Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia
Ilustraciones
- Autores:
-
Úsuga Restrepo, Jaime Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85425
- Palabra clave:
- 570 - Biología
Dinámica molecular
Variación genética
Virus de la influenza
HA
Influenza
Diversidad genética
Dinámica molecular
Mutaciones
Influenza virus
Docking
Genetic diversity
Molecular dynamics
Mutations
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_968a0c5058fa79ff4f02f4906922b1f7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85425 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
dc.title.translated.eng.fl_str_mv |
Computational analysis of the hemagglutinin of pandemic lineage influenza A viruses in Colombia |
title |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
spellingShingle |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia 570 - Biología Dinámica molecular Variación genética Virus de la influenza HA Influenza Diversidad genética Dinámica molecular Mutaciones Influenza virus Docking Genetic diversity Molecular dynamics Mutations |
title_short |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
title_full |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
title_fullStr |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
title_full_unstemmed |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
title_sort |
Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia |
dc.creator.fl_str_mv |
Úsuga Restrepo, Jaime Andrés |
dc.contributor.advisor.none.fl_str_mv |
Hernández Ortiz, Juan Pablo Ciuoderis Aponte, Karl Adolf |
dc.contributor.author.none.fl_str_mv |
Úsuga Restrepo, Jaime Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Crs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases |
dc.contributor.orcid.spa.fl_str_mv |
0009-0005-2830-908X |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología |
topic |
570 - Biología Dinámica molecular Variación genética Virus de la influenza HA Influenza Diversidad genética Dinámica molecular Mutaciones Influenza virus Docking Genetic diversity Molecular dynamics Mutations |
dc.subject.lemb.none.fl_str_mv |
Dinámica molecular Variación genética Virus de la influenza |
dc.subject.proposal.spa.fl_str_mv |
HA Influenza Diversidad genética Dinámica molecular Mutaciones |
dc.subject.proposal.eng.fl_str_mv |
Influenza virus Docking Genetic diversity Molecular dynamics Mutations |
description |
Ilustraciones |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-08-01 |
dc.date.accessioned.none.fl_str_mv |
2024-01-24T20:14:33Z |
dc.date.available.none.fl_str_mv |
2024-01-24T20:14:33Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85425 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85425 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001 Al Khatib, H. A., Al Thani, A. A., & Yassine, H. M. (2018a). Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Archives of Virology, 163(11), 3035–3049. https://doi.org/10.1007/S00705-018-3962-Z/FIGURES/5 Alhossary, A., Handoko, S. D., Mu, Y., & Kwoh, C. K. (2015). Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13), 2214–2216. https://doi.org/10.1093/BIOINFORMATICS/BTV082 Anderson, T. K., Macken, C. A., Lewis, N. S., Scheuermann, R. H., Reeth, K. Van, Brown, I. H., Swenson, S. L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C. T., Donis, R. O., Webby, R. J., & Vincent, A. L. (2016). A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere, 1(6). https://doi.org/10.1128/MSPHERE.00275-16 Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., & Suchard, M. A. (2012). BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 61(1), 170. https://doi.org/10.1093/SYSBIO/SYR100 Bawono, P., & Heringa, J. (2014). Phylogenetic Analyses. Comprehensive Biomedical Physics, 6, 93–110. https://doi.org/10.1016/B978-0-444-53632-7.01108-4 BII Flusurver - Frequently Asked Questions. (s/f). Recuperado el 2 de julio de 2023, de https://flusurver.bii.a-star.edu.sg/help/faq.html Boni, M. F., Galvani, A. P., Wickelgren, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135–144. https://doi.org/10.1016/j.tpb.2013.10.001 Bouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine. Boyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y. J., Moin, S. M., Acton, O. J., Ravichandran, R., Murphy, M., Pettie, D., Matheson, N., Carter, L., Creanga, A., Watson, M. J., Kephart, S., Ataca, S., Vaile, J. R., Ueda, G., Crank, M. C., … Kanekiyo, M. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 592(7855), 623–628. https://doi.org/10.1038/S41586-021-03365-X Bradley, K. C., Jones, C. A., Tompkins, S. M., Tripp, R. A., Russell, R. J., Gramer, M. R., Heimburg-Molinaro, J., Smith, D. F., Cummings, R. D., & Steinhauer, D. A. (2011). Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology, 413(2), 169–182. https://doi.org/10.1016/J.VIROL.2011.01.027 Brice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431–1440. https://doi.org/10.1002/JCC.21727 Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420 Byrd-Leotis, L., Cummings, R. D., & Steinhauer, D. A. (2017). Molecular Sciences The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. https://doi.org/10.3390/ijms18071541 Cador, C., Andraud, M., Willem, L., & Rose, N. (2017). Control of endemic swine flu persistence in farrow-to-finish pig farms: A stochastic metapopulation modeling assessment. Veterinary Research, 48(1), 1–14. https://doi.org/10.1186/S13567-017-0462-1/FIGURES/7 Carbone, V., Schneider, E. K., Rockman, S., Baker, M., Huang, J. X., Ong, C., Cooper, M. A., Yuriev, E., Li, J., & Velkov, T. (2015). Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 20(6), 10415. https://doi.org/10.3390/MOLECULES200610415 Chen, L. M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., Cox, N. J., Paulson, J. C., & Donis, R. O. (2012). In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 422(1), 105. https://doi.org/10.1016/J.VIROL.2011.10.006 Chen, L. M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., Davis, C. T., Garten, R., Shu, B., Xu, X., Klimov, A., Paulson, J. C., Cox, N. J., Swenson, S., Stevens, J., Vincent, A., Gramer, M., & Donis, R. O. (2011). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401. https://doi.org/10.1016/J.VIROL.2011.01.015 Chen, Z., Wang, W., Zhou, H., Amorsolo L. Suguitan, Jr., Shambaugh, C., Kim, L., Zhao, J., Kemble, G., & Jin, H. (2010). Generation of Live Attenuated Novel Influenza Virus A/California/7/09 (H1N1) Vaccines with High Yield in Embryonated Chicken Eggs. Journal of Virology, 84(1), 44. https://doi.org/10.1128/JVI.02106-09 Chepkwony, S., Parys, A., Vandoorn, E., Stadejek, W., Xie, J., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90512-z Childs, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., Campanero-Rhodes, M. A., Zhang, Y., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., & Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature biotechnology, 27(9), 797. https://doi.org/10.1038/NBT0909-797 Chua, K., & Chai, H. (2012). Hemagglutinin protein of Asian strains of human inluenza virus A H1N1 binds to sialic acid-a major component of human airway receptors. Genetics and Molecular Research, 11(1), 636–643. https://doi.org/10.4238/2012.March.16.1 Chutinimitkul, S., Herfst, S., Steel, J., Lowen, A. C., Ye, J., van Riel, D., Schrauwen, E. J. A., Bestebroer, T. M., Koel, B., Burke, D. F., Sutherland-Cash, K. H., Whittleston, C. S., Russell, C. A., Wales, D. J., Smith, D. J., Jonges, M., Meijer, A., Koopmans, M., Rimmelzwaan, G. F., … Fouchier, R. A. M. (2010). Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 84(22), 11802–11813. https://doi.org/10.1128/JVI.01136-10/SUPPL_FILE/27_8_10_REVISED_SOM_JVI01136_10.DOC Consuelo Ramirez-Nieto, G., Augusto, C., Rojas, D., Julio, V., Alfonso, V., Correa, J., Dario, J., & Galvis, M. (2012). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. 4, 983–990. https://doi.org/10.4236/health.2012.430150 Cotter, C. R., Jin, H., & Chen, Z. (2014). A Single Amino Acid in the Stalk Region of the H1N1pdm Influenza Virus HA Protein Affects Viral Fusion, Stability and Infectivity. PLoS Pathogens, 10(1). https://doi.org/10.1371/JOURNAL.PPAT.1003831 Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397 Dou, D., Revol, R., Östbye, H., Wang, H., & Daniels, R. (2018). Influenza A virus cell entry, replication, virion assembly and movement. En Frontiers in Immunology (Vol. 9, Número JUL). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.01581 Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969. https://doi.org/10.1093/MOLBEV/MSS075 DuBois, R. M., Aguilar-Yañez, J. M., Mendoza-Ochoa, G. I., Oropeza-Almazán, Y., Schultz-Cherry, S., Alvarez, M. M., White, S. W., & Russell, C. J. (2011). The Receptor-Binding Domain of Influenza Virus Hemagglutinin Produced in Escherichia coli Folds into Its Native, Immunogenic Structure . Journal of Virology, 85(2), 865–872. https://doi.org/10.1128/jvi.01412-10 Fiser, A., & Šali, A. (2003). Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8 Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051 Fraser, C., Cummings, D. A. T., Klinkenberg, D., Burke, D. S., & Ferguson, N. M. (2011). Special Article Influenza Transmission in Households During the 1918 Pandemic. 174(5). https://doi.org/10.1093/aje/kwr122 Gao, S., Anderson, T. K., Walia, R. R., Dorman, K. S., Janas-Martindale, A., & Vincent, A. L. (2017). The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. The Journal of General Virology, 98(8), 2001. https://doi.org/10.1099/JGV.0.000885 Gorbalenya, A. E., & Lauber, C. (2017). Phylogeny of Viruses. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-801238-3.95723-4 Graaf Miranda, & Fouchier Ron A. (2014). Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO, 33(8), 823–841. https://doi.org/https://doi.org/10.1002/embj.201387442 Guedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., Barbosa, H. J. C., Nicolás, M. F., & Dardenne, L. E. (2021). Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports 2021 11:1, 11(1), 1–20. https://doi.org/10.1038/s41598-021-84700-0 Guldemir, D., Coskun-Ari, F. F., Altas, A. B., Bakkaloglu, Z., Unaldi, O., Bayraktar, F., Korukluoglu, G., Aktas, A. R., & Durmaz, R. (2019). Molecular characterization of the influenza A(H1N1)pdm09 isolates collected in the 2015-2016 season and comparison of HA mutations detected in Turkey since 2009. Journal of Medical Virology, 91(12), 2074–2082. https://doi.org/10.1002/JMV.25565 Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88. https://doi.org/10.1007/978-1-59745-177-2_4/COVER Han, Y., Sun, N., Lv, Q. yue, Liu, D. hong, & Liu, D. peng. (2016). Molecular epidemiology and phylogenetic analysis of HA gene of influenza A(H1N1)pdm09 strain during 2010–2014 in Dalian, North China. Virus Genes, 52(5), 606–612. https://doi.org/10.1007/S11262-016-1358-2/FIGURES/2 Hanssen, H., Hincapié, O., & López, J. H. (1977). INFLUENZA EN PORCINOS DE ANTIOQUIA, COLOMBIA ’. Hollingsworth, S. A., & Dror, R. O. (2018). Review Molecular Dynamics Simulation for All. Neuron, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011 Horimoto, T., & Kawaoka, Y. (2005). INFLUENZA: LESSONS FROM PAST PANDEMICS, WARNINGS FROM CURRENT INCIDENTS. https://doi.org/10.1038/nrmicro1208 Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins, 65(3), 712. https://doi.org/10.1002/PROT.21123 Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of chemical information and modeling, 51(1), 69. https://doi.org/10.1021/CI100275A Huang, D. T. N., Lu, C. Y., Chi, Y. H., Li, W. L., Chang, L. Y., Lai, M. J., Chen, J. S., Hsu, W. M., & Huang, L. M. (2017). Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-10749-5 Ivan, F. X., Zhou, X., Lau, S. H., Rashid, S., Teo, J. S. M., Lee, H. K., Koay, E. S., Chan, K. P., Leo, Y. S., Chen, M. I. C., Kwoh, C. K., & Chow, V. T. (2020). Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. International Journal of Infectious Diseases, 90, 84–96. https://doi.org/10.1016/J.IJID.2019.10.024 Javanian, M., Barary, M., Ghebrehewet, S., Koppolu, V., Vasigala, V. K. R., & Ebrahimpour, S. (2021). A brief review of influenza virus infection. En Journal of Medical Virology (Vol. 93, Número 8, pp. 4638–4646). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.26990 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869 Kapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics 2020 21:7, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0 Karlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes and Infections, 2. https://doi.org/10.1038/emi.2013.20 Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/BIB/BBX108 Kim, H., Webster, R. G., & Webby, R. J. (2018). Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 31(2), 174–183. https://doi.org/10.1089/vim.2017.0141 Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. En Nature Reviews Drug Discovery (Vol. 3, Número 11, pp. 935–949). https://doi.org/10.1038/nrd1549 Klement, E., Weng, H.-Y., Poljak, Z., Orlando, F., Pardo, C., Alba-Casals, A., Nerem, J., Morrison, R. B., Puig, P., & Torremorell, M. (2017). influenza herd-level Prevalence and seasonality in Breed-to-Wean Pig Farms in the Midwestern United states. 4, 11. https://doi.org/10.3389/fvets.2017.00167 Koel, B. F., Burke, D. F., Bestebroer, T. M., Van Der Vliet, S., Zondag, G. C. M., Vervaet, G., Skepner, E., Lewis, N. S., Spronken, M. I. J., Russell, C. A., Eropkin, M. Y., Hurt, A. C., Barr, I. G., De Jong, J. C., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161), 976–979. https://doi.org/10.1126/SCIENCE.1244730/SUPPL_FILE/KOEL.SM.PDF Koul, P. A., Mir, M. A., Bali, N. K., Chawla-Sarkar, M., Sarkar, M., Kaushik, S., Khan, U. H., Ahmad, F., Garten, R., Lal, R. B., & Broor, S. (2011). Pandemic and seasonal influenza viruses among patients with acute respiratory illness in Kashmir (India). Influenza and Other Respiratory Viruses, 5(6), e521. https://doi.org/10.1111/J.1750-2659.2011.00261.X Kuhner, M. K. (2009). Coalescent genealogy samplers: windows into population history. Trends in ecology & evolution, 24(2), 86. https://doi.org/10.1016/J.TREE.2008.09.007 Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A Geometric Approach to Macromolecule-Ligand Interactions. En J. Mol. Bid. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944 Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/CI200227U/ASSET/IMAGES/MEDIUM/CI-2011-00227U_0006.GIF Lee, A. N., Hartono, Y. D., Sun, T., Leow, M. L., Liu, X. W., Huang, X., & Zhang, D. (2011). Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses. Journal of Molecular Modeling, 17(7), 1635–1641. https://doi.org/10.1007/S00894-010-0867-5/METRICS Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301 Levitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). Angewandte Chemie International Edition, 53(38), 10006–10018. https://doi.org/10.1002/ANIE.201403691 Maines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M., & Tumpey, T. M. (2009). Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice. Science (New York, N.Y.), 325(5939), 484. https://doi.org/10.1126/SCIENCE.1177238 Mark Berg Jeremy, Stryer Lubert, & Tymoczko John. (2006). Biochemistry (6th ed.). https://books.google.com.cu/books?id=HRr4MNH2YssC&printsec=frontcover#v=onepage&q&f=false Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I., & Kawaoka, Y. (2000). Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals. Journal of Virology, 74(18), 8502. https://doi.org/10.1128/JVI.74.18.8502-8512.2000 McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., & McKimm-Breschkin, J. L. (2019). Influenza virus neuraminidase structure and functions. En Frontiers in Microbiology (Vol. 10, Número JAN). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.00039 McGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue), W20. https://doi.org/10.1093/NAR/GKH435 Michaelis, M., Doerr, H. W., & Cinatl, J. (2009). An influenza A H1N1 virus revival - Pandemic H1N1/09 virus. En Infection (Vol. 37, Número 5, pp. 381–389). https://doi.org/10.1007/s15010-009-9181-5 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/MOLBEV/MSAA015 Munjal, G., Hanmandlu, M., & Srivastava, S. (2019). Phylogenetics Algorithms and Applications. Ambient Communications and Computer Systems, 904, 187. https://doi.org/10.1007/978-981-13-5934-7_17 Ni, F., Kondrashkina, E., & Wang, Q. (2018). Determinant of receptor-preference switch in influenza hemagglutinin. Virology, 513, 98. https://doi.org/10.1016/J.VIROL.2017.10.010 Osorio-Zambrano, W. F., Ospina-Jimenez, A. F., Alvarez-Munoz, S., Gomez, A. P., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/FVETS.2022.983304/FULL Otte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., & Zilberman, D. (2008). Impacts of avian influenza virus on animal production in developing countries. En CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (Vol. 3). https://doi.org/10.1079/PAVSNNR20083080 Parrinello, M., Rahman, A., Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. JAP, 52(12), 7182–7190. https://doi.org/10.1063/1.328693 Patel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503–510. https://doi.org/10.1016/J.DRUDIS.2020.11.014 Petrova, V. N., & Russell, C. A. (2017). The evolution of seasonal influenza viruses. Nature Publishing Group, 16. https://doi.org/10.1038/nrmicro.2017.118 Rajao, D. S., Anderson, T. K., Kitikoon, P., Stratton, J., Lewis, N. S., & Vincent, A. L. (2018). Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 518, 45–54. https://doi.org/10.1016/J.VIROL.2018.02.006 Rajapaksha, H., Petrovsky, N., & Guan, Y. (2014). In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies. PLoS ONE. https://doi.org/10.1371/journal.pone.0102618 Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/SYSBIO/SYY032 Rambo-Martin, B. L., Keller, M. W., Wilson, M. M., Nolting, J. M., Anderson, T. K., Vincent, A. L., Bagal, U. R., Jang, Y., Neuhaus, E. B., Davis, C. T., Bowman, A. S., Wentworth, D. E., & Barnes, J. R. (2020). Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere, 5(1). https://doi.org/10.1128/MSPHERE.00822-19/ASSET/43499F7B-FAE5-42D2-BBA4-4D2CB9F4741F/ASSETS/GRAPHIC/MSPHERE.00822-19-F0004.JPEG Ramos, A. P., Herrera, B. A., Ramírez, O. V., García, A. A., Jiménez, M. M., Valdés, C. S., Fernández, A. G., González, G., Fernández, S. I. O., Báez, G. G., & Espinosa, B. H. (2013). Molecular and phylogenetic analysis of influenza A H1N1 pandemic viruses in Cuba, May 2009 to August 2010. International Journal of Infectious Diseases, 17(7), e565–e567. https://doi.org/10.1016/j.ijid.2013.01.028 Rogers’ And, G. N., & D’souz~, B. L. (1989). 322 Receptor Binding Properties of Human and Animal Hl Influenza Virus Isolates. En VIROLOGY (Vol. 173). Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology, 234(3), 779–815. https://doi.org/10.1006/JMBI.1993.1626 Sandbulte, M. R., Spickler, A. R., Zaabel, P. K., & Roth, J. A. (2015). Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines 2015, Vol. 3, Pages 22-73, 3(1), 22–73. https://doi.org/10.3390/VACCINES3010022 Schneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3–40. https://doi.org/10.1007/978-3-540-74686-7_1/COVER Shen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science : A Publication of the Protein Society, 15(11), 2507. https://doi.org/10.1110/PS.062416606 Sippl, M. J. (1993). Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 355–362. https://doi.org/10.1002/PROT.340170404/ABSTRACT Soundararajan, V., Tharakaraman, K., Raman, R., Raguram, S., Shriver, Z., Sasisekharan, V., & Sasisekharan, R. (2009). Extrapolating from sequence—the 2009 H1N1 “swine” influenza virus. Nature Biotechnology 2009 27:6, 27(6), 510–513. https://doi.org/10.1038/nbt0609-510 Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367 Stanley, W. M. (1944). THE SIZE OF INFLUENZA VIRUS. Journal of Experimental Medicine, 79(3), 267–283. https://doi.org/10.1084/JEM.79.3.267 Tafalla, M., Buijssen, M., Egine Geets, R., & Vonk Noordegraaf-Schouten, M. (2016). A comprehensive review of the epidemiology and disease burden of Influenza B in 9 European countries. Human Vaccines & Immunotherapeutics, 12. https://doi.org/10.1080/21645515.2015.1111494 Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120 Taubenberger, J. K., & Morens, D. M. (2008). The Pathology of Influenza Virus Infections. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316. Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. En International Journal of Molecular Sciences (Vol. 20, Número 18). MDPI AG. https://doi.org/10.3390/ijms20184574 Tramontano, A., & Morea, V. (2003). Assessment of Homology-Based Predictions in CASP5. Proteins: Structure, Function and Genetics, 53, 352–368. https://doi.org/Doi: 10.1002/prot.10543 Tse, H., Kao, R. Y. T., Wu, W. L., Lim, W. W. L., Chen, H., Yeung, M. Y., Woo, P. C. Y., Sze, K. H., & Yuen, K. Y. (2011). Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus, 236(8), 915–925. https://doi.org/10.1258/EBM.2011.010264 Tzarum, N., De Vries, R. P., Paulson, J. C., & Wilson, I. A. (2015). Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2015.02.005 Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of chemical theory and computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645 Vincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Chapter 3 Swine Influenza Viruses: A North American Perspective. Advances in Virus Research, 72, 127–154. https://doi.org/10.1016/S0065-3527(08)00403-X Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17. https://doi.org/10.4103/0250-474X.102537 Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019-000558_0003.GIF Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and Testing of a General Amber Force Field. En J Comput Chem (Vol. 25). Wang, Y., Tang, C. Y., & Wan, X.-F. (2022). Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 414, 3. https://doi.org/10.1007/s00216-021-03806-6 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427 Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. https://doi.org/10.1093/BIOINFORMATICS/BTP033 Watson, S. J., Langat, P., Reid, S. M., Lam, T. T.-Y., Cotten, M., Kelly, M., Reeth, K. Van, Qiu, Y., Simon, G., Bonin, E., Foni, E., Chiapponi, C., Larsen, L., Hjulsager, C., Markowska-Daniel, I., Urbaniak, K., Dürrwald, R., Schlegel, M., Huovilainen, A., … Kellam, P. (2015). Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of Virology, 89(19), 9920. https://doi.org/10.1128/JVI.00840-15 Webster, R. G., & Govorkova, E. A. (2014). Continuing challenges in influenza. Annals of the New York Academy of Sciences, 1323(1), 115. https://doi.org/10.1111/NYAS.12462 Wennekes Tom. (2013). New Flu Vaccine? Drug Shuts Down Resistant Strains of Influenza Virus. https://www.medicaldaily.com/new-flu-vaccine-drug-shuts-down-resistant-strains-influenza-virus-244497 Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407. https://doi.org/10.1093/NAR/GKM290 Xu, R., McBride, R., Nycholat, C. M., Paulson, J. C., & Wilson, I. A. (2012). Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic. Journal of Virology, 86(2), 982–990. https://doi.org/10.1128/JVI.06322-11 Yang, H., Carney, P., & Stevens, J. (2010). Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Currents, 2(MAR). https://doi.org/10.1371/CURRENTS.RRN1152 Yasugi, M., Nakamura, S., Daidoji, T., Kawashita, N., Ramadhany, R., Yang, C. S., Yasunaga, T., Iida, T., Horii, T., Ikuta, K., Takahashi, K., & Nakaya, T. (2012). Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010. PLoS ONE, 7(2). https://doi.org/10.1371/JOURNAL.PONE.0030946 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85425/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85425/2/1152706894.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85425/3/1152706894.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 365237afe49ccf6ef6f56d5dd7224b1c 13c6b43ae1b4b236a3c71bcadbb3109d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090190559379456 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernández Ortiz, Juan Pablo0d123ac4980de4343bdf5d61e0de6ad3Ciuoderis Aponte, Karl Adolf35bbe164fc18adc697b811689aff95afÚsuga Restrepo, Jaime Andrés3b9edeaa8cbb0d361de74319597eb6e8Crs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases0009-0005-2830-908X2024-01-24T20:14:33Z2024-01-24T20:14:33Z2023-08-01https://repositorio.unal.edu.co/handle/unal/85425Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesAunque se ha demostrado la amplia circulación del virus influenza (VI) A en cerdos y humanos en el mundo y en Colombia, existen pocos estudios que hayan caracterizado los aspectos biológicos de estos virus. Por tanto, éste trabajo se basó en el análisis computacional de la proteína de superficie hemaglutinina (HA) de cepas pandémicas del VI circulantes en el país, y su relación con un cambio en las propiedades biológicas de estos. Este trabajo se desarrolló en tres capítulos, en el primero se caracterizó la composición genómica de la HA, seguido de la identificación de las mutaciones en esta proteína y su posible contribución a la diseminación de estos virus en la región. Los últimos dos capítulos, correspondieron al análisis estructural de la HA y su interacción con los receptores celulares. En general, se sugiere que las mutaciones I322V, P84S, S204T, E375K entre otras, pudieron haber contribuido al fitness y en el establecimiento de estos virus en las poblaciones actuales en Colombia. Las mutaciones más relevantes (E375K y S163N) estaban relacionadas con el aumento de la virulencia y la capacidad de evadir la respuesta inmune. Adicionalmente, se observó un clúster filogenéticamente relacionado que presentó dos mutaciones únicas (D223X y Q224X) no reportadas previamente. Por otra parte, para los modelos de los consensos tridimensionales de la HA, se observó que el modelo cBri18 (con mutaciones únicas R46G, P283A y I299V), representativo de su clúster, mostró comportamientos estructurales ligeramente distintos a los otros modelos y presentó cambios en el loop130 del sitio de unión al receptor. Adicionalmente, luego del análisis de los modelos de HA más relevantes, se encontró que estos mantienen preferencia la unión con los receptores celulares humanos (SA2,6) sobre los aviares (SA2,3). También que el modelo cCal09 tuvo mayor afinidad por SA2,6; y que el modelo cBri18 fue el única interactuó con SA2,3, hecho que puede atribuirse a los cambios evidenciados en el loop130. En conclusión, la presencia de ciertas mutaciones en la proteína HA de VI H1N1pdm de Colombia están posiblemente influenciando las propiedades biológicas de estos virus, sin embargo, otros estudios son necesarios para poder confirmar estos hallazgos. No obstante, este conocimiento generado aporta en el fortalecimiento de las acciones en la vigilancia y control de estos virus en el país y la región. (texto tomado de la fuente)Despite circulation of influenza virus (IV) in pigs and humans globally, few studies have characterized its biological features in Colombia. Therefore, in this study a computational analysis of the hemagglutinin (HA) surface protein of IV pandemic strains circulating in the country, and its relationship with a change in their biological properties was carried out. This work was developed in three chapters, in the first one, the genomic composition of HA was characterized, followed by the identification of the mutations and their possible contribution to the dissemination of these viruses in the region. The last two chapters corresponded to the structural analysis of HA and its interaction with cell receptors. In general, the mutations I322V, P84S, S204T, E375K, among others, have contributed to the fitness and establishment of these viruses in current populations in Colombia. The most relevant changes (E375K and S163N) were related to increased virulence and the ability to evade the immune response. In addition, a phylogenetically related cluster was found that exhibited two unique changes (D223X and Q224X) not previously reported. On the other hand, for the three-dimensional consensus models of the HA, it was shown that the cBri18 model (with exclusive mutations R46G, P283A and I299V), representative of its cluster, showed structural changes in the loop130 of receptor binding domain behaviors slightly different from the other models. In addition, analyzing the most relevant HA models, it was found that they preferentially bind to human cell receptors (SA2,6) over avian (SA2,3). Also, that the cCal09 model had a higher affinity for SA2,6; and that the cBri18 model was the only one that interacted with SA2,3, a fact that can be attributed to the changes observed in loop130. In conclusion, the presence of certain mutations in the HA protein of IV H1N1pdm from Colombia might be influencing the biological properties of these viruses, however, other studies are necessary to confirm these findings. However, this generated knowledge contributes to strengthening actions in the surveillance and control of these viruses in the country and the region.MaestríaMagíster en Ingeniería - Materiales y ProcesosBioinformáticaVirologíaÁrea Curricular de Materiales y Nanotecnología103 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - BiologíaDinámica molecularVariación genéticaVirus de la influenzaHAInfluenzaDiversidad genéticaDinámica molecularMutacionesInfluenza virusDockingGenetic diversityMolecular dynamicsMutationsAnálisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en ColombiaComputational analysis of the hemagglutinin of pandemic lineage influenza A viruses in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001Al Khatib, H. A., Al Thani, A. A., & Yassine, H. M. (2018a). Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Archives of Virology, 163(11), 3035–3049. https://doi.org/10.1007/S00705-018-3962-Z/FIGURES/5Alhossary, A., Handoko, S. D., Mu, Y., & Kwoh, C. K. (2015). Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13), 2214–2216. https://doi.org/10.1093/BIOINFORMATICS/BTV082Anderson, T. K., Macken, C. A., Lewis, N. S., Scheuermann, R. H., Reeth, K. Van, Brown, I. H., Swenson, S. L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C. T., Donis, R. O., Webby, R. J., & Vincent, A. L. (2016). A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere, 1(6). https://doi.org/10.1128/MSPHERE.00275-16Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., & Suchard, M. A. (2012). BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 61(1), 170. https://doi.org/10.1093/SYSBIO/SYR100Bawono, P., & Heringa, J. (2014). Phylogenetic Analyses. Comprehensive Biomedical Physics, 6, 93–110. https://doi.org/10.1016/B978-0-444-53632-7.01108-4BII Flusurver - Frequently Asked Questions. (s/f). Recuperado el 2 de julio de 2023, de https://flusurver.bii.a-star.edu.sg/help/faq.htmlBoni, M. F., Galvani, A. P., Wickelgren, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135–144. https://doi.org/10.1016/j.tpb.2013.10.001Bouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine.Boyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y. J., Moin, S. M., Acton, O. J., Ravichandran, R., Murphy, M., Pettie, D., Matheson, N., Carter, L., Creanga, A., Watson, M. J., Kephart, S., Ataca, S., Vaile, J. R., Ueda, G., Crank, M. C., … Kanekiyo, M. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 592(7855), 623–628. https://doi.org/10.1038/S41586-021-03365-XBradley, K. C., Jones, C. A., Tompkins, S. M., Tripp, R. A., Russell, R. J., Gramer, M. R., Heimburg-Molinaro, J., Smith, D. F., Cummings, R. D., & Steinhauer, D. A. (2011). Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology, 413(2), 169–182. https://doi.org/10.1016/J.VIROL.2011.01.027Brice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431–1440. https://doi.org/10.1002/JCC.21727Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420Byrd-Leotis, L., Cummings, R. D., & Steinhauer, D. A. (2017). Molecular Sciences The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. https://doi.org/10.3390/ijms18071541Cador, C., Andraud, M., Willem, L., & Rose, N. (2017). Control of endemic swine flu persistence in farrow-to-finish pig farms: A stochastic metapopulation modeling assessment. Veterinary Research, 48(1), 1–14. https://doi.org/10.1186/S13567-017-0462-1/FIGURES/7Carbone, V., Schneider, E. K., Rockman, S., Baker, M., Huang, J. X., Ong, C., Cooper, M. A., Yuriev, E., Li, J., & Velkov, T. (2015). Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 20(6), 10415. https://doi.org/10.3390/MOLECULES200610415Chen, L. M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., Cox, N. J., Paulson, J. C., & Donis, R. O. (2012). In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 422(1), 105. https://doi.org/10.1016/J.VIROL.2011.10.006Chen, L. M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., Davis, C. T., Garten, R., Shu, B., Xu, X., Klimov, A., Paulson, J. C., Cox, N. J., Swenson, S., Stevens, J., Vincent, A., Gramer, M., & Donis, R. O. (2011). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401. https://doi.org/10.1016/J.VIROL.2011.01.015Chen, Z., Wang, W., Zhou, H., Amorsolo L. Suguitan, Jr., Shambaugh, C., Kim, L., Zhao, J., Kemble, G., & Jin, H. (2010). Generation of Live Attenuated Novel Influenza Virus A/California/7/09 (H1N1) Vaccines with High Yield in Embryonated Chicken Eggs. Journal of Virology, 84(1), 44. https://doi.org/10.1128/JVI.02106-09Chepkwony, S., Parys, A., Vandoorn, E., Stadejek, W., Xie, J., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90512-zChilds, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., Campanero-Rhodes, M. A., Zhang, Y., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., & Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature biotechnology, 27(9), 797. https://doi.org/10.1038/NBT0909-797Chua, K., & Chai, H. (2012). Hemagglutinin protein of Asian strains of human inluenza virus A H1N1 binds to sialic acid-a major component of human airway receptors. Genetics and Molecular Research, 11(1), 636–643. https://doi.org/10.4238/2012.March.16.1Chutinimitkul, S., Herfst, S., Steel, J., Lowen, A. C., Ye, J., van Riel, D., Schrauwen, E. J. A., Bestebroer, T. M., Koel, B., Burke, D. F., Sutherland-Cash, K. H., Whittleston, C. S., Russell, C. A., Wales, D. J., Smith, D. J., Jonges, M., Meijer, A., Koopmans, M., Rimmelzwaan, G. F., … Fouchier, R. A. M. (2010). Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 84(22), 11802–11813. https://doi.org/10.1128/JVI.01136-10/SUPPL_FILE/27_8_10_REVISED_SOM_JVI01136_10.DOCConsuelo Ramirez-Nieto, G., Augusto, C., Rojas, D., Julio, V., Alfonso, V., Correa, J., Dario, J., & Galvis, M. (2012). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. 4, 983–990. https://doi.org/10.4236/health.2012.430150Cotter, C. R., Jin, H., & Chen, Z. (2014). A Single Amino Acid in the Stalk Region of the H1N1pdm Influenza Virus HA Protein Affects Viral Fusion, Stability and Infectivity. PLoS Pathogens, 10(1). https://doi.org/10.1371/JOURNAL.PPAT.1003831Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397Dou, D., Revol, R., Östbye, H., Wang, H., & Daniels, R. (2018). Influenza A virus cell entry, replication, virion assembly and movement. En Frontiers in Immunology (Vol. 9, Número JUL). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.01581Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969. https://doi.org/10.1093/MOLBEV/MSS075DuBois, R. M., Aguilar-Yañez, J. M., Mendoza-Ochoa, G. I., Oropeza-Almazán, Y., Schultz-Cherry, S., Alvarez, M. M., White, S. W., & Russell, C. J. (2011). The Receptor-Binding Domain of Influenza Virus Hemagglutinin Produced in Escherichia coli Folds into Its Native, Immunogenic Structure . Journal of Virology, 85(2), 865–872. https://doi.org/10.1128/jvi.01412-10Fiser, A., & Šali, A. (2003). Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051Fraser, C., Cummings, D. A. T., Klinkenberg, D., Burke, D. S., & Ferguson, N. M. (2011). Special Article Influenza Transmission in Households During the 1918 Pandemic. 174(5). https://doi.org/10.1093/aje/kwr122Gao, S., Anderson, T. K., Walia, R. R., Dorman, K. S., Janas-Martindale, A., & Vincent, A. L. (2017). The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. The Journal of General Virology, 98(8), 2001. https://doi.org/10.1099/JGV.0.000885Gorbalenya, A. E., & Lauber, C. (2017). Phylogeny of Viruses. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-801238-3.95723-4Graaf Miranda, & Fouchier Ron A. (2014). Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO, 33(8), 823–841. https://doi.org/https://doi.org/10.1002/embj.201387442Guedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., Barbosa, H. J. C., Nicolás, M. F., & Dardenne, L. E. (2021). Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports 2021 11:1, 11(1), 1–20. https://doi.org/10.1038/s41598-021-84700-0Guldemir, D., Coskun-Ari, F. F., Altas, A. B., Bakkaloglu, Z., Unaldi, O., Bayraktar, F., Korukluoglu, G., Aktas, A. R., & Durmaz, R. (2019). Molecular characterization of the influenza A(H1N1)pdm09 isolates collected in the 2015-2016 season and comparison of HA mutations detected in Turkey since 2009. Journal of Medical Virology, 91(12), 2074–2082. https://doi.org/10.1002/JMV.25565Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88. https://doi.org/10.1007/978-1-59745-177-2_4/COVERHan, Y., Sun, N., Lv, Q. yue, Liu, D. hong, & Liu, D. peng. (2016). Molecular epidemiology and phylogenetic analysis of HA gene of influenza A(H1N1)pdm09 strain during 2010–2014 in Dalian, North China. Virus Genes, 52(5), 606–612. https://doi.org/10.1007/S11262-016-1358-2/FIGURES/2Hanssen, H., Hincapié, O., & López, J. H. (1977). INFLUENZA EN PORCINOS DE ANTIOQUIA, COLOMBIA ’.Hollingsworth, S. A., & Dror, R. O. (2018). Review Molecular Dynamics Simulation for All. Neuron, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011Horimoto, T., & Kawaoka, Y. (2005). INFLUENZA: LESSONS FROM PAST PANDEMICS, WARNINGS FROM CURRENT INCIDENTS. https://doi.org/10.1038/nrmicro1208Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins, 65(3), 712. https://doi.org/10.1002/PROT.21123Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of chemical information and modeling, 51(1), 69. https://doi.org/10.1021/CI100275AHuang, D. T. N., Lu, C. Y., Chi, Y. H., Li, W. L., Chang, L. Y., Lai, M. J., Chen, J. S., Hsu, W. M., & Huang, L. M. (2017). Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-10749-5Ivan, F. X., Zhou, X., Lau, S. H., Rashid, S., Teo, J. S. M., Lee, H. K., Koay, E. S., Chan, K. P., Leo, Y. S., Chen, M. I. C., Kwoh, C. K., & Chow, V. T. (2020). Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. International Journal of Infectious Diseases, 90, 84–96. https://doi.org/10.1016/J.IJID.2019.10.024Javanian, M., Barary, M., Ghebrehewet, S., Koppolu, V., Vasigala, V. K. R., & Ebrahimpour, S. (2021). A brief review of influenza virus infection. En Journal of Medical Virology (Vol. 93, Número 8, pp. 4638–4646). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.26990Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869Kapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics 2020 21:7, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0Karlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes and Infections, 2. https://doi.org/10.1038/emi.2013.20Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/BIB/BBX108Kim, H., Webster, R. G., & Webby, R. J. (2018). Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 31(2), 174–183. https://doi.org/10.1089/vim.2017.0141Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. En Nature Reviews Drug Discovery (Vol. 3, Número 11, pp. 935–949). https://doi.org/10.1038/nrd1549Klement, E., Weng, H.-Y., Poljak, Z., Orlando, F., Pardo, C., Alba-Casals, A., Nerem, J., Morrison, R. B., Puig, P., & Torremorell, M. (2017). influenza herd-level Prevalence and seasonality in Breed-to-Wean Pig Farms in the Midwestern United states. 4, 11. https://doi.org/10.3389/fvets.2017.00167Koel, B. F., Burke, D. F., Bestebroer, T. M., Van Der Vliet, S., Zondag, G. C. M., Vervaet, G., Skepner, E., Lewis, N. S., Spronken, M. I. J., Russell, C. A., Eropkin, M. Y., Hurt, A. C., Barr, I. G., De Jong, J. C., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161), 976–979. https://doi.org/10.1126/SCIENCE.1244730/SUPPL_FILE/KOEL.SM.PDFKoul, P. A., Mir, M. A., Bali, N. K., Chawla-Sarkar, M., Sarkar, M., Kaushik, S., Khan, U. H., Ahmad, F., Garten, R., Lal, R. B., & Broor, S. (2011). Pandemic and seasonal influenza viruses among patients with acute respiratory illness in Kashmir (India). Influenza and Other Respiratory Viruses, 5(6), e521. https://doi.org/10.1111/J.1750-2659.2011.00261.XKuhner, M. K. (2009). Coalescent genealogy samplers: windows into population history. Trends in ecology & evolution, 24(2), 86. https://doi.org/10.1016/J.TREE.2008.09.007Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A Geometric Approach to Macromolecule-Ligand Interactions. En J. Mol. Bid.Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/CI200227U/ASSET/IMAGES/MEDIUM/CI-2011-00227U_0006.GIFLee, A. N., Hartono, Y. D., Sun, T., Leow, M. L., Liu, X. W., Huang, X., & Zhang, D. (2011). Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses. Journal of Molecular Modeling, 17(7), 1635–1641. https://doi.org/10.1007/S00894-010-0867-5/METRICSLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301Levitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). Angewandte Chemie International Edition, 53(38), 10006–10018. https://doi.org/10.1002/ANIE.201403691Maines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M., & Tumpey, T. M. (2009). Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice. Science (New York, N.Y.), 325(5939), 484. https://doi.org/10.1126/SCIENCE.1177238Mark Berg Jeremy, Stryer Lubert, & Tymoczko John. (2006). Biochemistry (6th ed.). https://books.google.com.cu/books?id=HRr4MNH2YssC&printsec=frontcover#v=onepage&q&f=falseMatrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I., & Kawaoka, Y. (2000). Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals. Journal of Virology, 74(18), 8502. https://doi.org/10.1128/JVI.74.18.8502-8512.2000McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., & McKimm-Breschkin, J. L. (2019). Influenza virus neuraminidase structure and functions. En Frontiers in Microbiology (Vol. 10, Número JAN). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.00039McGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue), W20. https://doi.org/10.1093/NAR/GKH435Michaelis, M., Doerr, H. W., & Cinatl, J. (2009). An influenza A H1N1 virus revival - Pandemic H1N1/09 virus. En Infection (Vol. 37, Número 5, pp. 381–389). https://doi.org/10.1007/s15010-009-9181-5Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/MOLBEV/MSAA015Munjal, G., Hanmandlu, M., & Srivastava, S. (2019). Phylogenetics Algorithms and Applications. Ambient Communications and Computer Systems, 904, 187. https://doi.org/10.1007/978-981-13-5934-7_17Ni, F., Kondrashkina, E., & Wang, Q. (2018). Determinant of receptor-preference switch in influenza hemagglutinin. Virology, 513, 98. https://doi.org/10.1016/J.VIROL.2017.10.010Osorio-Zambrano, W. F., Ospina-Jimenez, A. F., Alvarez-Munoz, S., Gomez, A. P., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/FVETS.2022.983304/FULLOtte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., & Zilberman, D. (2008). Impacts of avian influenza virus on animal production in developing countries. En CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (Vol. 3). https://doi.org/10.1079/PAVSNNR20083080Parrinello, M., Rahman, A., Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. JAP, 52(12), 7182–7190. https://doi.org/10.1063/1.328693Patel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503–510. https://doi.org/10.1016/J.DRUDIS.2020.11.014Petrova, V. N., & Russell, C. A. (2017). The evolution of seasonal influenza viruses. Nature Publishing Group, 16. https://doi.org/10.1038/nrmicro.2017.118Rajao, D. S., Anderson, T. K., Kitikoon, P., Stratton, J., Lewis, N. S., & Vincent, A. L. (2018). Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 518, 45–54. https://doi.org/10.1016/J.VIROL.2018.02.006Rajapaksha, H., Petrovsky, N., & Guan, Y. (2014). In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies. PLoS ONE. https://doi.org/10.1371/journal.pone.0102618Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/SYSBIO/SYY032Rambo-Martin, B. L., Keller, M. W., Wilson, M. M., Nolting, J. M., Anderson, T. K., Vincent, A. L., Bagal, U. R., Jang, Y., Neuhaus, E. B., Davis, C. T., Bowman, A. S., Wentworth, D. E., & Barnes, J. R. (2020). Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere, 5(1). https://doi.org/10.1128/MSPHERE.00822-19/ASSET/43499F7B-FAE5-42D2-BBA4-4D2CB9F4741F/ASSETS/GRAPHIC/MSPHERE.00822-19-F0004.JPEGRamos, A. P., Herrera, B. A., Ramírez, O. V., García, A. A., Jiménez, M. M., Valdés, C. S., Fernández, A. G., González, G., Fernández, S. I. O., Báez, G. G., & Espinosa, B. H. (2013). Molecular and phylogenetic analysis of influenza A H1N1 pandemic viruses in Cuba, May 2009 to August 2010. International Journal of Infectious Diseases, 17(7), e565–e567. https://doi.org/10.1016/j.ijid.2013.01.028Rogers’ And, G. N., & D’souz~, B. L. (1989). 322 Receptor Binding Properties of Human and Animal Hl Influenza Virus Isolates. En VIROLOGY (Vol. 173).Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology, 234(3), 779–815. https://doi.org/10.1006/JMBI.1993.1626Sandbulte, M. R., Spickler, A. R., Zaabel, P. K., & Roth, J. A. (2015). Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines 2015, Vol. 3, Pages 22-73, 3(1), 22–73. https://doi.org/10.3390/VACCINES3010022Schneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3–40. https://doi.org/10.1007/978-3-540-74686-7_1/COVERShen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science : A Publication of the Protein Society, 15(11), 2507. https://doi.org/10.1110/PS.062416606Sippl, M. J. (1993). Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 355–362. https://doi.org/10.1002/PROT.340170404/ABSTRACTSoundararajan, V., Tharakaraman, K., Raman, R., Raguram, S., Shriver, Z., Sasisekharan, V., & Sasisekharan, R. (2009). Extrapolating from sequence—the 2009 H1N1 “swine” influenza virus. Nature Biotechnology 2009 27:6, 27(6), 510–513. https://doi.org/10.1038/nbt0609-510Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367Stanley, W. M. (1944). THE SIZE OF INFLUENZA VIRUS. Journal of Experimental Medicine, 79(3), 267–283. https://doi.org/10.1084/JEM.79.3.267Tafalla, M., Buijssen, M., Egine Geets, R., & Vonk Noordegraaf-Schouten, M. (2016). A comprehensive review of the epidemiology and disease burden of Influenza B in 9 European countries. Human Vaccines & Immunotherapeutics, 12. https://doi.org/10.1080/21645515.2015.1111494Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120Taubenberger, J. K., & Morens, D. M. (2008). The Pathology of Influenza Virus Infections. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316.Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. En International Journal of Molecular Sciences (Vol. 20, Número 18). MDPI AG. https://doi.org/10.3390/ijms20184574Tramontano, A., & Morea, V. (2003). Assessment of Homology-Based Predictions in CASP5. Proteins: Structure, Function and Genetics, 53, 352–368. https://doi.org/Doi: 10.1002/prot.10543Tse, H., Kao, R. Y. T., Wu, W. L., Lim, W. W. L., Chen, H., Yeung, M. Y., Woo, P. C. Y., Sze, K. H., & Yuen, K. Y. (2011). Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus, 236(8), 915–925. https://doi.org/10.1258/EBM.2011.010264Tzarum, N., De Vries, R. P., Paulson, J. C., & Wilson, I. A. (2015). Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2015.02.005Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of chemical theory and computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645Vincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Chapter 3 Swine Influenza Viruses: A North American Perspective. Advances in Virus Research, 72, 127–154. https://doi.org/10.1016/S0065-3527(08)00403-XVyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17. https://doi.org/10.4103/0250-474X.102537Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019-000558_0003.GIFWang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and Testing of a General Amber Force Field. En J Comput Chem (Vol. 25).Wang, Y., Tang, C. Y., & Wan, X.-F. (2022). Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 414, 3. https://doi.org/10.1007/s00216-021-03806-6Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. https://doi.org/10.1093/BIOINFORMATICS/BTP033Watson, S. J., Langat, P., Reid, S. M., Lam, T. T.-Y., Cotten, M., Kelly, M., Reeth, K. Van, Qiu, Y., Simon, G., Bonin, E., Foni, E., Chiapponi, C., Larsen, L., Hjulsager, C., Markowska-Daniel, I., Urbaniak, K., Dürrwald, R., Schlegel, M., Huovilainen, A., … Kellam, P. (2015). Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of Virology, 89(19), 9920. https://doi.org/10.1128/JVI.00840-15Webster, R. G., & Govorkova, E. A. (2014). Continuing challenges in influenza. Annals of the New York Academy of Sciences, 1323(1), 115. https://doi.org/10.1111/NYAS.12462Wennekes Tom. (2013). New Flu Vaccine? Drug Shuts Down Resistant Strains of Influenza Virus. https://www.medicaldaily.com/new-flu-vaccine-drug-shuts-down-resistant-strains-influenza-virus-244497Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407. https://doi.org/10.1093/NAR/GKM290Xu, R., McBride, R., Nycholat, C. M., Paulson, J. C., & Wilson, I. A. (2012). Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic. Journal of Virology, 86(2), 982–990. https://doi.org/10.1128/JVI.06322-11Yang, H., Carney, P., & Stevens, J. (2010). Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Currents, 2(MAR). https://doi.org/10.1371/CURRENTS.RRN1152Yasugi, M., Nakamura, S., Daidoji, T., Kawashita, N., Ramadhany, R., Yang, C. S., Yasunaga, T., Iida, T., Horii, T., Ikuta, K., Takahashi, K., & Nakaya, T. (2012). Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010. PLoS ONE, 7(2). https://doi.org/10.1371/JOURNAL.PONE.0030946InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85425/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152706894.2023.pdf1152706894.2023.pdfTesis de maestría Influenzaapplication/pdf15209046https://repositorio.unal.edu.co/bitstream/unal/85425/2/1152706894.2023.pdf365237afe49ccf6ef6f56d5dd7224b1cMD52THUMBNAIL1152706894.2023.pdf.jpg1152706894.2023.pdf.jpgGenerated Thumbnailimage/jpeg4972https://repositorio.unal.edu.co/bitstream/unal/85425/3/1152706894.2023.pdf.jpg13c6b43ae1b4b236a3c71bcadbb3109dMD53unal/85425oai:repositorio.unal.edu.co:unal/854252024-01-24 23:04:16.01Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |