanares, P., & Moreno, A. D. (2021). Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes, 9(2), 206. El-Baz, A. F., Shetaia, Y. M., & Elkhouli, R. R. (2011). Xylitol production by Candida tropicalis under different statistically optimized growth conditions. African Journal of Biotechnology, 10(68), 15353-15363. Eliodório, K. P., e Cunha, G. C. D. G., Müller, C., Lucaroni, A. C., Giudici, R., Walker, G. M., Alves, L. Jr., & Basso, T. O. (2019). Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Advances in applied microbiology, 109, 61-119. Endoh, R., Horiyama, M., & Ohkuma, M. (2021). D-Fructose assimilation and fermentation by yeasts belonging to saccharomycetes: rediscovery of universal phenotypes and elucidation of fructophilic behaviors in Ambrosiozyma platypodis and Cyberlindnera americana. Microorganisms, 9(4), 758. Enjalbert, B., Nantel, A., & Whiteway, M. (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Molecular biology of the cell, 14(4), 1460-1467. Estrada-Ávila, A. K., González-Hernández, J. C., Calahorra, M., Sánchez, N. S., & Peña, A. (2022). Xylose and yeasts: A story beyond xylitol production. Biochimica et Biophysica Acta (BBA)-General Subjects, 1866(8), 130154. Fan, L. F., Alvarenga, R. L. M., Gibertoni, T. B., Wu, F., & Dai, Y. C. (2021). Four new species in the Tremella fibulifera complex (Tremellales, Basidiomycota). MycoKeys, 82, 33. Ferreira, A. D., Mussatto, S. I., Cadete, R. M., Rosa, C. A., & Silva, S. S. (2011). Ethanol production by a new pentose‐fermenting yeast strain, Scheffersomyces stipitis UFMG‐IMH 43.2, isolated from the Brazilian forest. Yeast, 28(7), 547-554. Ferreira, D., Nobre, A., Silva, M. L., Faria-Oliveira, F., Tulha, J., Ferreira, C., & Lucas, C. (2013). XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii. FEMS yeast research, 13(7), 585-596. Ferreira, L. R. A., Otto, R. B., Silva, F. P., De Souza, S. N. M., De Souza, S. S., & Junior, O. A. (2018). Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renewable and Sustainable Energy Reviews, 94, 440-455. Fletcher, E., Gao, K., Mercurio, K., Ali, M., & Baetz, K. (2019). Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metabolic Engineering, 52, 98-109. Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for biofuels, 12(1), 1-26. Gambacorta, F. V., Dietrich, J. J., Yan, Q., & Pfleger, B. F. (2020). Rewiring yeast metabolism to synthesize products beyond ethanol. Current opinion in chemical biology, 59, 182-192. Garbe, E., & Vylkova, S. (2019). Role of amino acid metabolism in the virulence of human pathogenic fungi. Current Clinical Microbiology Reports, 6(3), 108-119. Garcia-Acero A., Velasquez L M., Brandão P., 2017, Isolation of Colombian Native Bacteria and their Potential for Ethanol Production from Xylose and Glucose. Chemical Engineering Transactions, 57, 1735-1740. García L. L. S., & Vanegas V. L. L (2021). Análisis técnico y ambiental de la capacidad de carga de los senderos del Parque Natural Chicaque. Boletín Semillas Ambientales, 15(1). García-Ríos, E., Ramos-Alonso, L., & Guillamon, J. M. (2016). Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Frontiers in Microbiology, 7, 1199. García-Ríos, E., Alonso-del-Real, J., Lip, K. Y. F., Pinheiro, T., Teixeira, J., van Gulik, W., Domingues, L., Querol, A., & Guillamón, J. M. (2022). Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics, 114(4), 110386. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, 11(12), 4241-4257. Goli, J. K., Panda, S. H., & Linga, V. R. (2012). Molecular mechanism of D-xylitol production in yeasts: focus on molecular transportation, catabolic sensing and stress response. In D- xylitol (pp. 85-107). Springer, Berlin, Heidelberg. González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2021). Application of stressed and microencapsulated Meyerozyma caribbica for the control of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Journal of Plant Diseases and Protection, 1-9. Granström, T., Ojamo, H., & Leisola, M. (2001). Chemostat study of xylitol production by Candida guilliermondii. Applied microbiology and biotechnology, 55(1), 36-42. Groenewald, M., Robert, V., & Smith, M. T. (2011). The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma. Persoonia-Molecular Phylogeny and Evolution of Fungi, 26(1), 40-46. Gschaedler, A., Iñiguez-Muñoz, L. E., Flores-Flores, N. Y., Kirchmayr, M., & Arellano-Plaza, M. (2021). Use of non Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. International Journal of Food Microbiology, 347, 109169. Guamán-Burneo, M. C., Dussán, K. J., Cadete, R. M., Cheab, M. A., Portero, P., Carvajal- Barriga, E. J., Silva, S. S., & Rosa, C. A. (2015). Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis fa, sp. nov. Antonie Van Leeuwenhoek, 108(4), 919-931. Guaragnella, N., & Bettiga, M. (2021). Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast, 38(7), 391-400. Guleria, P., Kaur, S., Sidana, A., & Yadav, S. K. (2022). Xylitol production from rice straw hemicellulosic hydrolysate by Candida tropicalis GS18 immobilized on bacterial cellulose-sodium alginate matrix. Biomass Conversion and Biorefinery, 1-11. Guo, H., Chang, Y., & Lee, D. J. (2018). Enzymatic saccharification of lignocellulosic biorefinery: research focuses. Bioresource Technology, 252, 198-215. Guo, H., Zhao, Y., Chang, J. S., & Lee, D. J. (2022). Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresource Technology, 127666. Haase, M. A., Kominek, J., Langdon, Q. K., Kurtzman, C. P., & Hittinger, C. T. (2017). Genome sequence and physiological analysis of Yamadazyma laniorum fa sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis. FEMS yeast research, 17(3). Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 10(1), 1-13. Heisel, T., Nyaribo, L., Sadowsky, M. J., & Gale, C. A. (2019). Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genetics and Biology, 128, 29-35. Hernández-Pérez, A. F., Arruda, P. V. D., & Felipe, M. D. G. D. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. brazilian journal of microbiology, 47, 489-496. Hernández-Pérez, A. F., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., & de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943. Hernández-Pérez, A. F., Antunes, F. A. F., dos Santos, J. C., da Silva, S. S., & Felipe, M. D. G. D. A. (2020). Valorization of the sugarcane bagasse and straw hemicellulosic hydrolysate through xylitol bioproduction: effect of oxygen availability and sucrose supplementation as key factors. Biomass Conversion and Biorefinery, 1-15. Hickert, L. R., da Cunha-Pereira, F., de Souza-Cruz, P. B., Rosa, C. A., & Ayub, M. A. Z. (2013). Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresource Technology, 131, 508-514. Hsieh TC, Ma KH & Chao A (2019). ‘iNEXT’: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20 Hou, J., Qiu, Z., Han, H., & Zhang, Q. (2018). Toxicity evaluation of lignocellulose-derived phenolic inhibitors on Saccharomyces cerevisiae growth by using the QSTR method. Chemosphere, 201, 286. IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland. Jia, R. R., Lv, S. L., Chai, C. Y., & Hui, F. L. (2020). Three new Scheffersomyces species associated with insects and rotting wood in China. MycoKeys, 71, 87. Juárez, O., Guerra, G., Martínez, F., & Pardo, J. P. (2004). The mitochondrial respiratory chain of Ustilago maydis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1658(3), 244- 251. Junior, W. G. M., Pacheco, T. F., Trichez, D., Almeida, J. R., & Gonçalves, S. B. (2019). Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349-361. Kieliszek, M., Kot, A. M., Bzducha-Wróbel, A., BŁażejak, S., Gientka, I., & Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 31(4), 185-198. Kim, D. (2018). Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules, 23(2), 309. Kim, D., & Hahn, J.-S. (2013). Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Applied and Environmental Microbiology. 79, 5069–5077. Kim, K. H., Lee, H. Y., & Lee, C. Y. (2015). Pretreatment of sugarcane molasses and citric acid production by Candida zeylanoides. Microbiology and Biotechnology Letters, 43(2), 164-168. Kim, D., & Woo, H. M. (2018). Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Applied microbiology and biotechnology, 102(22), 9471-9480 Kim, S., Lee, J., & Sung, B. H. (2019). Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Frontiers in bioengineering and biotechnology, 7, 138. Kitanovic, A., Bonowski, F., Heigwer, F., Ruoff, P., Kitanovic, I., Ungewiss, C., & Wölfl, S. (2012). Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Frontiers in oncology, 2, 118. Kitichantaropas, Y., Boonchird, C., Sugiyama, M., Kaneko, Y., Harashima, S., & Auesukaree, C. (2016). Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. Amb Express, 6(1), 1-14. Khalifa, H. O., Watanabe, A., & Kamei, K. (2022). Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clinical Microbiology and Infection, 28(2), 302-e5. Khalil, M. J., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete–A review. Construction and Building Materials, 270, 121371. Khatri, P., & Pandit, A. B. (2022). Systematic review of life cycle assessments applied to sugarcane bagasse utilization alternatives. Biomass and Bioenergy, 158, 106365. Kumar, S., Lal, P., & Gummadi, S. N. (2008). Growth of halotolerant food spoiling yeast Debaryomyces nepalensis NCYC 3413 under the influence of pH and salt. Current microbiology, 57(6), 598-602. Kumar, S., & Gummadi, S. N. (2011). Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Applied microbiology and biotechnology, 89(5), 1405-1415. Kumar, B., & Verma, P. (2021). Biomass-based biorefineries: an important architype towards a circular economy. Fuel, 288, 119622. Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564-582. Kurtzman, C. P., & Robnett, C. J. (2003). Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS yeast research, 3(4), 417-432. Kurtzman CP, Suzuki M. (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2–14. Kurtzman CP, Fell JW, Boekhout T (2011). The yeasts, a taxonomic study, chapter 10. (eds) Elsevier, Amsterdam, pp 137–144. Kwak, S., & Jin, Y. S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial cell factories, 16(1), 1-15. Kwak, S., Jo, J. H., Yun, E. J., Jin, Y. S., & Seo, J. H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271-283. Lachance, M. A., Bowles, J. M., Starmer, W. T., & Barker, J. S. F. (1999). Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Canadian journal of microbiology, 45(2), 172-177. Lachance M-A (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9. Lappe-Oliveras, P., Moreno-Terrazas, R., Arrizón-Gaviño, J., Herrera-Suárez, T., García-Mendoza, A., & Gschaedler-Mathis, A. (2008). Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS yeast research, 8(7), 1037-1052. Lara CA, Santos RO, Cadete RM, Ferreira C, Marques S, Gírio F, Oliveira ES, Rosa CA, & Fonseca C (2014). Identificación y caracterización de levaduras xilanolíticas aisladas de madera en descomposición y bagazo de caña de azúcar en Brasil. Antonie Van Leeuwenhoek 105: 1107–1119. Lask, J., Wagner, M., Trindade, L. M., & Lewandowski, I. (2019). Life cycle assessment of ethanol production from miscanthus: A comparison of production pathways at two European sites. Gcb Bioenergy, 11(1), 269-288. Leonel, L. V., Arruda, P. V., Chandel, A. K., Felipe, M. G. A., & Sene, L. (2021). Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Critical Reviews in Biotechnology, 1–22. Li, C., Zhang, H., Yang, Q., Komla, M. G., Zhang, X., & Zhu, S. (2014). Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. Journal of agricultural and food chemistry, 62(30), 7612-7621. Li, X., Chen, Y., & Nielsen, J. (2019). Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 57, 56-65. Li, B., Liu, N., & Zhao, X. (2022). Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnology for Biofuels and Bioproducts, 15(1), 1-20. Limtong, S., & Kaewwichian, R. (2015). The diversity of culturable yeasts in the phylloplane of rice in Thailand. Annals of microbiology, 65(2), 667-675. Lin, N. X., Xu, Y., & Yu, X. W. (2021). Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing, 1-14. Liszkowska, W., & Berlowska, J. (2021). Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. Molecules, 26(4), 1035. Liu, X. Z., Wang, Q. M., Göker, M., Groenewald, M., Kachalkin, A. V., Lumbsch, H. T., Millanes, A.M., Wedin, M., Yurkov, A.M., Boekhout, T., & Bai, F. Y. (2015). Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81(1), 85-147. Liu, X. J., Cao, W. N., Ren, Y. C., Xu, L. L., Yi, Z. H., Liu, Z., & Hui, F. L. (2016). Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose-fermenting yeast species from China. Scientific reports, 6(1), 1-8. Lodi, T., Fontanesi, F., Ferrero, I., & Donnini, C. (2004). Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene, 339, 111-119. Lopes, M. R., Morais, C. G., Kominek, J., Cadete, R. M., Soares, M. A., Uetanabaro, A. P. T., Fonseca, C., Lachance, M. A., Hittinger, C. T., & Rosa, C. A. (2016). Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae fa, sp. nov. and Spathaspora gorwiae fa, sp. nov. FEMS yeast research, 16(4), fow044. Lopes, M. R., Lara, C. A., Moura, M. E., Uetanabaro, A. P. T., Morais, P. B., Vital, M. J., & Rosa, C. A. (2018). Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal biology, 122(7), 668-676. López-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource technology, 247, 736-743. Loureiro, S. T. A., Cavalcanti, M. A. D. Q., Neves, R. P., & Passavante, J. Z. D. O. (2005). Yeasts isolated from sand and sea water in beaches of Olinda, Pernambuco state, Brazil. Brazilian Journal of Microbiology, 36, 333-337. Lourenço, M. D. M., Dini-Andreote, F., Aguilar-Vildoso, C. I., & Basso, L. C. (2014). Biotechnological potential of Candida spp. for the bioconversion of D-xylose to xylitol. African Journal of Microbiology Research, 8(20), 2030-2036. Lu, Y. F., Wang, M., Zheng, J., & Hui, F. L. (2017). Ogataea neixiangensis sp. nov. and Ogataea paraovalis fa, sp. nov., two methanol-assimilating yeast species isolated from rotting wood. International Journal of Systematic and Evolutionary Microbiology, 67(8), 3038-3042. Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., ... & Schoch, C. L. (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal ADN barcoding?. IMA fungus, 11(1), 1-32. Magalhães Jr, A. I., de Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., & Soccol, C. R. (2019). Lignocellulosic biomass from agro‐industrial residues in South America: current developments and perspectives. Biofuels, Bioproducts and Biorefining, 13(6), 1505-1519. Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142. Malassigné, S., Minard, G., Vallon, L., Martin, E., Valiente Moro, C., & Luis, P. (2021). Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms, 9(8), 1552. Malla, S., & Gummadi, S. N. (2018). Thermal stability of xylose reductase from Debaryomyces nepalensis NCYC 3413: deactivation kinetics and structural studies. Process Biochemistry, 67, 71-79. Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. Mans, R., Daran, J. M. G., & Pronk, J. T. (2018). Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Current opinion in biotechnology, 50, 47-56. Mardawati, E., Trirakhmadi, A., Kresnowati, M. T. A. P., & Setiadi, T. (2017). Kinetic study on Fermentation of xylose for The Xylitol Production. Journal of Industrial and Information Technology in Agriculture, 1(1), 1-8. Mariani, D., Mathias, C. J., da Silva, C. G., Herdeiro, R. D. S., Pereira, R., Panek, A. D., Eleutherio, E. C.A., & Pereira, M. D. (2008). Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Report, 13(6), 246-254. Martins, G. M., Bocchini-Martins, D. A., Bezzerra-Bussoli, C., Pagnocca, F. C., Boscolo, M., Monteiro, D. A., & Gomes, E. (2018). The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Brazilian journal of microbiology, 49, 162-168. Martorell, M. M., Ruberto, L. A. M., Fernández, P. M., Castellanos de Figueroa, L. I., & Mac Cormack, W. P. (2017). Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. Journal of Basic Microbiology, 57(6), 504–516. Mateo, S., Puentes, J. G., Moya, A. J., & Sánchez, S. (2015). Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresource Technology, 190, 1-6. Mattam, A. J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P. V., & Velankar, H. R. (2016). Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels, 9(1), 1-12. Medeiros, A. O., Missagia, B. S., Brandão, L. R., Callisto, M., Barbosa, F. A., & Rosa, C. A. (2012). Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil. Brazilian Journal of Microbiology, 43(4), 1582-1594. Meena, R. C., Thakur, S., Nath, S., & Chakrabarti, A. (2011). Tolerance to thermal and reductive stress in Saccharomyces cerevisiae is amenable to regulation by phosphorylation– dephosphorylation of ubiquitin conjugating enzyme 1 (Ubc1) S97 and S115. Yeast, 28(11), 783-793. Mendes Ferreira, A., & Mendes-Faia, A. (2020). The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods, 9(9), 1231. Mestre, M. C., Fontenla, S., Bruzone, M. C., Fernández, N. V., & Dames, J. (2016). Detection of plant growth enhancing features in psychrotolerant yeasts from Patagonia (Argentina). Journal of basic microbiology, 56(10), 1098-1106. Meyer, W., Mitchell, T. G., Freedman, E. Z., & Vilgalys, R. (1993). Hybridization probes for conventional ADN fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. Journal of Clinical Microbiology, 31(9), 2274-2280. Mikulášová, M., Vodný, Š., & Pekarovičová, A. (1990). Influence of phenolics on biomass production by Candida utilis and Candida albicans. Biomass, 23(2), 149-154. Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial cell factories, 9(1), 1-13. Miura, M., Watanabe, I., Shimotori, Y., Aoyama, M., Kojima, Y., & Kato, Y. (2013). Microbial conversion of bamboo hemicellulose hydrolysate to xylitol. Wood Science and Technology, 47(3), 515-522. Misra, S., Raghuwanshi, S., Gupta, P., Dutt, K., & Saxena, R. K. (2012). Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie Van Leeuwenhoek, 101(2), 393-402. Mollapour, M., & Piper, P. W. (2007). Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Molecular and cellular biology, 27(18), 6446-6456. Monteiro Moreira, G. A., & Martins do Vale, H. M. (2020). Soil yeast communities in revegetated post-mining and adjacent native areas in Central Brazil. Microorganisms, 8(8), 1116. Morais, C. G., Sena, L. M., Lopes, M. R., Santos, A. R. O., Barros, K. O., Alves, C. R., Uetanabaro, A. P., Lachance, M. A., & Rosa, C. A. (2020). Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal biology, 124(7), 639-647. Morales, D., Cifuentes, Y., Ruiz, R., Montoya, J., & Velásquez, M. (2014). Fermentation of Enzymatic Hydrolysates of Sugar Cane Bagasse by a Colombian Native Strain of Saccharomyces Cerevisiae for the Production of Cellulosic Ethanol. In Conference Proceedings, Tokyo International Conference on Life Science and Biological Engineering (Vol. 287). Moreno, A. D., Tellgren-Roth, C., Soler, L., Dainat, J., Olsson, L., & Geijer, C. (2017). Complete genome sequences of the xylose-fermenting candida intermedia strains CBS 141442 and PYCC 4715. Genome announcements, 5(14), e00138-17. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. Nakase, T. (1971). New species of yeasts resembling Candida krusei (Cast.) Berkhout. The Journal of General and Applied Microbiology, 17(5), 383-398. Nakase, T., Suzuki, M., Takashima, M., Rosadi, D., Hermosillo, A. M., and Komagata, K. (1994) Candida akabanensis, a new species of yeast isolated from insect frass in bark of a grape vine. Microbiol. Cult. Coll., 10, 35-43. Ndukwe, J. K., Aliyu, G. O., Onwosi, C. O., Chukwu, K. O., & Ezugworie, F. N. (2020). Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochemistry, 90, 118-130. Negrão, D. R., Grandis, A., Buckeridge, M. S., Rocha, G. J., Leal, M. R. L., & Driemeier, C. (2021). Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renewable and Sustainable Energy Reviews, 148, 111268. Nguyen, N. H., Suh, S. O., Marshall, C. J., & Blackwell, M. (2006). Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research, 110(10), 1232-1241. Nguyen, N. H., Suh, S. O., & Blackwell, M. (2007). Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia, 99(6), 842-858. Nielsen, F., Tomás-Pejó, E., Olsson, L., & Wallberg, O. (2015). Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnology for Biofuels, 8(1), 1-15. Nundaeng, S., Suwannarach, N., Limtong, S., Khuna, S., Kumla, J., & Lumyong, S. (2021). An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi, 7(11), 957. Nwaefuna, A. E., Rumbold, K., Boekhout, T., & Zhou, N. (2021). Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnology for Biofuels, 14(1), 1-10. Ochoa-Chacón, A., Martinez, A., Poggi-Varaldo, H. M., Villa-Tanaca, L., Ramos-Valdivia, A. C., & Ponce-Noyola, T. (2021). Xylose Metabolism in Bioethanol Production: Saccharomyces cerevisiae vs Non-Saccharomyces Yeasts. BioEnergy Research, 1-19. Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial technology, 18(5), 312-331. Opulente, D. A., Rollinson, E. J., Bernick-Roehr, C., Hulfachor, A. B., Rokas, A., Kurtzman, C. P., & Hittinger, C. T. (2018). Factors driving metabolic diversity in the budding yeast subphylum. BMC biology, 16(1), 1-15. Özüdoğru, H. R., Nieder-Heitmann, M., Haigh, K. F., & Görgens, J. F. (2019). Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Industrial Crops and Products, 133, 259-268. Pacheco, T. F., Machado, B. R., de Morais Júnior, W. G., Almeida, J. R., & Gonçalves, S. B. (2021). Enhanced tolerance of Spathaspora passalidarum to sugarcane bagasse hydrolysate for ethanol production from xylose. Applied biochemistry and biotechnology, 193(7), 2182-2197. Padilla, B., Gil, J. V., & Manzanares, P. (2018). Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation, 4(3), 68. Paidimuddala, B., & Gummadi, S. N. (2014). Bioconversion of non-detoxified hemicellulose hydrolysates to xylitol by halotolerant yeast Debaryomyces nepalensis NCYC 3413. J. Microb. Biochem. Technol, 6(6), 327-33. Palacio-Mejía, J. D. (2013). Mis amigos los robles colombianos. http://biogenic-colombia.blogspot.com/2013/01/mis-amigos-los-robles-colombianos-por.html. Acceso 15 de Julio 2022. Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2018). Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Frontiers in Microbiology, 9, 274. Palladino, F., Rodrigues, R. C., Cadete, R. M., Barros, K. O., & Rosa, C. A. (2021). Novel potential yeast strains for the biotechnological production of xylitol from sugarcane bagasse. Biofuels, Bioproducts and Biorefining, 15(3), 690-702. Papini, M., Nookaew, I., Uhlén, M., & Nielsen, J. (2012). Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microbial Cell Factories, 11(1), 136. Pappu, S. M. J., & Gummadi, S. N. (2018). Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: A cybernetic modelling approach. Process Biochemistry, 69, 12-21. Patinvoh, R. J., & Taherzadeh, M. J. (2019). Fermentation processes for second-generation biofuels. In Second and Third Generation of Feedstocks (pp. 241-272). Elsevier. Patiño, M. A., Ortiz, J. P., Velásquez, M., & Stambuk, B. U. (2019). D‐Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast, 36(9), 541-556. Paul, S., & Dutta, A. (2018). Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling, 130, 164-174. Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1, 17. Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304-3308. Peña-Torres, J. (2016) Análisis florístico del bosque de roble (Quercus humboldtii) Bonpl.(Fagaceae) de la Reserva Protectora Forestal Quininí, municipio de Tibacuy, Cundinamarca. Universidad Nacional de Colombia, Sede Bogotá. Pérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, H., Bogarín, D., Boschman, L. M., Pennington, R. T., Antonelli, A., & Chomicki, G. (2022). The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 22, 364-378. Péter, G., Takashima, M., & Čadež, N. (2017). Yeast habitats: different but global. In Yeasts in natural ecosystems: ecology (pp. 39-71). Springer, Cham. Pinheiro, T., Lip, K. Y. F., García-Ríos, E., Querol, A., Teixeira, J., van Gulik, W., Guillamón, J. M., & Domingues, L. (2020). Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Scientific Reports, 10(1), 1-17. Polburee, P., Lertwattanasakul, N., Limtong, P., Groenewald, M., & Limtong, S. (2017). Nakazawaea todaengensis fa, sp. nov., a yeast isolated from a peat swamp forest in Thailand. International Journal of Systematic and Evolutionary Microbiology, 67(7), 2377-2382. Pulido, M. T., Cavelier, J., & Cortés, S. P. (2006). Structure and composition of Colombian montane oak forests. In Ecology and conservation of neotropical montane oak forests (pp. 141-151). Springer, Berlin, Heidelberg. Qi, X., Zhang, Y., Tu, R., Lin, Y., Li, X. y Wang Q. (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. Journal of Applied Microbiology. 1584–1591. Queiros, O., Casal, M., Althoff, S., Moradas‐Ferreira, P., & Leao, C. (1998). Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast, 14(5), 401-407. Quintas, C., Leyva, J. S., Sotoca, R., Loureiro-Dias, M. C., & Peinado, J. M. (2005). A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements. International journal of food microbiology, 100(1-3), 125-130. Ramírez, C., & González, A. (1984). Five new filamentous, glucose-fermenting Candida isolated from decayed wood in the evergreen rainy Valdivian Forest of southern Chile. Mycopathologia, 88(2), 83-92. Rao, R. S., Bhadra, B., & Shivaji, S. (2008). Isolation and characterization of ethanol‐ producing yeasts from fruits and tree barks. Letters in applied microbiology, 47(1), 19-24. Rao, L. V., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource technology, 213, 299-310. Reyes, L. H., Almario, M. P., Winkler, J., Orozco, M. M., & Kao, K. C. (2012). Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metabolic engineering, 14(5), 579-590. RFA, Renewable Fuels Association (2022). Annual World Fuel Ethanol Production. https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production. Rincón, L. J., Agualimpia Valderrama, B. E., & Zafra, G. (2018). Differential protein profiles of the lipolytic yeast candida palmioleophila under different growth conditions. Chemical Engineering Transactions, 64. Rivera Ospina, D., & Córdoba García, C. (1998). Guía ecológica Parque Natural Chicaque. Jardín Botánico de Bogotá José Celestino Mútis. http://www.chicaque.com/files/9413/6683/6794/Guia_Ecologica.PDF Rodrigues, R. C. L. B., Felipe, M. G. A., Roberto, I. C., & Vitolo, M. (2003). Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess and Biosystems Engineering, 26(2), 103-107. Rodríguez-Zapata, M. A., & Ruiz-Agudelo, C. A. (2021). Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environmental Challenges, 5, 100377. Romero, A. M., Mateo, J. J., & Maicas, S. (2012). Characterization of an ethanol‐tolerant 1,4‐β‐xylosidase produced by Pichia membranifaciens. Letters in applied microbiology, 55(5), 354-361. Rossouw, D., & Bauer, F. F. (2016). Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food microbiology, 55, 32-46. Ruchala, J., & Sibirny, A. A. (2021). Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiology Reviews, 45(4), fuaa069. Saha, B. C., & Kennedy, G. J. (2020). Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. Biocatalysis and Agricultural Biotechnology, 29, 101786. Sahara, T., Goda, T., & Ohgiya, S. (2002). Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. Journal of Biological Chemistry, 277(51), 50015-50021. Saini, P., Beniwal, A., Kokkiligadda, A., & Vij, S. (2018). Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, 72, 1-12. Salamanca, J. A. M., & Escobar, J. G. R. (2016). Aproximación a la entomofaúna desde dos tipos de orquídeas con ubicación en la reserva de Quinini. Folhmyp, (6), 21-36. Salgado, A. M., Folly, R. O. M., Valdman, B., Cos, O., & Valero, F. (2000). Colorimetric method for the determination of ethanol by flow injection analysis. Biotechnology Letters, 22(4), 327-330. Santiago Benítez, A. J. (2017). Estudio de la regulación de D-xilosa Reductasa y Xilitol Deshidrogenasa en Cryptococcus humicola OJ-31 (Master's thesis, Tesis (MC)--Centro de Investigación y de Estudios Avanzados del IPN Departamento de Biotecnología y Bioingeniería). Santos, S. C., de Sousa, A. S., Dionísio, S. R., Tramontina, R., Ruller, R., Squina, F. M., Vaz Rossell, C. E., da Costa, A. C., & Ienczak, J. L. (2016). Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource technology, 219, 319-329. Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H., & Takagi, H. (2012). Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Journal of Bioscience and Bioengineering, 113(4), 451-455. Schade, B., Jansen, G., Whiteway, M., Entian, K. D., & Thomas, D. Y. (2004). Cold adaptation in budding yeast. Molecular Biology of the Cell, 15(12), 5492-5502. Schröder, T., Lauven, L. P., & Geldermann, J. (2018). Improving biorefinery planning: Integration of spatial data using exact optimization nested in an evolutionary strategy. European Journal of Operational Research, 264(3), 1005-1019. Sena LM, Morais CG, Lopes MR, Santos RO, Uetanabaro APT, Morais PB, Vital MJS, de Morais Jr MA, Lachance MA, Rosa CA. (2017) d-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 110: 53–67. Shariq, M., & Sohail, M. (2019). Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. Journal of King Saud University-Science, 31(4), 1189-1194. Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: current status. Journal of bioscience and bioengineering, 125(3), 259-267. Sharma, K., Khaire, K. C., Thakur, A., Moholkar, V. S., & Goyal, A. (2020). Acacia xylan as a substitute for commercially available xylan and its application in the production of xylooligosaccharides. ACS omega, 5(23), 13729-13738. Silva, C. J. S. M., & Roberto, I. C. (2001). Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Letters in Applied Microbiology, 32(4), 248-252. Singh, N., Singhania, R. R., Nigam, P. S., Dong, C. D., Patel, A. K., & Puri, M. (2022). Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresource Technology, 344, 126415. Soares, L. B., Bonan, C. I. D. G., Biazi, L. E., Dionísio, S. R., Bonatelli, M. L., Andrade, A. L. D., Renzano, E. C., Costa, A. C., & Ienczak, J. L. (2020). Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and bioenergy, 137, 105549. Soares, C. E., Bergmann, J. C., & de Almeida, J. R. M. (2021). Variable and dose dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Brazilian Journal of Microbiology, 52(2), 575-586. Sousa, M., Duarte, A. M., Fernandes, T. R., Chaves, S. R., Pacheco, A., Leão, C., Côrte-Real, M., & Sousa, M. J. (2013). Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC genomics, 14(1), 1-15. Souza, K. S. T., Gudiña, E. J., Schwan, R. F., Rodrigues, L. R., Dias, D. R., & Teixeira, J. A. (2018). Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. Journal of hazardous materials, 346, 152-158. Stuecker, T. N., Scholes, A. N., & Lewis, J. A. (2018). Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genetics, 14(4), e1007335. Suh, S. O., Marshall, C. J., Mchugh, J. V., & Blackwell, M. (2003). Wood ingestion by passalid beetles in the presence of xylose‐fermenting gut yeasts. Molecular ecology, 12(11), 3137-3145. Suh, S. O., & Zhou, J. (2010). Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. International journal of systematic and evolutionary microbiology, 60(7), 1702-1708. Sukpipat, W., Komeda, H., Prasertsan, P., & Asano, Y. (2017). Purification and characterization of xylitol dehydrogenase with L-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Journal of Bioscience and Bioengineering, 123(1), 20–27. Święciło, A. (2016). Cross-stress resistance in Saccharomyces cerevisiae yeast—new insight into an old phenomenon. Cell Stress and Chaperones, 21(2), 187-200. Takagi, H. (2019). Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Bioscience, Biotechnology, and Biochemistry, 83(8), 1449-1462. Takashima, M., Sugita, T., Shinoda, T., & Nakase, T. (2001). Reclassification of the Cryptococcus humicola complex. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2199-2210. Tamburini, E., Costa, S., Marchetti, M. G., & Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979-1989. Tomás‐Pejó, E., & Olsson, L. (2015). Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co‐ferment xylose and glucose in lignocellulosic hydrolysates. Microbial biotechnology, 8(6), 999-1005. Torija, M. J., Beltran, G., Novo, M., Poblet, M., Rozès, N., Mas, A., & Guillamón, J. M. (2003). Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. Journal of agricultural and food chemistry, 51(4), 916-922. Trichez, D., Steindorff, A. S., Soares, C. E., Formighieri, E. F., & Almeida, J. R. (2019). Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS yeast research, 19(4), foz034. Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021). Production of bioethanol—A review of factors affecting ethanol yield. Fermentation, 7(4), 268. Uddin, S., & Hadi, S. M. (1995). Reactions of furfural and methylfurfural with ADN. Biochemistry and Molecular Biology International, 35(1), 185-195. Ullah, A., Chandrasekaran, G., Brul, S., & Smits, G. J. (2013). Yeast adaptation to weak acids prevents futile energy expenditure. Frontiers in microbiology, 4, 142. Umai D, Kayalvizhi R, Kumar V & Jacob S (2022). Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability. 3:826190. Urbina, H., & Blackwell, M. (2012). Multilocus phylogenetic study of the Scheffersomycesyeast clade and characterization of the N-terminal region of xylose reductase gene. PloS one, 7(6), e39128. Urbina, H., Frank, R., & Blackwell, M. (2013). Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia, 105(3), 650-660. Valdés, G., Mendonça, R. T., Parra, C., & Aggelis, G. (2020). Patterns of lignocellulosic sugar assimilation and lipid production by newly isolated yeast strains from Chilean Valdivian forest. Applied Biochemistry and Biotechnology, 192(4), 1124-1146. Valinhas, R. V., Pantoja, L. A., Maia, A. C. F., Miguel, M. G. C., Vanzela, A. P. F., Nelson, D. L., & Santos, A. S. (2018). Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ, 6, e4673. Van Dijk, M., Erdei, B., Galbe, M., Nygård, Y., & Olsson, L. (2019). Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. Bioresource technology, 292, 121922. Verkleij G (2020). Fungal Biodiversity Centre (CBS) - Fungi strains. Westerdijk Fungal Biodiversity Institute. Occurrence dataset https://doi.org/10.15468/giuq7w accessed via GBIF.org Vylkova, S., Carman, A. J., Danhof, H. A., Collette, J. R., Zhou, H., & Lorenz, M. C. (2011). The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio, 2(3), e00055-11. Wagner, E., Myers, K. S., Riley, N. M., Coon, J. J., & Gasch, A. P. (2019). PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS ONE 14(5), 1-19. Wang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 82, 1-8. Wang, S., Zhou, Y., Luo, W., Deng, L., Yao, S., & Zeng, K. (2020). Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens. Biological Control, 148, 104289. Wang, W. L., Sun, P. L., Kao, C. F., Li, W. T., Cheng, I. J., & Yu, P. H. (2021a). Disseminated Candidiasis and Candidemia Caused by Candida palmioleophila in a Green Sea Turtle (Chelonia mydas). Animals, 11(12), 3480. Wang, F., Ouyang, D., Zhou, Z., Page, S. J., Liu, D., & Zhao, X. (2021b). Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 57, 247-280. Watanabe, K., Tachibana, S., & Konishi, M. (2019). Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses. Bioresource Technology, 281, 260-268. WBA (2016). Global biomass potential towards 2035.World Bioenergy Association, Stockholm, Sweden. Recuperado de https://worldbioenergy.org/uploads/Factsheet_Biomass%20potential.pdf West, T. P. (2021). Xylitol Production by Candida Species from Hydrolysates of Agricultural Residues and Grasses. Fermentation, 7(4), 243. White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315-322. Wu, J., Hu, J., Zhao, S., He, M., Hu, G., Ge, X., & Peng, N. (2018). Single-cell protein and xylitol production by a novel yeast strain Candida intermedia FL023 from lignocellulosic hydrolysates and xylose. Applied biochemistry and biotechnology, 185(1), 163-178. Yalçın, H. T., Fındık, B., Terzi, Y., Uyar, E., & Shatila, F. (2021). Isolation and molecular identification of industrially important enzyme producer yeasts from tree barks and fruits. Archives of Microbiology, 203(3), 1079-1088. Yamakawa, C. K., Kastell, L., Mahler, M. R., Martinez, J. L., & Mussatto, S. I. (2020). Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability. Bioresource technology, 309, 123374. Yan, W., Gao, H., Qian, X., Jiang, Y., Zhou, J., Dong, W., ... & Jiang, M. (2021). Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnology Advances, 46, 107674. Yurkov, A., & Lachance, M. A. (Eds.). (2017). Yeasts in natural ecosystems: ecology. Springer. Yurkov, A. M., Dlauchy, D., & Péter, G. (2017b). Meyerozyma amylolytica sp. nov. from temperate deciduous trees and the transfer of five Candida species to the genus Meyerozyma. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3977-3981. Yuvadetkun, P., Reungsang, A., & Boonmee, M. (2018). Comparison between free cells and immobilized cells of Candida shehatae in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renewable Energy, 115, 634-640. Zha, J., Yuwen, M., Qian, W., & Wu, X. (2021). Yeast-based biosynthesis of natural products from xylose. Frontiers in Bioengineering and Biotechnology, 9, 634919. Zhang, M. M., Xiong, L., Tang, Y. J., Mehmood, M. A., Zhao, Z. K., Bai, F. W., & Zhao, X. Q. (2019). Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnology for Biofuels, 12(1), 116. Zhang, B., Ren, L., Wang, H., Xu, D., Zeng, X., & Li, F. (2020a). Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme and Microbial Technology, 140, 109641 Zhang, H., Deng, L., Yao, S., Ming, J., & Zeng, K. (2020). Optimization of a vacuum-drying protectants for the biocontrol agent Pichia membranifaciens and its influence on viability and efficacy. Biological Control, 142, 104155. Zhang, P., Zhang, R., Sirisena, S., Gan, R., & Fang, Z. (2021). Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiology, 100, 103859. Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An update on Candida tropicalis based on basic and clinical approaches. Frontiers in microbiology, 8, 1927. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 181 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85881/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85881/2/53161689.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/85881/3/53161689.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 49c06c3c51d628fddb9ce0d4863d7543 a430926e7350720c7f3c9805425d197a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089321311895552 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velasquez Lozano, Mario Enrique329ea40d5f707973fde8a14204c75808Rosa, Carlos Augustobb85de8686ca4fae00f3a99d39f91f55Garcia Acero, Angela Mariaf35e006ae559d2f54028f4835d2b846bGrupo de Investigación en Procesos Químicos y BioquímicosTaxonomia, Biodiversidade e Biotecnologia de FungosGarcia Acero, Angela Maria [0000-0002-2241-9465]Garcia Acero, Angela Maria [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001468893]Garcia Acero, Angela Maria [https://www.researchgate.net/profile/Angela-Garcia-Acero]2024-04-08T19:32:45Z2024-04-08T19:32:45Z2022-09-27https://repositorio.unal.edu.co/handle/unal/85881Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa transición hacia los sistemas de producción de base biológica implica no solo la adaptación de tecnologías existentes sino la búsqueda de procesos eficientes y sostenibles. El uso de microorganismos como biocatalizadores para la transformación de biomasa residual ha sido estudiado en las últimas décadas. Sin embargo, dentro de los parámetros de selección de estos microorganismos la capacidad de tolerar y adaptarse a condiciones estresantes es una de las mayores limitantes para su empleo en escala industrial. Este trabajo tiene como objetivo describir la diversidad de la comunidad de levaduras transformadoras de D-xilosa asociadas a bosques de robles en los Andes Colombianos y estudiar la respuesta fenotípica a condiciones de estrés de levaduras no-convencionales, aisladas en ambientes naturales y fermentativos en Colombia capaces de metabolizar la D-xilosa, para su implementación en la fermentación de hidrolizados hemicelulósicos de bagazo de caña de azúcar. Para esto se realizó el aislamiento e identificación taxonómica de 175 levaduras asimiladoras de D-xilosa de bosques de robles de la región central de la cordillera oriental de los Andes en Colombia pertenecientes a 35 especies previamente conocidas y 15 posibles especies nuevas. Se observó que 75 aislados en los bosques de robles presentaron capacidad metabólica para la transformación de la D-xilosa hasta etanol o xilitol. También se evaluaron 50 levaduras de la colección Biológica Banco de Cepas y Genes del IBUN-UNAL, aislados en ambientes fermentativos en el municipio de Puerto López (Meta) y Paipa (Boyacá) de los cuales 12 presentaron capacidad para transformar D-xilosa y producir xilitol como producto principal. Se evaluó la implementación de condiciones de estrés térmico como estrategia para la preparación del inóculo en dos especies de levaduras asociadas a ambientes fermentativos, Meyerozyma caribbica y Candida tropicalis, para la fermentación de D-xilosa en medios suplementados con ácido acético. M. caribbica evidenció la adquisición de protección cruzada a estrés en las levaduras expuestas a 10 °C con un aumento del 29 % en la producción de xilitol frente a las células crecidas a 30 °C en la fermentación de la D-xilosa en presencia del ácido acético (6 g/L). La exposición a estrés ácido, oxidativo y térmico previo a la fermentación de hidrolizado hemicelulósico de bagazo de caña de azúcar fue aplicado para dos levaduras aisladas en ambientes naturales, Debaryomyeces nepalensis y Scheffersomyces cryptocercus/Sc. virginianus, para la producción de xilitol y etanol, respectivamente. La respuesta fenotípica a las diferentes condiciones de estrés fue específica para cada especie y relacionada con el direccionamiento metabólico para la transformación de la pentosa. D. nepalensis presentó un aumento del 32% en la producción de xilitol en comparación con las células sin tratar en fermentación del hidrolizado hemicelulósico de bagazo de caña de azúcar (75% v/v). La estrategia de preparación del inóculo con exposición previa al estrés sumado a la fermentación en serie mejora la aptitud en Scheffersomyces cryptocercus/Sc. virginianus logrando fermentar la D-xilosa presente en el hidrolizado hemicelulósico de bagazo de caña sin diluir. Este es el primer trabajo realizado en la bioprospección de la diversidad de levaduras de bosques de robles en la cordillera oriental de Los Andes (Colombia) y los resultados demuestran el potencial para la exploración de servicios ecosistémicos no maderables presentes en estos hábitats forestales. (Texto tomado de la fuente).The transition to biological-based production systems implies not only the adaptation of existing technologies but the search for efficient and sustainable processes. The use of microorganisms as biocatalysts for the transformation of residual biomass has been studied in the last decades. However, within the parameters for the selection of these microorganisms, the ability to tolerate and adapt to stressful conditions is one of the greatest limitations for its use on an industrial scale. The aim of this work is to describe the diversity of the community of D-xylose-transforming yeasts associated with oak forests in the Colombian Andes and to study the phenotypic response to stress conditions of non-conventional yeasts, isolated in natural and fermentative environments in Colombia capable of D-xylose metabolism, for its implementation in the fermentation of sugarcane bagasse hemicellulosic hydrolysates. For this, the isolation and taxonomic identification of 175 D-xylose-assimilating yeasts from oak forests of the central region of the eastern Andes Mountain range in Colombia was carried out belonging to 35 species previously known and 15 possible new species. It was observed that 75 isolates presented the metabolic capacity for the transformation of D-xylose to ethanol or xylitol. We also evaluated 50 yeasts from the biological collection Bank of Strain and Genes of IBUN-UNAL, isolated in the municipality of Puerto López (Meta, Colombia) and Paipa (Boyacá, Colombia), of which 12 have the capacity to ferment xylose and produce xylitol as the main product. The implementation of thermal stress conditions was evaluated as a strategy for the preparation of the inoculum in two yeast species associated with fermentative environments, Meyerozyma caribbica and Candida tropicalis, for the fermentation of D-xylose in media supplemented with acetic acid. M. caribbica showed the acquisition of cross-stress protection in yeasts exposed to 10 °C with a 29 % increase in xylitol production compared to cells grown at 30 °C in the fermentation of D-xylose in the presence of the acetic acid (6 g/L). Exposure to acid, oxidative, and thermal stress prior to fermentation of hemicellulosic hydrolysate from sugarcane bagasse was applied to two yeasts isolated in natural environments, Debaryomyeces nepalensis and Scheffersomyces cryptocercus/Sc. virginianus, to produce xylitol and ethanol, respectively. The phenotypic response to the different stress conditions was species-specific and related to metabolic wiring for pentose transformation. D. nepalensis showed a 32% increase in xylitol production compared to untreated cells in fermentation of diluted sugarcane bagasse hemicellulosic hydrolysate (75% v/v). The inoculum preparation strategy with prior stress exposure coupled with serial fermentation improves fitness in Scheffersomyces cryptocercus/Sc. virginianus, achieving fermenting the D-xylose present in the sugarcane bagasse hemicellulosic hydrolysate undiluted. This is the first work carried out on the bioprospecting of the yeast diversity from oak forests in the eastern Andes Mountain range (Colombia) and the results demonstrate the potential for the exploration of non-timber ecosystem services present in these forest habitats.DoctoradoDoctor en IngenieríaBioprocesosxiv, 181 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::668 - Tecnología de otros productos orgánicos570 - Biología::572 - BioquímicaLevadurayeastsLevaduras no-convencionalesFermentaciónInhibidoresAdaptaciónProtección cruzadaNon-conventional yeastsFermentationInhibitorsAdaptationCross-protectionInvestigación químicaAzúcarChemical researchSugarEstudio de la respuesta de levaduras transformadoras de xilosa a condiciones de estrés en hidrolizados de bagazo de caña de azúcarStudy of the response of xylose-transforming yeasts to stress conditions in sugarcane bagasse hydrolysateEstudo da resposta de leveduras transformadoras de xilose a condições de estresse em hidrolisado de bagaço de cana de açúcarTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgrosaviaAgrovocAdeboye, P. T., Bettiga, M., & Olsson, L. (2014). The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. Amb Express, 4(1), 46.Agbogbo, F. K., & Coward-Kelly, G. (2008). Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology letters, 30(9), 1515-1524.Ali, S. S., Al-Tohamy, R., Xie, R., El-Sheekh, M. M., & Sun, J. (2020). Construction of a new lipase-and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresource Technology, 313, 123631.Ali, S. S., Al-Tohamy, R., Koutra, E., Kornaros, M., Khalil, M., Elsamahy, T., El-Shetehy, M.,& Sun, J. (2021). Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for biofuels, 14(1), 1-25.Alfenore, S., & Molina-Jouve, C. (2016). Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochemistry, 51(11), 1747-1756.Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Liu, Z. L., & Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3(1), 2.Altamirano, A., Vazquez, F., & De Figueroa, L. I. C. (2000). Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia microbiologica, 45(3), 255-258.Amorim, J. C., Piccoli, R. H., & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, 518-527.Andrade, M. C., Gorgulho Silva, C. D. O., de Souza Moreira, L. R., & Ferreira Filho, E. X. (2021). Crop residues: applications of lignocellulosic biomass in the context of a biorefinery. Frontiers in Energy, 1-22.Arumugam, N., Boobalan, T., Saravanan, S., Basu, M. J., Arun, A., Devi, T. S., & Kavitha, T. (2020). In silico and in vitro comparison of nicotinamide adenine dinucleotide phosphate dependent xylose reductase rossmaan fold in Debaryomycetaceae yeast family. Biocatalysis and Agricultural Biotechnology, 24, 101508.Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., Chen, W., & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344, 126195.Ask, M., Bettiga, M., Duraiswamy, V. R., & Olsson, L. (2013). Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnology for Biofuels, 6(1), 181.Asocaña. (2022). Informe anual de Asocaña con aspectos generales del Sector Agroindustrial de la Caña de Colombia 2021-2022. http://www.asocana.org/modules/documentos/17611.aspxAtitallah, I. B., Ntaikou, I., Antonopoulou, G., Alexandropoulou, M., Brysch-Herzberg, M., Nasri, M., Lyberatos, G., & Mechichi, T. (2020). Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock. Renewable Energy, 154, 71-81.Bakker, B. M., Overkamp, K. M., Van Maris, A. J., Kötter, P., Luttik, M. A., Van Dijken, J. P., & Pronk, J. T. (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS microbiology reviews, 25(1), 15-37.Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 4(1), 77-93.Banu, J. R., Kavitha, S., Tyagi, V. K., Gunasekaran, M., Karthikeyan, O. P., & Kumar, G. (2021). Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy. Fuel, 302, 121086.Barbosa, M. F., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3(4), 241-251.Barrilli, É. T., Tadioto, V., Milani, L. M., Deoti, J. R., Fogolari, O., Müller, C., Barros, K. O., Rosa C. A., Dos Sandos, A. A., Stambuk, B. U., Treichel, H., & Alves, S. L. (2020). Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Archives of Microbiology, 202(7), 1729-1739.Barros O. K., Garcia-Acero A. M., & Rosa, C. A. (2020) Non-Conventional Yeasts with Potential for Production of Second-Generation Ethanol. In Biofuels: Advances in Research and Applications (pp. 109 -150). Nova Science Publishers.Bazoti, S. F., Golunski, S., Siqueira, D. P., Scapini, T., Barrilli, É. T., Mayer, D. A., Barros, K. O., Rosa, C. A., Stambuk, B. U., Alves, S. L., Valério, A., Oliveira D., & Treichel, H. (2017). Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology, 244, 582-587.Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., & García-Cubero, M. T. (2011). Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource technology, 102(23), 10868-10874.Bianchini, I. D. A., Sene, L., da Cunha, M. A. A., & Felipe, M. D. G. D. A. (2022). Short-term Adaptation Strategy Improved Xylitol Production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate. BioEnergy Research, 15(2), 1182-1194.Biazi, L. E., Santos, S. C., Kaupert Neto, A. A., Sousa, A. S., Soares, L. B., Renzano, E., Velasco, J., Rabelo, S. C., Costa, A. C., & Ienczak, J. L. (2022). Adaptation strategy to increase the tolerance of Scheffersomyces stipitis NRRL Y-7124 to inhibitors of sugarcane bagasse hemicellulosic hydrolysate through comparative studies of proteomics and fermentation. BioEnergy Research, 15(1), 479-492.Blackwell, M. (2017). Made for each other: ascomycete yeasts and insects. Microbiology Spectrum, 5(3), 5-3.Boekhout, T., Amend, A. S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., Robert, V., Tan, C. S., Turchetti, B., Vu, D., Wang, Q., & Yurkov, A. (2021a). Trends in yeast diversity discovery. Fungal Diversity, 1-47.Boekhout, T., Aime, M. C., Begerow, D., Gabaldón, T., Heitman, J., Kemler, M., Khayhan, K., Lachance, M. A., Louis, E. J., Sun, S., Vu, D., & Yurkov, A. (2021b). The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal diversity, 109(1), 27-55.Boontham, W., Angchuan, J., Boonmak, C., & Srisuk, N. (2020). Limtongozyma siamensis gen. nov., sp. nov., a yeast species in the Saccharomycetales and reassignment of Candida cylindracea to the genus Limtongozyma. International Journal of Systematic and Evolutionary Microbiology, 70(1), 199-203.Brandt, B. A., Jansen, T., Görgens, J. F., & van Zyl, W. H. (2019). Overcoming lignocellulose‐ derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox. Biofuels, Bioproducts and Biorefining, 13(6), 1520-1536.Brandt, B. A., Jansen, T., Volschenk, H., Görgens, J. F., Van Zyl, W. H., & Den Haan, R. (2021). Stress modulation as a means to improve yeasts for lignocellulose bioconversion. Applied Microbiology and Biotechnology, 105(12), 4899-4918.Brown, A. J., Larcombe, D. E., & Pradhan, A. (2020). Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal biology, 124(5), 475-481.Brysch-Herzberg, M., Dlauchy, D., Seidel, M., & Péter, G. (2021). Cyberlindnera sylvatica sp. nov., a yeast species isolated from forest habitats. International Journal of Systematic and Evolutionary Microbiology, 71(2), 004477.Cabrera-Orefice, A., Chiquete-Félix, N., Espinasa-Jaramillo, J., Rosas-Lemus, M., Guerrero-Castillo, S., Peña, A., & Uribe-Carvajal, S. (2014). The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837(1), 73-84.Cadete, R. M., Melo, M. A., Dussan, K. J., Rodrigues, R. C., Silva, S. S., Zilli, J. E., Vital, M. J. S., Gomes, F. C.O., Lachance, M. A., & Rosa, C. A. (2012). Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS ONE 7(8): e43135.Cadete, R. M., Cheab, M. A., Santos, R. O., Safar, S. V., Zilli, J. E., Vital, M. J., Basso, L. C., Lee, C., Kurtzman, C. P., Lachance, M. A., & Rosa, C. A. (2015). Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_9), 2968-2974.Cadete, R. M., Melo-Cheab, M. A., Viana, A. L., Oliveira, E. S., Fonseca, C., & Rosa, C. A. (2016). The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World Journal of Microbiology and Biotechnology, 32(12), 1-5.Cadete, R. M., Lopes, M. R., & Rosa, C. A. (2017a). Yeasts associated with decomposing plant material and rotting wood. In Yeasts in natural ecosystems: diversity (pp. 265-292). Springer, Cham.Cadete, R. M., Melo‐Cheab, M. A., Dussán, K. J., Rodrigues, R. C. L. B., Da Silva, S. S., Gomes, F. C. O., & Rosa, C. A. (2017b). Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems. Journal of applied microbiology, 123(5), 1203-1213.Cadete, R. M., & Rosa, C. A. (2018). The yeasts of the genus Spathaspora: potential candidates for second‐generation biofuel production. Yeast, 35(2), 191-199.Calleja, G. B., Levy-Rick, S., Mahmourides, G., Labelle, J., & Schneider, H. (1990). Rapid process for the conversion of xylose to ethanol. https://www.osti.gov/etdeweb/biblio/6842727CAR. Corporación Autónoma Regional de Cundinamarca (2016). Plan de manejo y conservación del Roble (Quercus humboldtii Bonpl.) en la jurisdicción CAR Cundinamarca. Bogotá D.C., Colombia. https://www.car.gov.co/uploads/files/606359fca0951.pdfCarneiro, C. V. G., Silva, F. C. D. P. E., & Almeida, J. R. (2019). Xylitol production: identification and comparison of new producing yeasts. Microorganisms, 7(11), 484.Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell 12, 323–337.CEPF, Critical Ecosystem Partnership Fund (2022). https://www.cepf.net/node/1996 . Acceso 23 Ago 2022.Chandel, A.K., Chandrasekhar, G., Radhika, K., Ravinder, K. & Ravindra, P. (2011). Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology Review, 6:8-20.Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370-381Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological monographs, 84(1), 45-67.Cheng, K. K., Zhang, J. A., Ling, H. Z., Ping, W. X., Huang, W., Ge, J. P., & Xu, J. M. (2009). Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochemical Engineering Journal, 43(2), 203-207.Cheng, C., Almario, M. P., & Kao, K. C. (2015). Genome shuffling to generate recombinant yeasts for tolerance to inhibitors present in lignocellulosic hydrolysates. Biotechnology letters, 37(11), 2193-2200.Cho, E. J., Trinh, L. T. P., Song, Y., Lee, Y. G., & Bae, H. J. (2020). Bioconversion of biomass waste into high value chemicals. Bioresource technology, 298, 122386.Choudhary, J., Singh, S., & Nain, L. (2017). Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Journal of bioscience and bioengineering, 123(3), 342-346.CI, Pagina web Conservación Internacional (2022) https://www.conservation.org/priorities/biodiversity-hotspots. Acceso 23 Ago 2022Conab (2022) Acompanhamento da safra brasileira de cana-de-açúcar - Safra 2022–23 -Segundo levantamento. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar . Acceso 23Ago 2022 - SAFRA 2022/223Conrad, A. O., McPherson, B. A., Lopez-Nicora, H. D., D'Amico, K. M., Wood, D. L., & Bonello, P. (2019). Disease incidence and spatial distribution of host resistance in a coast live oak/sudden oak death pathosystem. Forest Ecology and Management, 433, 618-624.Converti, A., Perego, P., Sordi, A., & Torre, P. (2002). Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii. Applied biochemistry and biotechnology, 101(1), 15-29.Côrte-Real, M., & Leao, C. (1990). Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Applied and Environmental Microbiology, 56(4), 1109-1113.Cunha, A. C., Santos, R. A., Riaño-Pachon, D. M., Squina, F. M., Oliveira, J. V., Goldman, G. H., Souza, A. T., Gomes, L. S., Godoy-Santos, F., Teixeira, J. A., Faria-Oliveira, F., Rosse, I. C., Castro, I. M., Lucas, C., & Brandão, R. L. (2020). Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation. Genetics and molecular biology, 43.da Silva, D. D. V., Machado, E., Danelussi, O., dos Santos, M. G., da Silva, S. S., & Dussán, K. J. (2022). Repeated-batch fermentation of sugarcane bagasse hemicellulosic hydrolysate to ethanol using two xylose-fermenting yeasts. Biomass Conversion and Biorefinery, 1-11.Dahmen, N., Lewandowski, I., Zibek, S., & Weidtmann, A. (2018). Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. Global Change Biology Bioenergy, 11(1), 107-117.Datta, N., Arendrup, M. C., & Saunte, J. P. (2015). First report of Candida palmioleophila endogenous endophthalmitis. Acta ophthalmologica, 93(6), e517-e518.Daniel, H. M., Lachance, M. A., & Kurtzman, C. P. (2014). On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek, 106(1), 67-84.De Albuquerque, T. L., Gomes, S. D. L., Marques Jr, J. E., da Silva Jr, I. J., & Rocha, M. V. P. (2015). Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 255, 33-40.De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value-added products. Bioresource Technology. 247, 1144-1154.Delgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., & Chaves-López, C. (2020). Functional biodiversity of yeasts isolated from Colombian fermented and dry cocoa beans. Microorganisms, 8(7), 1086.Ding, M. Z., Wang, X., Yang, Y., & Yuan, Y. J. (2012). Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics, 8(2), 232-243.Dong, Y., Hu, J., Fan, L., & Chen, Q. (2017). RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Scientific reports, 7(1), 1-16.Dourou, M., Economou, C. N., Aggeli, L., Janák, M., Valdés, G., Elezi, N., Kakavas, D., Papageorgiou, T., Lianou, A., Vayenas, D. V., Certik, M., & Aggelis, G. (2021). Bioconversion of pomegranate residues into biofuels and bioactive lipids. Journal of Cleaner Production, 323, 129193.Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12(1), 1-17.Duque, A., Álvarez, C., Doménech, P., Manzanares, P., & Moreno, A. D. (2021). Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes, 9(2), 206.El-Baz, A. F., Shetaia, Y. M., & Elkhouli, R. R. (2011). Xylitol production by Candida tropicalis under different statistically optimized growth conditions. African Journal of Biotechnology, 10(68), 15353-15363.Eliodório, K. P., e Cunha, G. C. D. G., Müller, C., Lucaroni, A. C., Giudici, R., Walker, G. M., Alves, L. Jr., & Basso, T. O. (2019). Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Advances in applied microbiology, 109, 61-119.Endoh, R., Horiyama, M., & Ohkuma, M. (2021). D-Fructose assimilation and fermentation by yeasts belonging to saccharomycetes: rediscovery of universal phenotypes and elucidation of fructophilic behaviors in Ambrosiozyma platypodis and Cyberlindnera americana. Microorganisms, 9(4), 758.Enjalbert, B., Nantel, A., & Whiteway, M. (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Molecular biology of the cell, 14(4), 1460-1467.Estrada-Ávila, A. K., González-Hernández, J. C., Calahorra, M., Sánchez, N. S., & Peña, A. (2022). Xylose and yeasts: A story beyond xylitol production. Biochimica et Biophysica Acta (BBA)-General Subjects, 1866(8), 130154.Fan, L. F., Alvarenga, R. L. M., Gibertoni, T. B., Wu, F., & Dai, Y. C. (2021). Four new species in the Tremella fibulifera complex (Tremellales, Basidiomycota). MycoKeys, 82, 33.Ferreira, A. D., Mussatto, S. I., Cadete, R. M., Rosa, C. A., & Silva, S. S. (2011). Ethanol production by a new pentose‐fermenting yeast strain, Scheffersomyces stipitis UFMG‐IMH 43.2, isolated from the Brazilian forest. Yeast, 28(7), 547-554.Ferreira, D., Nobre, A., Silva, M. L., Faria-Oliveira, F., Tulha, J., Ferreira, C., & Lucas, C. (2013). XYLH encodes a xylose/H+ symporter from the highly related yeast species Debaryomyces fabryi and Debaryomyces hansenii. FEMS yeast research, 13(7), 585-596.Ferreira, L. R. A., Otto, R. B., Silva, F. P., De Souza, S. N. M., De Souza, S. S., & Junior, O. A. (2018). Review of the energy potential of the residual biomass for the distributed generation in Brazil. Renewable and Sustainable Energy Reviews, 94, 440-455.Fletcher, E., Gao, K., Mercurio, K., Ali, M., & Baetz, K. (2019). Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metabolic Engineering, 52, 98-109.Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for biofuels, 12(1), 1-26.Gambacorta, F. V., Dietrich, J. J., Yan, Q., & Pfleger, B. F. (2020). Rewiring yeast metabolism to synthesize products beyond ethanol. Current opinion in chemical biology, 59, 182-192.Garbe, E., & Vylkova, S. (2019). Role of amino acid metabolism in the virulence of human pathogenic fungi. Current Clinical Microbiology Reports, 6(3), 108-119.Garcia-Acero A., Velasquez L M., Brandão P., 2017, Isolation of Colombian Native Bacteria and their Potential for Ethanol Production from Xylose and Glucose. Chemical Engineering Transactions, 57, 1735-1740.García L. L. S., & Vanegas V. L. L (2021). Análisis técnico y ambiental de la capacidad de carga de los senderos del Parque Natural Chicaque. Boletín Semillas Ambientales, 15(1).García-Ríos, E., Ramos-Alonso, L., & Guillamon, J. M. (2016). Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Frontiers in Microbiology, 7, 1199.García-Ríos, E., Alonso-del-Real, J., Lip, K. Y. F., Pinheiro, T., Teixeira, J., van Gulik, W., Domingues, L., Querol, A., & Guillamón, J. M. (2022). Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics, 114(4), 110386.Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, 11(12), 4241-4257.Goli, J. K., Panda, S. H., & Linga, V. R. (2012). Molecular mechanism of D-xylitol production in yeasts: focus on molecular transportation, catabolic sensing and stress response. In D- xylitol (pp. 85-107). Springer, Berlin, Heidelberg.González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2021). Application of stressed and microencapsulated Meyerozyma caribbica for the control of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Journal of Plant Diseases and Protection, 1-9.Granström, T., Ojamo, H., & Leisola, M. (2001). Chemostat study of xylitol production by Candida guilliermondii. Applied microbiology and biotechnology, 55(1), 36-42.Groenewald, M., Robert, V., & Smith, M. T. (2011). The value of the D1/D2 and internal transcribed spacers (ITS) domains for the identification of yeast species belonging to the genus Yamadazyma. Persoonia-Molecular Phylogeny and Evolution of Fungi, 26(1), 40-46.Gschaedler, A., Iñiguez-Muñoz, L. E., Flores-Flores, N. Y., Kirchmayr, M., & Arellano-Plaza, M. (2021). Use of non Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. International Journal of Food Microbiology, 347, 109169.Guamán-Burneo, M. C., Dussán, K. J., Cadete, R. M., Cheab, M. A., Portero, P., Carvajal- Barriga, E. J., Silva, S. S., & Rosa, C. A. (2015). Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis fa, sp. nov. Antonie Van Leeuwenhoek, 108(4), 919-931.Guaragnella, N., & Bettiga, M. (2021). Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast, 38(7), 391-400.Guleria, P., Kaur, S., Sidana, A., & Yadav, S. K. (2022). Xylitol production from rice straw hemicellulosic hydrolysate by Candida tropicalis GS18 immobilized on bacterial cellulose-sodium alginate matrix. Biomass Conversion and Biorefinery, 1-11.Guo, H., Chang, Y., & Lee, D. J. (2018). Enzymatic saccharification of lignocellulosic biorefinery: research focuses. Bioresource Technology, 252, 198-215.Guo, H., Zhao, Y., Chang, J. S., & Lee, D. J. (2022). Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresource Technology, 127666.Haase, M. A., Kominek, J., Langdon, Q. K., Kurtzman, C. P., & Hittinger, C. T. (2017). Genome sequence and physiological analysis of Yamadazyma laniorum fa sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis. FEMS yeast research, 17(3).Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 10(1), 1-13.Heisel, T., Nyaribo, L., Sadowsky, M. J., & Gale, C. A. (2019). Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genetics and Biology, 128, 29-35.Hernández-Pérez, A. F., Arruda, P. V. D., & Felipe, M. D. G. D. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. brazilian journal of microbiology, 47, 489-496.Hernández-Pérez, A. F., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., & de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943.Hernández-Pérez, A. F., Antunes, F. A. F., dos Santos, J. C., da Silva, S. S., & Felipe, M. D. G. D. A. (2020). Valorization of the sugarcane bagasse and straw hemicellulosic hydrolysate through xylitol bioproduction: effect of oxygen availability and sucrose supplementation as key factors. Biomass Conversion and Biorefinery, 1-15.Hickert, L. R., da Cunha-Pereira, F., de Souza-Cruz, P. B., Rosa, C. A., & Ayub, M. A. Z. (2013). Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresource Technology, 131, 508-514.Hsieh TC, Ma KH & Chao A (2019). ‘iNEXT’: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20Hou, J., Qiu, Z., Han, H., & Zhang, Q. (2018). Toxicity evaluation of lignocellulose-derived phenolic inhibitors on Saccharomyces cerevisiae growth by using the QSTR method. Chemosphere, 201, 286.IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland.Jia, R. R., Lv, S. L., Chai, C. Y., & Hui, F. L. (2020). Three new Scheffersomyces species associated with insects and rotting wood in China. MycoKeys, 71, 87.Juárez, O., Guerra, G., Martínez, F., & Pardo, J. P. (2004). The mitochondrial respiratory chain of Ustilago maydis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1658(3), 244- 251.Junior, W. G. M., Pacheco, T. F., Trichez, D., Almeida, J. R., & Gonçalves, S. B. (2019). Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349-361.Kieliszek, M., Kot, A. M., Bzducha-Wróbel, A., BŁażejak, S., Gientka, I., & Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 31(4), 185-198.Kim, D. (2018). Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules, 23(2), 309.Kim, D., & Hahn, J.-S. (2013). Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Applied and Environmental Microbiology. 79, 5069–5077.Kim, K. H., Lee, H. Y., & Lee, C. Y. (2015). Pretreatment of sugarcane molasses and citric acid production by Candida zeylanoides. Microbiology and Biotechnology Letters, 43(2), 164-168.Kim, D., & Woo, H. M. (2018). Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Applied microbiology and biotechnology, 102(22), 9471-9480Kim, S., Lee, J., & Sung, B. H. (2019). Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Frontiers in bioengineering and biotechnology, 7, 138.Kitanovic, A., Bonowski, F., Heigwer, F., Ruoff, P., Kitanovic, I., Ungewiss, C., & Wölfl, S. (2012). Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Frontiers in oncology, 2, 118.Kitichantaropas, Y., Boonchird, C., Sugiyama, M., Kaneko, Y., Harashima, S., & Auesukaree, C. (2016). Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. Amb Express, 6(1), 1-14.Khalifa, H. O., Watanabe, A., & Kamei, K. (2022). Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clinical Microbiology and Infection, 28(2), 302-e5.Khalil, M. J., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete–A review. Construction and Building Materials, 270, 121371.Khatri, P., & Pandit, A. B. (2022). Systematic review of life cycle assessments applied to sugarcane bagasse utilization alternatives. Biomass and Bioenergy, 158, 106365.Kumar, S., Lal, P., & Gummadi, S. N. (2008). Growth of halotolerant food spoiling yeast Debaryomyces nepalensis NCYC 3413 under the influence of pH and salt. Current microbiology, 57(6), 598-602.Kumar, S., & Gummadi, S. N. (2011). Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Applied microbiology and biotechnology, 89(5), 1405-1415.Kumar, B., & Verma, P. (2021). Biomass-based biorefineries: an important architype towards a circular economy. Fuel, 288, 119622.Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564-582.Kurtzman, C. P., & Robnett, C. J. (2003). Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS yeast research, 3(4), 417-432.Kurtzman CP, Suzuki M. (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2–14.Kurtzman CP, Fell JW, Boekhout T (2011). The yeasts, a taxonomic study, chapter 10. (eds) Elsevier, Amsterdam, pp 137–144.Kwak, S., & Jin, Y. S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial cell factories, 16(1), 1-15.Kwak, S., Jo, J. H., Yun, E. J., Jin, Y. S., & Seo, J. H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271-283.Lachance, M. A., Bowles, J. M., Starmer, W. T., & Barker, J. S. F. (1999). Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Canadian journal of microbiology, 45(2), 172-177.Lachance M-A (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9.Lappe-Oliveras, P., Moreno-Terrazas, R., Arrizón-Gaviño, J., Herrera-Suárez, T., García-Mendoza, A., & Gschaedler-Mathis, A. (2008). Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS yeast research, 8(7), 1037-1052.Lara CA, Santos RO, Cadete RM, Ferreira C, Marques S, Gírio F, Oliveira ES, Rosa CA, & Fonseca C (2014). Identificación y caracterización de levaduras xilanolíticas aisladas de madera en descomposición y bagazo de caña de azúcar en Brasil. Antonie Van Leeuwenhoek 105: 1107–1119.Lask, J., Wagner, M., Trindade, L. M., & Lewandowski, I. (2019). Life cycle assessment of ethanol production from miscanthus: A comparison of production pathways at two European sites. Gcb Bioenergy, 11(1), 269-288.Leonel, L. V., Arruda, P. V., Chandel, A. K., Felipe, M. G. A., & Sene, L. (2021). Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Critical Reviews in Biotechnology, 1–22.Li, C., Zhang, H., Yang, Q., Komla, M. G., Zhang, X., & Zhu, S. (2014). Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. Journal of agricultural and food chemistry, 62(30), 7612-7621.Li, X., Chen, Y., & Nielsen, J. (2019). Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 57, 56-65.Li, B., Liu, N., & Zhao, X. (2022). Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnology for Biofuels and Bioproducts, 15(1), 1-20.Limtong, S., & Kaewwichian, R. (2015). The diversity of culturable yeasts in the phylloplane of rice in Thailand. Annals of microbiology, 65(2), 667-675.Lin, N. X., Xu, Y., & Yu, X. W. (2021). Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing, 1-14.Liszkowska, W., & Berlowska, J. (2021). Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. Molecules, 26(4), 1035.Liu, X. Z., Wang, Q. M., Göker, M., Groenewald, M., Kachalkin, A. V., Lumbsch, H. T., Millanes, A.M., Wedin, M., Yurkov, A.M., Boekhout, T., & Bai, F. Y. (2015). Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81(1), 85-147.Liu, X. J., Cao, W. N., Ren, Y. C., Xu, L. L., Yi, Z. H., Liu, Z., & Hui, F. L. (2016). Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose-fermenting yeast species from China. Scientific reports, 6(1), 1-8.Lodi, T., Fontanesi, F., Ferrero, I., & Donnini, C. (2004). Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene, 339, 111-119.Lopes, M. R., Morais, C. G., Kominek, J., Cadete, R. M., Soares, M. A., Uetanabaro, A. P. T., Fonseca, C., Lachance, M. A., Hittinger, C. T., & Rosa, C. A. (2016). Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae fa, sp. nov. and Spathaspora gorwiae fa, sp. nov. FEMS yeast research, 16(4), fow044.Lopes, M. R., Lara, C. A., Moura, M. E., Uetanabaro, A. P. T., Morais, P. B., Vital, M. J., & Rosa, C. A. (2018). Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal biology, 122(7), 668-676.López-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource technology, 247, 736-743.Loureiro, S. T. A., Cavalcanti, M. A. D. Q., Neves, R. P., & Passavante, J. Z. D. O. (2005). Yeasts isolated from sand and sea water in beaches of Olinda, Pernambuco state, Brazil. Brazilian Journal of Microbiology, 36, 333-337.Lourenço, M. D. M., Dini-Andreote, F., Aguilar-Vildoso, C. I., & Basso, L. C. (2014). Biotechnological potential of Candida spp. for the bioconversion of D-xylose to xylitol. African Journal of Microbiology Research, 8(20), 2030-2036.Lu, Y. F., Wang, M., Zheng, J., & Hui, F. L. (2017). Ogataea neixiangensis sp. nov. and Ogataea paraovalis fa, sp. nov., two methanol-assimilating yeast species isolated from rotting wood. International Journal of Systematic and Evolutionary Microbiology, 67(8), 3038-3042.Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., ... & Schoch, C. L. (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal ADN barcoding?. IMA fungus, 11(1), 1-32.Magalhães Jr, A. I., de Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., & Soccol, C. R. (2019). Lignocellulosic biomass from agro‐industrial residues in South America: current developments and perspectives. Biofuels, Bioproducts and Biorefining, 13(6), 1505-1519.Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142.Malassigné, S., Minard, G., Vallon, L., Martin, E., Valiente Moro, C., & Luis, P. (2021). Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms, 9(8), 1552.Malla, S., & Gummadi, S. N. (2018). Thermal stability of xylose reductase from Debaryomyces nepalensis NCYC 3413: deactivation kinetics and structural studies. Process Biochemistry, 67, 71-79.Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235.Mans, R., Daran, J. M. G., & Pronk, J. T. (2018). Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Current opinion in biotechnology, 50, 47-56.Mardawati, E., Trirakhmadi, A., Kresnowati, M. T. A. P., & Setiadi, T. (2017). Kinetic study on Fermentation of xylose for The Xylitol Production. Journal of Industrial and Information Technology in Agriculture, 1(1), 1-8.Mariani, D., Mathias, C. J., da Silva, C. G., Herdeiro, R. D. S., Pereira, R., Panek, A. D., Eleutherio, E. C.A., & Pereira, M. D. (2008). Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Report, 13(6), 246-254.Martins, G. M., Bocchini-Martins, D. A., Bezzerra-Bussoli, C., Pagnocca, F. C., Boscolo, M., Monteiro, D. A., & Gomes, E. (2018). The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Brazilian journal of microbiology, 49, 162-168.Martorell, M. M., Ruberto, L. A. M., Fernández, P. M., Castellanos de Figueroa, L. I., & Mac Cormack, W. P. (2017). Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. Journal of Basic Microbiology, 57(6), 504–516.Mateo, S., Puentes, J. G., Moya, A. J., & Sánchez, S. (2015). Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresource Technology, 190, 1-6.Mattam, A. J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P. V., & Velankar, H. R. (2016). Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels, 9(1), 1-12.Medeiros, A. O., Missagia, B. S., Brandão, L. R., Callisto, M., Barbosa, F. A., & Rosa, C. A. (2012). Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil. Brazilian Journal of Microbiology, 43(4), 1582-1594.Meena, R. C., Thakur, S., Nath, S., & Chakrabarti, A. (2011). Tolerance to thermal and reductive stress in Saccharomyces cerevisiae is amenable to regulation by phosphorylation– dephosphorylation of ubiquitin conjugating enzyme 1 (Ubc1) S97 and S115. Yeast, 28(11), 783-793.Mendes Ferreira, A., & Mendes-Faia, A. (2020). The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods, 9(9), 1231.Mestre, M. C., Fontenla, S., Bruzone, M. C., Fernández, N. V., & Dames, J. (2016). Detection of plant growth enhancing features in psychrotolerant yeasts from Patagonia (Argentina). Journal of basic microbiology, 56(10), 1098-1106.Meyer, W., Mitchell, T. G., Freedman, E. Z., & Vilgalys, R. (1993). Hybridization probes for conventional ADN fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. Journal of Clinical Microbiology, 31(9), 2274-2280.Mikulášová, M., Vodný, Š., & Pekarovičová, A. (1990). Influence of phenolics on biomass production by Candida utilis and Candida albicans. Biomass, 23(2), 149-154.Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial cell factories, 9(1), 1-13.Miura, M., Watanabe, I., Shimotori, Y., Aoyama, M., Kojima, Y., & Kato, Y. (2013). Microbial conversion of bamboo hemicellulose hydrolysate to xylitol. Wood Science and Technology, 47(3), 515-522.Misra, S., Raghuwanshi, S., Gupta, P., Dutt, K., & Saxena, R. K. (2012). Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie Van Leeuwenhoek, 101(2), 393-402.Mollapour, M., & Piper, P. W. (2007). Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Molecular and cellular biology, 27(18), 6446-6456.Monteiro Moreira, G. A., & Martins do Vale, H. M. (2020). Soil yeast communities in revegetated post-mining and adjacent native areas in Central Brazil. Microorganisms, 8(8), 1116.Morais, C. G., Sena, L. M., Lopes, M. R., Santos, A. R. O., Barros, K. O., Alves, C. R., Uetanabaro, A. P., Lachance, M. A., & Rosa, C. A. (2020). Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal biology, 124(7), 639-647.Morales, D., Cifuentes, Y., Ruiz, R., Montoya, J., & Velásquez, M. (2014). Fermentation of Enzymatic Hydrolysates of Sugar Cane Bagasse by a Colombian Native Strain of Saccharomyces Cerevisiae for the Production of Cellulosic Ethanol. In Conference Proceedings, Tokyo International Conference on Life Science and Biological Engineering (Vol. 287).Moreno, A. D., Tellgren-Roth, C., Soler, L., Dainat, J., Olsson, L., & Geijer, C. (2017). Complete genome sequences of the xylose-fermenting candida intermedia strains CBS 141442 and PYCC 4715. Genome announcements, 5(14), e00138-17.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.Nakase, T. (1971). New species of yeasts resembling Candida krusei (Cast.) Berkhout. The Journal of General and Applied Microbiology, 17(5), 383-398.Nakase, T., Suzuki, M., Takashima, M., Rosadi, D., Hermosillo, A. M., and Komagata, K. (1994) Candida akabanensis, a new species of yeast isolated from insect frass in bark of a grape vine. Microbiol. Cult. Coll., 10, 35-43.Ndukwe, J. K., Aliyu, G. O., Onwosi, C. O., Chukwu, K. O., & Ezugworie, F. N. (2020). Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochemistry, 90, 118-130.Negrão, D. R., Grandis, A., Buckeridge, M. S., Rocha, G. J., Leal, M. R. L., & Driemeier, C. (2021). Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renewable and Sustainable Energy Reviews, 148, 111268.Nguyen, N. H., Suh, S. O., Marshall, C. J., & Blackwell, M. (2006). Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research, 110(10), 1232-1241.Nguyen, N. H., Suh, S. O., & Blackwell, M. (2007). Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia, 99(6), 842-858.Nielsen, F., Tomás-Pejó, E., Olsson, L., & Wallberg, O. (2015). Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnology for Biofuels, 8(1), 1-15.Nundaeng, S., Suwannarach, N., Limtong, S., Khuna, S., Kumla, J., & Lumyong, S. (2021). An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi, 7(11), 957.Nwaefuna, A. E., Rumbold, K., Boekhout, T., & Zhou, N. (2021). Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnology for Biofuels, 14(1), 1-10.Ochoa-Chacón, A., Martinez, A., Poggi-Varaldo, H. M., Villa-Tanaca, L., Ramos-Valdivia, A. C., & Ponce-Noyola, T. (2021). Xylose Metabolism in Bioethanol Production: Saccharomyces cerevisiae vs Non-Saccharomyces Yeasts. BioEnergy Research, 1-19.Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial technology, 18(5), 312-331.Opulente, D. A., Rollinson, E. J., Bernick-Roehr, C., Hulfachor, A. B., Rokas, A., Kurtzman, C. P., & Hittinger, C. T. (2018). Factors driving metabolic diversity in the budding yeast subphylum. BMC biology, 16(1), 1-15.Özüdoğru, H. R., Nieder-Heitmann, M., Haigh, K. F., & Görgens, J. F. (2019). Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: Xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Industrial Crops and Products, 133, 259-268.Pacheco, T. F., Machado, B. R., de Morais Júnior, W. G., Almeida, J. R., & Gonçalves, S. B. (2021). Enhanced tolerance of Spathaspora passalidarum to sugarcane bagasse hydrolysate for ethanol production from xylose. Applied biochemistry and biotechnology, 193(7), 2182-2197.Padilla, B., Gil, J. V., & Manzanares, P. (2018). Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation, 4(3), 68.Paidimuddala, B., & Gummadi, S. N. (2014). Bioconversion of non-detoxified hemicellulose hydrolysates to xylitol by halotolerant yeast Debaryomyces nepalensis NCYC 3413. J. Microb. Biochem. Technol, 6(6), 327-33.Palacio-Mejía, J. D. (2013). Mis amigos los robles colombianos. http://biogenic-colombia.blogspot.com/2013/01/mis-amigos-los-robles-colombianos-por.html. Acceso 15 de Julio 2022.Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2018). Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Frontiers in Microbiology, 9, 274.Palladino, F., Rodrigues, R. C., Cadete, R. M., Barros, K. O., & Rosa, C. A. (2021). Novel potential yeast strains for the biotechnological production of xylitol from sugarcane bagasse. Biofuels, Bioproducts and Biorefining, 15(3), 690-702.Papini, M., Nookaew, I., Uhlén, M., & Nielsen, J. (2012). Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microbial Cell Factories, 11(1), 136.Pappu, S. M. J., & Gummadi, S. N. (2018). Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: A cybernetic modelling approach. Process Biochemistry, 69, 12-21.Patinvoh, R. J., & Taherzadeh, M. J. (2019). Fermentation processes for second-generation biofuels. In Second and Third Generation of Feedstocks (pp. 241-272). Elsevier.Patiño, M. A., Ortiz, J. P., Velásquez, M., & Stambuk, B. U. (2019). D‐Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast, 36(9), 541-556.Paul, S., & Dutta, A. (2018). Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling, 130, 164-174.Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1, 17.Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304-3308.Peña-Torres, J. (2016) Análisis florístico del bosque de roble (Quercus humboldtii) Bonpl.(Fagaceae) de la Reserva Protectora Forestal Quininí, municipio de Tibacuy, Cundinamarca. Universidad Nacional de Colombia, Sede Bogotá.Pérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, H., Bogarín, D., Boschman, L. M., Pennington, R. T., Antonelli, A., & Chomicki, G. (2022). The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 22, 364-378.Péter, G., Takashima, M., & Čadež, N. (2017). Yeast habitats: different but global. In Yeasts in natural ecosystems: ecology (pp. 39-71). Springer, Cham.Pinheiro, T., Lip, K. Y. F., García-Ríos, E., Querol, A., Teixeira, J., van Gulik, W., Guillamón, J. M., & Domingues, L. (2020). Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Scientific Reports, 10(1), 1-17.Polburee, P., Lertwattanasakul, N., Limtong, P., Groenewald, M., & Limtong, S. (2017). Nakazawaea todaengensis fa, sp. nov., a yeast isolated from a peat swamp forest in Thailand. International Journal of Systematic and Evolutionary Microbiology, 67(7), 2377-2382.Pulido, M. T., Cavelier, J., & Cortés, S. P. (2006). Structure and composition of Colombian montane oak forests. In Ecology and conservation of neotropical montane oak forests (pp. 141-151). Springer, Berlin, Heidelberg.Qi, X., Zhang, Y., Tu, R., Lin, Y., Li, X. y Wang Q. (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. Journal of Applied Microbiology. 1584–1591.Queiros, O., Casal, M., Althoff, S., Moradas‐Ferreira, P., & Leao, C. (1998). Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast, 14(5), 401-407.Quintas, C., Leyva, J. S., Sotoca, R., Loureiro-Dias, M. C., & Peinado, J. M. (2005). A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements. International journal of food microbiology, 100(1-3), 125-130.Ramírez, C., & González, A. (1984). Five new filamentous, glucose-fermenting Candida isolated from decayed wood in the evergreen rainy Valdivian Forest of southern Chile. Mycopathologia, 88(2), 83-92.Rao, R. S., Bhadra, B., & Shivaji, S. (2008). Isolation and characterization of ethanol‐ producing yeasts from fruits and tree barks. Letters in applied microbiology, 47(1), 19-24.Rao, L. V., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource technology, 213, 299-310.Reyes, L. H., Almario, M. P., Winkler, J., Orozco, M. M., & Kao, K. C. (2012). Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metabolic engineering, 14(5), 579-590.RFA, Renewable Fuels Association (2022). Annual World Fuel Ethanol Production. https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production.Rincón, L. J., Agualimpia Valderrama, B. E., & Zafra, G. (2018). Differential protein profiles of the lipolytic yeast candida palmioleophila under different growth conditions. Chemical Engineering Transactions, 64.Rivera Ospina, D., & Córdoba García, C. (1998). Guía ecológica Parque Natural Chicaque. Jardín Botánico de Bogotá José Celestino Mútis. http://www.chicaque.com/files/9413/6683/6794/Guia_Ecologica.PDFRodrigues, R. C. L. B., Felipe, M. G. A., Roberto, I. C., & Vitolo, M. (2003). Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess and Biosystems Engineering, 26(2), 103-107.Rodríguez-Zapata, M. A., & Ruiz-Agudelo, C. A. (2021). Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environmental Challenges, 5, 100377.Romero, A. M., Mateo, J. J., & Maicas, S. (2012). Characterization of an ethanol‐tolerant 1,4‐β‐xylosidase produced by Pichia membranifaciens. Letters in applied microbiology, 55(5), 354-361.Rossouw, D., & Bauer, F. F. (2016). Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food microbiology, 55, 32-46.Ruchala, J., & Sibirny, A. A. (2021). Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiology Reviews, 45(4), fuaa069.Saha, B. C., & Kennedy, G. J. (2020). Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. Biocatalysis and Agricultural Biotechnology, 29, 101786.Sahara, T., Goda, T., & Ohgiya, S. (2002). Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. Journal of Biological Chemistry, 277(51), 50015-50021.Saini, P., Beniwal, A., Kokkiligadda, A., & Vij, S. (2018). Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, 72, 1-12.Salamanca, J. A. M., & Escobar, J. G. R. (2016). Aproximación a la entomofaúna desde dos tipos de orquídeas con ubicación en la reserva de Quinini. Folhmyp, (6), 21-36.Salgado, A. M., Folly, R. O. M., Valdman, B., Cos, O., & Valero, F. (2000). Colorimetric method for the determination of ethanol by flow injection analysis. Biotechnology Letters, 22(4), 327-330.Santiago Benítez, A. J. (2017). Estudio de la regulación de D-xilosa Reductasa y Xilitol Deshidrogenasa en Cryptococcus humicola OJ-31 (Master's thesis, Tesis (MC)--Centro de Investigación y de Estudios Avanzados del IPN Departamento de Biotecnología y Bioingeniería).Santos, S. C., de Sousa, A. S., Dionísio, S. R., Tramontina, R., Ruller, R., Squina, F. M., Vaz Rossell, C. E., da Costa, A. C., & Ienczak, J. L. (2016). Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource technology, 219, 319-329.Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H., & Takagi, H. (2012). Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Journal of Bioscience and Bioengineering, 113(4), 451-455.Schade, B., Jansen, G., Whiteway, M., Entian, K. D., & Thomas, D. Y. (2004). Cold adaptation in budding yeast. Molecular Biology of the Cell, 15(12), 5492-5502.Schröder, T., Lauven, L. P., & Geldermann, J. (2018). Improving biorefinery planning: Integration of spatial data using exact optimization nested in an evolutionary strategy. European Journal of Operational Research, 264(3), 1005-1019.Sena LM, Morais CG, Lopes MR, Santos RO, Uetanabaro APT, Morais PB, Vital MJS, de Morais Jr MA, Lachance MA, Rosa CA. (2017) d-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 110: 53–67.Shariq, M., & Sohail, M. (2019). Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. Journal of King Saud University-Science, 31(4), 1189-1194.Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: current status. Journal of bioscience and bioengineering, 125(3), 259-267.Sharma, K., Khaire, K. C., Thakur, A., Moholkar, V. S., & Goyal, A. (2020). Acacia xylan as a substitute for commercially available xylan and its application in the production of xylooligosaccharides. ACS omega, 5(23), 13729-13738.Silva, C. J. S. M., & Roberto, I. C. (2001). Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Letters in Applied Microbiology, 32(4), 248-252.Singh, N., Singhania, R. R., Nigam, P. S., Dong, C. D., Patel, A. K., & Puri, M. (2022). Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresource Technology, 344, 126415.Soares, L. B., Bonan, C. I. D. G., Biazi, L. E., Dionísio, S. R., Bonatelli, M. L., Andrade, A. L. D., Renzano, E. C., Costa, A. C., & Ienczak, J. L. (2020). Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and bioenergy, 137, 105549.Soares, C. E., Bergmann, J. C., & de Almeida, J. R. M. (2021). Variable and dose dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Brazilian Journal of Microbiology, 52(2), 575-586.Sousa, M., Duarte, A. M., Fernandes, T. R., Chaves, S. R., Pacheco, A., Leão, C., Côrte-Real, M., & Sousa, M. J. (2013). Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC genomics, 14(1), 1-15.Souza, K. S. T., Gudiña, E. J., Schwan, R. F., Rodrigues, L. R., Dias, D. R., & Teixeira, J. A. (2018). Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. Journal of hazardous materials, 346, 152-158.Stuecker, T. N., Scholes, A. N., & Lewis, J. A. (2018). Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genetics, 14(4), e1007335.Suh, S. O., Marshall, C. J., Mchugh, J. V., & Blackwell, M. (2003). Wood ingestion by passalid beetles in the presence of xylose‐fermenting gut yeasts. Molecular ecology, 12(11), 3137-3145.Suh, S. O., & Zhou, J. (2010). Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. International journal of systematic and evolutionary microbiology, 60(7), 1702-1708.Sukpipat, W., Komeda, H., Prasertsan, P., & Asano, Y. (2017). Purification and characterization of xylitol dehydrogenase with L-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Journal of Bioscience and Bioengineering, 123(1), 20–27.Święciło, A. (2016). Cross-stress resistance in Saccharomyces cerevisiae yeast—new insight into an old phenomenon. Cell Stress and Chaperones, 21(2), 187-200.Takagi, H. (2019). Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Bioscience, Biotechnology, and Biochemistry, 83(8), 1449-1462.Takashima, M., Sugita, T., Shinoda, T., & Nakase, T. (2001). Reclassification of the Cryptococcus humicola complex. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2199-2210.Tamburini, E., Costa, S., Marchetti, M. G., & Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979-1989.Tomás‐Pejó, E., & Olsson, L. (2015). Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co‐ferment xylose and glucose in lignocellulosic hydrolysates. Microbial biotechnology, 8(6), 999-1005.Torija, M. J., Beltran, G., Novo, M., Poblet, M., Rozès, N., Mas, A., & Guillamón, J. M. (2003). Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. Journal of agricultural and food chemistry, 51(4), 916-922.Trichez, D., Steindorff, A. S., Soares, C. E., Formighieri, E. F., & Almeida, J. R. (2019). Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS yeast research, 19(4), foz034.Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021). Production of bioethanol—A review of factors affecting ethanol yield. Fermentation, 7(4), 268.Uddin, S., & Hadi, S. M. (1995). Reactions of furfural and methylfurfural with ADN. Biochemistry and Molecular Biology International, 35(1), 185-195.Ullah, A., Chandrasekaran, G., Brul, S., & Smits, G. J. (2013). Yeast adaptation to weak acids prevents futile energy expenditure. Frontiers in microbiology, 4, 142.Umai D, Kayalvizhi R, Kumar V & Jacob S (2022). Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability. 3:826190.Urbina, H., & Blackwell, M. (2012). Multilocus phylogenetic study of the Scheffersomycesyeast clade and characterization of the N-terminal region of xylose reductase gene. PloS one, 7(6), e39128.Urbina, H., Frank, R., & Blackwell, M. (2013). Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia, 105(3), 650-660.Valdés, G., Mendonça, R. T., Parra, C., & Aggelis, G. (2020). Patterns of lignocellulosic sugar assimilation and lipid production by newly isolated yeast strains from Chilean Valdivian forest. Applied Biochemistry and Biotechnology, 192(4), 1124-1146.Valinhas, R. V., Pantoja, L. A., Maia, A. C. F., Miguel, M. G. C., Vanzela, A. P. F., Nelson, D. L., & Santos, A. S. (2018). Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ, 6, e4673.Van Dijk, M., Erdei, B., Galbe, M., Nygård, Y., & Olsson, L. (2019). Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. Bioresource technology, 292, 121922.Verkleij G (2020). Fungal Biodiversity Centre (CBS) - Fungi strains. Westerdijk Fungal Biodiversity Institute. Occurrence dataset https://doi.org/10.15468/giuq7w accessed via GBIF.orgVylkova, S., Carman, A. J., Danhof, H. A., Collette, J. R., Zhou, H., & Lorenz, M. C. (2011). The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio, 2(3), e00055-11.Wagner, E., Myers, K. S., Riley, N. M., Coon, J. J., & Gasch, A. P. (2019). PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS ONE 14(5), 1-19.Wang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 82, 1-8.Wang, S., Zhou, Y., Luo, W., Deng, L., Yao, S., & Zeng, K. (2020). Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens. Biological Control, 148, 104289.Wang, W. L., Sun, P. L., Kao, C. F., Li, W. T., Cheng, I. J., & Yu, P. H. (2021a). Disseminated Candidiasis and Candidemia Caused by Candida palmioleophila in a Green Sea Turtle (Chelonia mydas). Animals, 11(12), 3480.Wang, F., Ouyang, D., Zhou, Z., Page, S. J., Liu, D., & Zhao, X. (2021b). Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 57, 247-280.Watanabe, K., Tachibana, S., & Konishi, M. (2019). Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses. Bioresource Technology, 281, 260-268.WBA (2016). Global biomass potential towards 2035.World Bioenergy Association, Stockholm, Sweden. Recuperado de https://worldbioenergy.org/uploads/Factsheet_Biomass%20potential.pdfWest, T. P. (2021). Xylitol Production by Candida Species from Hydrolysates of Agricultural Residues and Grasses. Fermentation, 7(4), 243.White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18(1), 315-322.Wu, J., Hu, J., Zhao, S., He, M., Hu, G., Ge, X., & Peng, N. (2018). Single-cell protein and xylitol production by a novel yeast strain Candida intermedia FL023 from lignocellulosic hydrolysates and xylose. Applied biochemistry and biotechnology, 185(1), 163-178.Yalçın, H. T., Fındık, B., Terzi, Y., Uyar, E., & Shatila, F. (2021). Isolation and molecular identification of industrially important enzyme producer yeasts from tree barks and fruits. Archives of Microbiology, 203(3), 1079-1088.Yamakawa, C. K., Kastell, L., Mahler, M. R., Martinez, J. L., & Mussatto, S. I. (2020). Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability. Bioresource technology, 309, 123374.Yan, W., Gao, H., Qian, X., Jiang, Y., Zhou, J., Dong, W., ... & Jiang, M. (2021). Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnology Advances, 46, 107674.Yurkov, A., & Lachance, M. A. (Eds.). (2017). Yeasts in natural ecosystems: ecology. Springer.Yurkov, A. M., Dlauchy, D., & Péter, G. (2017b). Meyerozyma amylolytica sp. nov. from temperate deciduous trees and the transfer of five Candida species to the genus Meyerozyma. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3977-3981.Yuvadetkun, P., Reungsang, A., & Boonmee, M. (2018). Comparison between free cells and immobilized cells of Candida shehatae in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renewable Energy, 115, 634-640.Zha, J., Yuwen, M., Qian, W., & Wu, X. (2021). Yeast-based biosynthesis of natural products from xylose. Frontiers in Bioengineering and Biotechnology, 9, 634919.Zhang, M. M., Xiong, L., Tang, Y. J., Mehmood, M. A., Zhao, Z. K., Bai, F. W., & Zhao, X. Q. (2019). Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnology for Biofuels, 12(1), 116.Zhang, B., Ren, L., Wang, H., Xu, D., Zeng, X., & Li, F. (2020a). Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme and Microbial Technology, 140, 109641Zhang, H., Deng, L., Yao, S., Ming, J., & Zeng, K. (2020). Optimization of a vacuum-drying protectants for the biocontrol agent Pichia membranifaciens and its influence on viability and efficacy. Biological Control, 142, 104155.Zhang, P., Zhang, R., Sirisena, S., Gan, R., & Fang, Z. (2021). Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiology, 100, 103859.Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An update on Candida tropicalis based on basic and clinical approaches. Frontiers in microbiology, 8, 1927.InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85881/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL53161689.2022.pdf53161689.2022.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf3669803https://repositorio.unal.edu.co/bitstream/unal/85881/2/53161689.2022.pdf49c06c3c51d628fddb9ce0d4863d7543MD52THUMBNAIL53161689.2022.pdf.jpg53161689.2022.pdf.jpgGenerated Thumbnailimage/jpeg4941https://repositorio.unal.edu.co/bitstream/unal/85881/3/53161689.2022.pdf.jpga430926e7350720c7f3c9805425d197aMD53unal/85881oai:repositorio.unal.edu.co:unal/858812024-08-23 23:11:35.948Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |