Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a ver...
- Autores:
-
Tobar Rodríguez, Andrés David
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/76703
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/76703
http://bdigital.unal.edu.co/73401/
- Palabra clave:
- Brain Tissue Segmentation
Bayesian Segmentation
Inter-Slice Kernel
Inter-Patch Kernel, Inter-Patch Kernel
Segmentación de estructuras cerebrales
Segmentación Bayesiana
Selección de atlas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_96f93068b29fa28e501ed898a205de65 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/76703 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
title |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
spellingShingle |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation Brain Tissue Segmentation Bayesian Segmentation Inter-Slice Kernel Inter-Patch Kernel, Inter-Patch Kernel Segmentación de estructuras cerebrales Segmentación Bayesiana Selección de atlas |
title_short |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
title_full |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
title_fullStr |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
title_full_unstemmed |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
title_sort |
Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation |
dc.creator.fl_str_mv |
Tobar Rodríguez, Andrés David |
dc.contributor.advisor.spa.fl_str_mv |
Cárdenas Peña, David Augusto (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Tobar Rodríguez, Andrés David |
dc.contributor.spa.fl_str_mv |
Germán Castellanos, César German |
dc.subject.proposal.spa.fl_str_mv |
Brain Tissue Segmentation Bayesian Segmentation Inter-Slice Kernel Inter-Patch Kernel, Inter-Patch Kernel Segmentación de estructuras cerebrales Segmentación Bayesiana Selección de atlas |
topic |
Brain Tissue Segmentation Bayesian Segmentation Inter-Slice Kernel Inter-Patch Kernel, Inter-Patch Kernel Segmentación de estructuras cerebrales Segmentación Bayesiana Selección de atlas |
description |
The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a very time consuming task, becoming not appropriate for employing on large datasets or in applications where time is a critical factor, such as treatment planning. Lately, Multi-Atlas Segmentation (MAS) methods have emerge, offering an efficient alternative to deal with structural anatomical variability by fusing a set of manually labeled atlases, becoming the state of the art on automatic segmentation. However, the accuracy of these approaches is essentially influenced by atlas selection and label fusion stages. Hence, choosing a set of atlases that relate better with the input image, and thus provide more appropriate segmentations, at the same time that exclude irrelevant ones that might misguide the labeling procedure, leads obtain a better segmentation estimate than one that uses the full atlas database, at the same time that improves computational efficiency. Finally, label fusion offers the possibility to combine candidate labels from a set of warped atlases into a unique final label. In this regard, strengths of patch based approaches are proposed to cope with registration errors and high uncertainty regions, improving the segmentation accuracy. This work introduces as first instance an image representation technique based on kernels that is able to code suitably intrinsic relationships within the image domain. Furthermore, two label fusion methodologies are proposed in order to enhance state of the art label fusion methods, the former based on CKA projection of intensity patches onto label space and the latter rely on Bayesian inference. Particularly, the developed methods are evaluated in two publicly available image collections, resulting in an increased performance (assessed through the Dice Index) as compared to other recent Works |
publishDate |
2019 |
dc.date.issued.spa.fl_str_mv |
2019-05-10 |
dc.date.accessioned.spa.fl_str_mv |
2020-03-30T06:26:52Z |
dc.date.available.spa.fl_str_mv |
2020-03-30T06:26:52Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/76703 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/73401/ |
url |
https://repositorio.unal.edu.co/handle/unal/76703 http://bdigital.unal.edu.co/73401/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Departamento de Ingeniería Eléctrica, Electrónica y Computación |
dc.relation.haspart.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
dc.relation.references.spa.fl_str_mv |
Tobar Rodríguez, Andrés David (2019) Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/76703/1/1053847546.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/76703/2/1053847546.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
8345954a89666e5f2540cff9e6aacba5 953e5dc7694dfdb0cc843cf8a9698a9e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089573289951232 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Germán Castellanos, César GermanCárdenas Peña, David Augusto (Thesis advisor)4d4899ac-0b9a-4de3-bafd-f5b1abb9df44Tobar Rodríguez, Andrés Davidca7c0735-246b-4c14-8515-e53131ba219f3002020-03-30T06:26:52Z2020-03-30T06:26:52Z2019-05-10https://repositorio.unal.edu.co/handle/unal/76703http://bdigital.unal.edu.co/73401/The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a very time consuming task, becoming not appropriate for employing on large datasets or in applications where time is a critical factor, such as treatment planning. Lately, Multi-Atlas Segmentation (MAS) methods have emerge, offering an efficient alternative to deal with structural anatomical variability by fusing a set of manually labeled atlases, becoming the state of the art on automatic segmentation. However, the accuracy of these approaches is essentially influenced by atlas selection and label fusion stages. Hence, choosing a set of atlases that relate better with the input image, and thus provide more appropriate segmentations, at the same time that exclude irrelevant ones that might misguide the labeling procedure, leads obtain a better segmentation estimate than one that uses the full atlas database, at the same time that improves computational efficiency. Finally, label fusion offers the possibility to combine candidate labels from a set of warped atlases into a unique final label. In this regard, strengths of patch based approaches are proposed to cope with registration errors and high uncertainty regions, improving the segmentation accuracy. This work introduces as first instance an image representation technique based on kernels that is able to code suitably intrinsic relationships within the image domain. Furthermore, two label fusion methodologies are proposed in order to enhance state of the art label fusion methods, the former based on CKA projection of intensity patches onto label space and the latter rely on Bayesian inference. Particularly, the developed methods are evaluated in two publicly available image collections, resulting in an increased performance (assessed through the Dice Index) as compared to other recent WorksLa efectividad de las Imágenes de Resonacia Magnética (IRM) como una herramienta útil depende en gran parte del desempeño de la segmentación los tejidos comprometidos. El enfoque tradicional para segmentar estructuras cerebrales de interés en IRM consta de segmentaciones manuales hechas por expertos, la cual es una tarea supremamente desgastante y demorada, siendo inapropiada para usarse en bases de datos grandes o en aplicaciones donde el tiempo es una limitante, por ejemplo en tratamiento y supervición de la enfermedad. Recientemente, han surguido métodos basados en mutiples atlas que ofrecen una eficiente alternativa para lidiar con la variabilidad anatómica de las estructuras mediante la fusión de un conjunto de imágenes manualmente delineadas, convirtiendose así en el estado del arte en segmentación automática. Sin embargo, el acierto de estos métodos depende esencialmente de dos etapas: la selección de los atlases que mejor representen la imagen objetivo y la metodología de fusion de las etiquetas entregadas por lo atlases. Por lo tanto, al escojer este subconjunto de atlases con segmentaciones manuales mas afines y excluyendo atlases irrelevantes que podrían entorpecer el procedimiento de etiquetado, se obtiene una mejor estimación de las etiquetas que incluyendo todos los atlases, al mismo tiempo que se mejora la eficiencia computacional. Finalmente, la fusión de etiquetas ofrece la posibilidad de combinar etiquetas candidatas de un conjunto de atlas deformados en una etiqueta final única. En este sentido, han sido propuestos enfoques basados en parches para solventar los errores de registro y lidiar con las regiones de alta incertidumbre, mejorando así la precisión de la segmentación. Este trabajo presenta como primera instancia una técnica de representación de imágenes basada en kernels que es capaz de codificar adecuadamente relaciones internas dentro del dominio de imagen. Además, se proponen dos metodologías de fusión de etiquetas con el fin de mejorar los métodos propuestos en el estado del arte, el primero basado en la proyección de parches de intensidad en el espacio de las etiquetas medinate CKA y este último basado en la inferencia Bayesiana. En particular, los métodos desarrollados se evalúan en dos colecciones de imágenes disponibles al público, lo que resulta en un mayor rendimiento (evaluado a través del índice de Dice) en comparación con otras técnicas recientesMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y Computación62 Ingeniería y operaciones afines / EngineeringTobar Rodríguez, Andrés David (2019) Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.Hippocampus Segmentation Methodology From MRI Based on kernels and Local RepresentationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBrain Tissue SegmentationBayesian SegmentationInter-Slice KernelInter-Patch Kernel, Inter-Patch KernelSegmentación de estructuras cerebralesSegmentación BayesianaSelección de atlasORIGINAL1053847546.2019.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf109201858https://repositorio.unal.edu.co/bitstream/unal/76703/1/1053847546.2019.pdf8345954a89666e5f2540cff9e6aacba5MD51THUMBNAIL1053847546.2019.pdf.jpg1053847546.2019.pdf.jpgGenerated Thumbnailimage/jpeg5613https://repositorio.unal.edu.co/bitstream/unal/76703/2/1053847546.2019.pdf.jpg953e5dc7694dfdb0cc843cf8a9698a9eMD52unal/76703oai:repositorio.unal.edu.co:unal/767032024-09-16 14:41:42.684Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |