Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación

ilustraciones, diagramas, tablas

Autores:
Mosquera González, Davinson
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81631
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81631
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::001 - Conocimiento
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicas
Internet marketing
Comercio electrónico
Mercadeo por internet
Electronic commerce
Segmentación de clientes
Valor monetario
Aprendizaje de máquinas
Modelos paramétricos
Customer segmentation
Customer lifetime value (CLV)
Machine learning
Parametric models
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_96a70fbf4f7435ec775404bf1d52bc61
oai_identifier_str oai:repositorio.unal.edu.co:unal/81631
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
dc.title.translated.eng.fl_str_mv Method for customer segmentation incorporating the prediction of the customer's monetary value as a segmentation variable
title Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
spellingShingle Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
000 - Ciencias de la computación, información y obras generales::001 - Conocimiento
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicas
Internet marketing
Comercio electrónico
Mercadeo por internet
Electronic commerce
Segmentación de clientes
Valor monetario
Aprendizaje de máquinas
Modelos paramétricos
Customer segmentation
Customer lifetime value (CLV)
Machine learning
Parametric models
title_short Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
title_full Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
title_fullStr Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
title_full_unstemmed Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
title_sort Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación
dc.creator.fl_str_mv Mosquera González, Davinson
dc.contributor.advisor.none.fl_str_mv Branch Bedoya, John Willian
dc.contributor.author.none.fl_str_mv Mosquera González, Davinson
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::001 - Conocimiento
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicas
topic 000 - Ciencias de la computación, información y obras generales::001 - Conocimiento
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicas
Internet marketing
Comercio electrónico
Mercadeo por internet
Electronic commerce
Segmentación de clientes
Valor monetario
Aprendizaje de máquinas
Modelos paramétricos
Customer segmentation
Customer lifetime value (CLV)
Machine learning
Parametric models
dc.subject.armarc.none.fl_str_mv Internet marketing
dc.subject.lemb.none.fl_str_mv Comercio electrónico
Mercadeo por internet
Electronic commerce
dc.subject.proposal.spa.fl_str_mv Segmentación de clientes
Valor monetario
Aprendizaje de máquinas
Modelos paramétricos
dc.subject.proposal.eng.fl_str_mv Customer segmentation
Customer lifetime value (CLV)
Machine learning
Parametric models
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-24T20:12:14Z
dc.date.available.none.fl_str_mv 2022-06-24T20:12:14Z
dc.date.issued.none.fl_str_mv 2022-06
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81631
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81631
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alipour, S. P. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/K-07-2015-0180
Ardanuy, J. (2012). Breve introducción a la bibliometría. In Universitat de Barcelona (pp. 1–25). https://doi.org/10.1038/nmat3485
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Bauer, J., & Jannach, D. (2021). Improved Customer Lifetime Value Prediction with Sequence-To-Sequence Learning and Feature-Based Models. ACM Transactions on Knowledge Discovery from Data, 1(1). https://doi.org/10.1145/3441444
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. SIGMOD Rec., 29(2), 93–104. https://doi.org/10.1145/335191.335388
Cadavid, L., Awad, G., & Franco, C. (2012). Análisis bibliométrico del campo modelado de difusión de innovaciones. Estudios Gerenciales, 28(EE), 213–236. http://www.scielo.org.co/pdf/eg/v28nspe/v28nspea12.pdf
Camps, D. (2008). Limitaciones de los indicadores bibliométricos en la evaluación de la actividad científica biomédica. In Colombia Médica (Vol. 39, pp. 74–79). scieloco.
Cancer Research UK. (2022). Cancer Research UK Together we will beat cancer. https://www.cancerresearchuk.org/
Channa, H. S. (2019). Customer lifetime value: An ensemble model approach. Advances in Intelligent Systems and Computing, 808, 353–363. https://doi.org/10.1007/978-981-13-1402-5_27
Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013
Chen, D. (2019). Online Retail II Data Set. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Online+Retail+II
Chen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing and Customer Strategy Management, 19(3), 197–208. https://doi.org/10.1057/dbm.2012.17
Chen, P. P., Guitart, A., Del Río, A. F., & Periáñez, A. (2019). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2134–2140. https://doi.org/10.1109/BigData.2018.8622151
Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 1–7. https://doi.org/10.1016/j.jksuci.2018.09.004
Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243
Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing Science, 24(2), 275–284. https://doi.org/10.1287/mksc.1040.0098
Forliano, C., De Bernardi, P., & Yahiaoui, D. (2021). Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technological Forecasting and Social Change, 165, 1–16. https://doi.org/10.1016/j.techfore.2020.120522
Guadarrama, T., & Rosales, E. M. (2015). Marketing relacional: valor, satisfacción, lealtad y retención del cliente. Análisis y reflexión teórica. Ciencia y Sociedad, 40(2), 307–340.
Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, 48(5), 1275–1287. https://doi.org/10.1007/s10489-017-1105-y
Hall, C. M. (2011). Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism. Tourism Management, 32(1), 16–27. https://doi.org/10.1016/J.TOURMAN.2010.07.001
Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127(March 2019), 444–453. https://doi.org/10.1016/j.jbusres.2019.05.001
Herrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research trends in geotourism: A bibliometric analysis using the scopus database. Geosciences (Switzerland), 10(10), 1–29. https://doi.org/10.3390/geosciences10100379
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 1–5. https://doi.org/10.1073/pnas.0507655102
Hurwitz, J., & Kirsch, D. (2018). Machine Learning for dummies (IBM Limite).
Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018). Modeling and application of customer lifetime value in online retail. Informatics, 5(1), 1–22. https://doi.org/10.3390/informatics5010002
Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2019). Comparative analysis of selected probabilistic customer lifetime value models in online shopping. Journal of Business Economics and Management, 20(3), 398–423. https://doi.org/10.3846/jbem.2019.9597
Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer Segmentation using K-means Clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135–139. https://doi.org/10.1109/CTEMS.2018.8769171
Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17
Nita, A. (2019). Empowering impact assessments knowledge and international research collaboration - A bibliometric analysis of Environmental Impact Assessment Review journal. Environmental Impact Assessment Review, 78(March), 106283. https://doi.org/10.1016/j.eiar.2019.106283
Oblander, E. S., Gupta, S., Mela, C. F., Winer, R. S., & Lehmann, D. R. (2020). The past, present, and future of customer management. Marketing Letters, 31(2–3), 125–136. https://doi.org/10.1007/s11002-020-09525-9
Pareto, V. (1896). Cours d’économie politique. Université de Lausanne.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
Peralta, M. J., Frías, M., & Gregorio, O. (2015). Criterios, clasificaciones y tendencias de los indicadores bibliométricos en la evaluación de la ciencia. Revista Cubana de Información En Ciencias de La Salud, 26(3), 290–309. http://scielo.sld.cu
Platzer, M. (2021). Customer Base Analysis with BTYDplus (pp. 1–33). https://cran.r-project.org/web/packages/BTYDplus/vignettes/BTYDplus-HowTo.pdf
Rathi, T., & Ravi, V. (2017). Customer Lifetime Value Measurement using Machine Learning Techniques. In Artificial Intelligence: Concepts, Methodologies, Tools, and Applications (pp. 3013–3022). https://doi.org/10.4018/978-1-5225-1759-7.ch124
Roy-García, I., Rivas-Ruiz, R., Pérez-Rodríguez, M., & Palacios-Cruz, L. (2019). Correlation: Not all correlation entails causality. Revista Alergia Mexico, 66(3), 354–360. https://doi.org/10.29262/ram.v66i3.651
Rueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007). Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET ’07 - 2007 Portland International Conference on Management of Engineering & Technology, 2905–2911. https://doi.org/10.1109/PICMET.2007.4349633
Sifa, R., Runge, J., Bauckhage, C., & Klapper, D. (2018). Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE. Hawaii International Conference on System Sciences, 923–932.
Simeone, O. (2018). A Brief Introduction to Machine Learning for Engineers. Foundations and Trends® in Signal Processing, 12(3–4), 200–431. https://doi.org/10.1561/2000000102
Sodhi, P., Awasthi, N., & Sharma, V. (2019). Introduction to Machine Learning and Its Basic Application in Python. SSRN Electronic Journal, 1354–1375. https://doi.org/10.2139/ssrn.3323796
Srivastava, R. (2017). Identification of customer clusters using RFM model: a case of diverse purchaser classification. International Journal of Information, Business and Management, 9(4), 201–208.
Tsai, T. Y., Lin, C. T., & Prasad, M. (2019). An Intelligent Customer Churn Prediction and Response Framework. Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019, 928–935. https://doi.org/10.1109/ISKE47853.2019.9170380
Valérie, D., & Pierre, A. G. (2010). Bibliometric idicators: Quality masurements of sientific publication. Radiology, 255(2), 342–351. https://doi.org/10.1148/radiol.09090626
Velasco, B., Eiros Bouza, J. M., Pinilla, J. M., & San Román, J. A. (2012). La utilización de los indicadores bibliométricos para evaluar la actividad investigadora. Aula Abierta, 40(2), 75–84. http://dialnet.unirioja.es/servlet/articulo?codigo=3920967&info=resumen&idioma=ENG
Villa, E., Ruiz, L., Valencia, A., & Picón, E. (2018). Electronic commerce: factors involved in its adoption from a bibliometric analysis. Journal of Theoretical and Applied Electronic Commerce Research, 13(1), 39–70. https://doi.org/10.4067/S0718-18762018000100104
Win, T. T., & Bo, K. S. (2020). Predicting Customer Class using Customer Lifetime Value with Random Forest Algorithm. Proceedings of the 4th International Conference on Advanced Information Technologies, ICAIT 2020, 236–241. https://doi.org/10.1109/ICAIT51105.2020.9261792
Yoseph, F., & Heikkila, M. (2019). Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method. Proceedings - International Conference on Machine Learning and Data Engineering, ICMLDE 2018, 77–82. https://doi.org/10.1109/iCMLDE.2018.00029
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Analítica
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81631/3/1152704626.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81631/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81631/5/1152704626.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8d94589be716724f5937d621af1c6e44
8153f7789df02f0a4c9e079953658ab2
13a40942b813c3c9ea1f75f4c48223d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090002942918656
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Branch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15600Mosquera González, Davinsondd976c35e95c4ed41ee46d075dd6c60a6002022-06-24T20:12:14Z2022-06-24T20:12:14Z2022-06https://repositorio.unal.edu.co/handle/unal/81631Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa presente tesis de investigación, tiene como objetivo proponer un método para la segmentación de clientes, incorporando la predicción del valor monetario del cliente como una variable de segmentación, para tal fin, se propone una metodología cuantitativa, en la que los datos a utilizar corresponden a las transacciones de una tienda en línea de regalos para toda ocasión de Reino Unido, denominada “Online Retail II”, que consta de un total de 5.833 clientes y 1.067.371 registros; a partir de los cuales se realiza un proceso de caracterización de los datos, seguido de la predicción del valor monetario de cada cliente utilizando técnicas estadísticas y de aprendizaje de máquinas, que posteriormente se incluye como variable en el proceso de segmentación. Finalmente, se hace un comparativo entre los resultados de segmentar clientes sin incorporar la predicción del valor monetario y la segmentación de clientes incorporando la predicción del valor monetario; con lo que se concluye que el método propuesto, utilizando el algoritmo de Vecinos más cercanos para la predicción del valor monetario del cliente, al incorporarlo en la segmentación de clientes, logra un desempeño económico entre 10% y 20% mejor que segmentar sin incorporar esta variable. (Texto tomado de la fuente)This research thesis aims to propose a method for customer segmentation, incorporating the prediction of the customer's monetary value as a segmentation variable, for this purpose, a quantitative methodology is proposed, in which the data to be used correspond to the transactions of an online all-occasion gifts store in the United Kingdom, called “Online Retail II”, consisting of a total of 5.833 customers and 1.067.371 registrations; from which a data characterization process is carried out, followed by the prediction of the monetary value of each client using statistical and machine learning techniques, which is later included as a variable in the segmentation process. Finally, a comparison is made between the results of segmenting customers without incorporating the prediction of the monetary value and the customer segmentation incorporating the prediction of the monetary value; with which it is concluded that the proposed method, using the Nearest Neighbors algorithm for the prediction of the monetary value of the client, when incorporating it into the client segmentation, achieves an economic performance between 10% and 20% better than segmenting without incorporating this variable.MaestríaMagíster en Ingeniería - AnalíticaInvestigación CuantitativaÁrea Curricular de Ingeniería de Sistemas e Informática94 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::001 - Conocimiento000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicasInternet marketingComercio electrónicoMercadeo por internetElectronic commerceSegmentación de clientesValor monetarioAprendizaje de máquinasModelos paramétricosCustomer segmentationCustomer lifetime value (CLV)Machine learningParametric modelsMétodo para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentaciónMethod for customer segmentation incorporating the prediction of the customer's monetary value as a segmentation variableTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlipour, S. P. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/K-07-2015-0180Ardanuy, J. (2012). Breve introducción a la bibliometría. In Universitat de Barcelona (pp. 1–25). https://doi.org/10.1038/nmat3485Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007Bauer, J., & Jannach, D. (2021). Improved Customer Lifetime Value Prediction with Sequence-To-Sequence Learning and Feature-Based Models. ACM Transactions on Knowledge Discovery from Data, 1(1). https://doi.org/10.1145/3441444Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. SIGMOD Rec., 29(2), 93–104. https://doi.org/10.1145/335191.335388Cadavid, L., Awad, G., & Franco, C. (2012). Análisis bibliométrico del campo modelado de difusión de innovaciones. Estudios Gerenciales, 28(EE), 213–236. http://www.scielo.org.co/pdf/eg/v28nspe/v28nspea12.pdfCamps, D. (2008). Limitaciones de los indicadores bibliométricos en la evaluación de la actividad científica biomédica. In Colombia Médica (Vol. 39, pp. 74–79). scieloco.Cancer Research UK. (2022). Cancer Research UK Together we will beat cancer. https://www.cancerresearchuk.org/Channa, H. S. (2019). Customer lifetime value: An ensemble model approach. Advances in Intelligent Systems and Computing, 808, 353–363. https://doi.org/10.1007/978-981-13-1402-5_27Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013Chen, D. (2019). Online Retail II Data Set. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Online+Retail+IIChen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing and Customer Strategy Management, 19(3), 197–208. https://doi.org/10.1057/dbm.2012.17Chen, P. P., Guitart, A., Del Río, A. F., & Periáñez, A. (2019). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2134–2140. https://doi.org/10.1109/BigData.2018.8622151Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 1–7. https://doi.org/10.1016/j.jksuci.2018.09.004Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing Science, 24(2), 275–284. https://doi.org/10.1287/mksc.1040.0098Forliano, C., De Bernardi, P., & Yahiaoui, D. (2021). Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technological Forecasting and Social Change, 165, 1–16. https://doi.org/10.1016/j.techfore.2020.120522Guadarrama, T., & Rosales, E. M. (2015). Marketing relacional: valor, satisfacción, lealtad y retención del cliente. Análisis y reflexión teórica. Ciencia y Sociedad, 40(2), 307–340.Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, 48(5), 1275–1287. https://doi.org/10.1007/s10489-017-1105-yHall, C. M. (2011). Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism. Tourism Management, 32(1), 16–27. https://doi.org/10.1016/J.TOURMAN.2010.07.001Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127(March 2019), 444–453. https://doi.org/10.1016/j.jbusres.2019.05.001Herrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research trends in geotourism: A bibliometric analysis using the scopus database. Geosciences (Switzerland), 10(10), 1–29. https://doi.org/10.3390/geosciences10100379Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 1–5. https://doi.org/10.1073/pnas.0507655102Hurwitz, J., & Kirsch, D. (2018). Machine Learning for dummies (IBM Limite).Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018). Modeling and application of customer lifetime value in online retail. Informatics, 5(1), 1–22. https://doi.org/10.3390/informatics5010002Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2019). Comparative analysis of selected probabilistic customer lifetime value models in online shopping. Journal of Business Economics and Management, 20(3), 398–423. https://doi.org/10.3846/jbem.2019.9597Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer Segmentation using K-means Clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135–139. https://doi.org/10.1109/CTEMS.2018.8769171Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17Nita, A. (2019). Empowering impact assessments knowledge and international research collaboration - A bibliometric analysis of Environmental Impact Assessment Review journal. Environmental Impact Assessment Review, 78(March), 106283. https://doi.org/10.1016/j.eiar.2019.106283Oblander, E. S., Gupta, S., Mela, C. F., Winer, R. S., & Lehmann, D. R. (2020). The past, present, and future of customer management. Marketing Letters, 31(2–3), 125–136. https://doi.org/10.1007/s11002-020-09525-9Pareto, V. (1896). Cours d’économie politique. Université de Lausanne.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.htmlPeralta, M. J., Frías, M., & Gregorio, O. (2015). Criterios, clasificaciones y tendencias de los indicadores bibliométricos en la evaluación de la ciencia. Revista Cubana de Información En Ciencias de La Salud, 26(3), 290–309. http://scielo.sld.cuPlatzer, M. (2021). Customer Base Analysis with BTYDplus (pp. 1–33). https://cran.r-project.org/web/packages/BTYDplus/vignettes/BTYDplus-HowTo.pdfRathi, T., & Ravi, V. (2017). Customer Lifetime Value Measurement using Machine Learning Techniques. In Artificial Intelligence: Concepts, Methodologies, Tools, and Applications (pp. 3013–3022). https://doi.org/10.4018/978-1-5225-1759-7.ch124Roy-García, I., Rivas-Ruiz, R., Pérez-Rodríguez, M., & Palacios-Cruz, L. (2019). Correlation: Not all correlation entails causality. Revista Alergia Mexico, 66(3), 354–360. https://doi.org/10.29262/ram.v66i3.651Rueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007). Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET ’07 - 2007 Portland International Conference on Management of Engineering & Technology, 2905–2911. https://doi.org/10.1109/PICMET.2007.4349633Sifa, R., Runge, J., Bauckhage, C., & Klapper, D. (2018). Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE. Hawaii International Conference on System Sciences, 923–932.Simeone, O. (2018). A Brief Introduction to Machine Learning for Engineers. Foundations and Trends® in Signal Processing, 12(3–4), 200–431. https://doi.org/10.1561/2000000102Sodhi, P., Awasthi, N., & Sharma, V. (2019). Introduction to Machine Learning and Its Basic Application in Python. SSRN Electronic Journal, 1354–1375. https://doi.org/10.2139/ssrn.3323796Srivastava, R. (2017). Identification of customer clusters using RFM model: a case of diverse purchaser classification. International Journal of Information, Business and Management, 9(4), 201–208.Tsai, T. Y., Lin, C. T., & Prasad, M. (2019). An Intelligent Customer Churn Prediction and Response Framework. Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019, 928–935. https://doi.org/10.1109/ISKE47853.2019.9170380Valérie, D., & Pierre, A. G. (2010). Bibliometric idicators: Quality masurements of sientific publication. Radiology, 255(2), 342–351. https://doi.org/10.1148/radiol.09090626Velasco, B., Eiros Bouza, J. M., Pinilla, J. M., & San Román, J. A. (2012). La utilización de los indicadores bibliométricos para evaluar la actividad investigadora. Aula Abierta, 40(2), 75–84. http://dialnet.unirioja.es/servlet/articulo?codigo=3920967&info=resumen&idioma=ENGVilla, E., Ruiz, L., Valencia, A., & Picón, E. (2018). Electronic commerce: factors involved in its adoption from a bibliometric analysis. Journal of Theoretical and Applied Electronic Commerce Research, 13(1), 39–70. https://doi.org/10.4067/S0718-18762018000100104Win, T. T., & Bo, K. S. (2020). Predicting Customer Class using Customer Lifetime Value with Random Forest Algorithm. Proceedings of the 4th International Conference on Advanced Information Technologies, ICAIT 2020, 236–241. https://doi.org/10.1109/ICAIT51105.2020.9261792Yoseph, F., & Heikkila, M. (2019). Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method. Proceedings - International Conference on Machine Learning and Data Engineering, ICMLDE 2018, 77–82. https://doi.org/10.1109/iCMLDE.2018.00029InvestigadoresPúblico generalORIGINAL1152704626.2022.pdf1152704626.2022.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf2272384https://repositorio.unal.edu.co/bitstream/unal/81631/3/1152704626.2022.pdf8d94589be716724f5937d621af1c6e44MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81631/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1152704626.2022.pdf.jpg1152704626.2022.pdf.jpgGenerated Thumbnailimage/jpeg5124https://repositorio.unal.edu.co/bitstream/unal/81631/5/1152704626.2022.pdf.jpg13a40942b813c3c9ea1f75f4c48223d0MD55unal/81631oai:repositorio.unal.edu.co:unal/816312024-08-06 23:10:44.737Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK