Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation

The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a ver...

Full description

Autores:
Tobar Rodríguez, Andrés David
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76703
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76703
http://bdigital.unal.edu.co/73401/
Palabra clave:
Brain Tissue Segmentation
Bayesian Segmentation
Inter-Slice Kernel
Inter-Patch Kernel, Inter-Patch Kernel
Segmentación de estructuras cerebrales
Segmentación Bayesiana
Selección de atlas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_96f93068b29fa28e501ed898a205de65
oai_identifier_str oai:repositorio.unal.edu.co:unal/76703
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
title Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
spellingShingle Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
Brain Tissue Segmentation
Bayesian Segmentation
Inter-Slice Kernel
Inter-Patch Kernel, Inter-Patch Kernel
Segmentación de estructuras cerebrales
Segmentación Bayesiana
Selección de atlas
title_short Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
title_full Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
title_fullStr Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
title_full_unstemmed Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
title_sort Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation
dc.creator.fl_str_mv Tobar Rodríguez, Andrés David
dc.contributor.advisor.spa.fl_str_mv Cárdenas Peña, David Augusto (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Tobar Rodríguez, Andrés David
dc.contributor.spa.fl_str_mv Germán Castellanos, César German
dc.subject.proposal.spa.fl_str_mv Brain Tissue Segmentation
Bayesian Segmentation
Inter-Slice Kernel
Inter-Patch Kernel, Inter-Patch Kernel
Segmentación de estructuras cerebrales
Segmentación Bayesiana
Selección de atlas
topic Brain Tissue Segmentation
Bayesian Segmentation
Inter-Slice Kernel
Inter-Patch Kernel, Inter-Patch Kernel
Segmentación de estructuras cerebrales
Segmentación Bayesiana
Selección de atlas
description The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a very time consuming task, becoming not appropriate for employing on large datasets or in applications where time is a critical factor, such as treatment planning. Lately, Multi-Atlas Segmentation (MAS) methods have emerge, offering an efficient alternative to deal with structural anatomical variability by fusing a set of manually labeled atlases, becoming the state of the art on automatic segmentation. However, the accuracy of these approaches is essentially influenced by atlas selection and label fusion stages. Hence, choosing a set of atlases that relate better with the input image, and thus provide more appropriate segmentations, at the same time that exclude irrelevant ones that might misguide the labeling procedure, leads obtain a better segmentation estimate than one that uses the full atlas database, at the same time that improves computational efficiency. Finally, label fusion offers the possibility to combine candidate labels from a set of warped atlases into a unique final label. In this regard, strengths of patch based approaches are proposed to cope with registration errors and high uncertainty regions, improving the segmentation accuracy. This work introduces as first instance an image representation technique based on kernels that is able to code suitably intrinsic relationships within the image domain. Furthermore, two label fusion methodologies are proposed in order to enhance state of the art label fusion methods, the former based on CKA projection of intensity patches onto label space and the latter rely on Bayesian inference. Particularly, the developed methods are evaluated in two publicly available image collections, resulting in an increased performance (assessed through the Dice Index) as compared to other recent Works
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-05-10
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:26:52Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:26:52Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76703
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/73401/
url https://repositorio.unal.edu.co/handle/unal/76703
http://bdigital.unal.edu.co/73401/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación
Departamento de Ingeniería Eléctrica, Electrónica y Computación
dc.relation.haspart.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
dc.relation.references.spa.fl_str_mv Tobar Rodríguez, Andrés David (2019) Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76703/1/1053847546.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/76703/2/1053847546.2019.pdf.jpg
bitstream.checksum.fl_str_mv 8345954a89666e5f2540cff9e6aacba5
953e5dc7694dfdb0cc843cf8a9698a9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089573289951232
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Germán Castellanos, César GermanCárdenas Peña, David Augusto (Thesis advisor)4d4899ac-0b9a-4de3-bafd-f5b1abb9df44Tobar Rodríguez, Andrés Davidca7c0735-246b-4c14-8515-e53131ba219f3002020-03-30T06:26:52Z2020-03-30T06:26:52Z2019-05-10https://repositorio.unal.edu.co/handle/unal/76703http://bdigital.unal.edu.co/73401/The effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a very time consuming task, becoming not appropriate for employing on large datasets or in applications where time is a critical factor, such as treatment planning. Lately, Multi-Atlas Segmentation (MAS) methods have emerge, offering an efficient alternative to deal with structural anatomical variability by fusing a set of manually labeled atlases, becoming the state of the art on automatic segmentation. However, the accuracy of these approaches is essentially influenced by atlas selection and label fusion stages. Hence, choosing a set of atlases that relate better with the input image, and thus provide more appropriate segmentations, at the same time that exclude irrelevant ones that might misguide the labeling procedure, leads obtain a better segmentation estimate than one that uses the full atlas database, at the same time that improves computational efficiency. Finally, label fusion offers the possibility to combine candidate labels from a set of warped atlases into a unique final label. In this regard, strengths of patch based approaches are proposed to cope with registration errors and high uncertainty regions, improving the segmentation accuracy. This work introduces as first instance an image representation technique based on kernels that is able to code suitably intrinsic relationships within the image domain. Furthermore, two label fusion methodologies are proposed in order to enhance state of the art label fusion methods, the former based on CKA projection of intensity patches onto label space and the latter rely on Bayesian inference. Particularly, the developed methods are evaluated in two publicly available image collections, resulting in an increased performance (assessed through the Dice Index) as compared to other recent WorksLa efectividad de las Imágenes de Resonacia Magnética (IRM) como una herramienta útil depende en gran parte del desempeño de la segmentación los tejidos comprometidos. El enfoque tradicional para segmentar estructuras cerebrales de interés en IRM consta de segmentaciones manuales hechas por expertos, la cual es una tarea supremamente desgastante y demorada, siendo inapropiada para usarse en bases de datos grandes o en aplicaciones donde el tiempo es una limitante, por ejemplo en tratamiento y supervición de la enfermedad. Recientemente, han surguido métodos basados en mutiples atlas que ofrecen una eficiente alternativa para lidiar con la variabilidad anatómica de las estructuras mediante la fusión de un conjunto de imágenes manualmente delineadas, convirtiendose así en el estado del arte en segmentación automática. Sin embargo, el acierto de estos métodos depende esencialmente de dos etapas: la selección de los atlases que mejor representen la imagen objetivo y la metodología de fusion de las etiquetas entregadas por lo atlases. Por lo tanto, al escojer este subconjunto de atlases con segmentaciones manuales mas afines y excluyendo atlases irrelevantes que podrían entorpecer el procedimiento de etiquetado, se obtiene una mejor estimación de las etiquetas que incluyendo todos los atlases, al mismo tiempo que se mejora la eficiencia computacional. Finalmente, la fusión de etiquetas ofrece la posibilidad de combinar etiquetas candidatas de un conjunto de atlas deformados en una etiqueta final única. En este sentido, han sido propuestos enfoques basados en parches para solventar los errores de registro y lidiar con las regiones de alta incertidumbre, mejorando así la precisión de la segmentación. Este trabajo presenta como primera instancia una técnica de representación de imágenes basada en kernels que es capaz de codificar adecuadamente relaciones internas dentro del dominio de imagen. Además, se proponen dos metodologías de fusión de etiquetas con el fin de mejorar los métodos propuestos en el estado del arte, el primero basado en la proyección de parches de intensidad en el espacio de las etiquetas medinate CKA y este último basado en la inferencia Bayesiana. En particular, los métodos desarrollados se evalúan en dos colecciones de imágenes disponibles al público, lo que resulta en un mayor rendimiento (evaluado a través del índice de Dice) en comparación con otras técnicas recientesMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y Computación62 Ingeniería y operaciones afines / EngineeringTobar Rodríguez, Andrés David (2019) Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.Hippocampus Segmentation Methodology From MRI Based on kernels and Local RepresentationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBrain Tissue SegmentationBayesian SegmentationInter-Slice KernelInter-Patch Kernel, Inter-Patch KernelSegmentación de estructuras cerebralesSegmentación BayesianaSelección de atlasORIGINAL1053847546.2019.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf109201858https://repositorio.unal.edu.co/bitstream/unal/76703/1/1053847546.2019.pdf8345954a89666e5f2540cff9e6aacba5MD51THUMBNAIL1053847546.2019.pdf.jpg1053847546.2019.pdf.jpgGenerated Thumbnailimage/jpeg5613https://repositorio.unal.edu.co/bitstream/unal/76703/2/1053847546.2019.pdf.jpg953e5dc7694dfdb0cc843cf8a9698a9eMD52unal/76703oai:repositorio.unal.edu.co:unal/767032024-09-16 14:41:42.684Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co