Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos

ilustraciones, graficas, tablas

Autores:
Agudelo Villalobos, Leandro Esneyder
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81540
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81540
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Ecolocación
Ecolocalización
Echolocation
Animal echolocation
Agrupamiento
Análisis de Señales
Aprendizaje Automático
Ecolocalización de murciélagos
Forrajeo
Procesamiento Digital de Señales
Señales de Ultrasonido
Clustering
Signal Analysis
Machine Learning
Bat Echolocation
Foraging
Digital Signal Processing
Ultrasound Signals
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_965b5853e93bf09540a0d3a91fb8b143
oai_identifier_str oai:repositorio.unal.edu.co:unal/81540
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
dc.title.translated.eng.fl_str_mv Automatic characterization of echolocation signals of fishing bats in Villavicencio - Meta for the analysis and support of biodiversity research at the Universidad de los Llanos
title Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
spellingShingle Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
620 - Ingeniería y operaciones afines
Ecolocación
Ecolocalización
Echolocation
Animal echolocation
Agrupamiento
Análisis de Señales
Aprendizaje Automático
Ecolocalización de murciélagos
Forrajeo
Procesamiento Digital de Señales
Señales de Ultrasonido
Clustering
Signal Analysis
Machine Learning
Bat Echolocation
Foraging
Digital Signal Processing
Ultrasound Signals
title_short Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
title_full Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
title_fullStr Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
title_full_unstemmed Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
title_sort Caracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los Llanos
dc.creator.fl_str_mv Agudelo Villalobos, Leandro Esneyder
dc.contributor.advisor.none.fl_str_mv Cruz Roa, Ángel Alfonso
González Osorio, Fabio Augusto
dc.contributor.author.none.fl_str_mv Agudelo Villalobos, Leandro Esneyder
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Ecolocación
Ecolocalización
Echolocation
Animal echolocation
Agrupamiento
Análisis de Señales
Aprendizaje Automático
Ecolocalización de murciélagos
Forrajeo
Procesamiento Digital de Señales
Señales de Ultrasonido
Clustering
Signal Analysis
Machine Learning
Bat Echolocation
Foraging
Digital Signal Processing
Ultrasound Signals
dc.subject.other.spa.fl_str_mv Ecolocación
Ecolocalización
dc.subject.other.eng.fl_str_mv Echolocation
Animal echolocation
dc.subject.proposal.spa.fl_str_mv Agrupamiento
Análisis de Señales
Aprendizaje Automático
Ecolocalización de murciélagos
Forrajeo
Procesamiento Digital de Señales
Señales de Ultrasonido
dc.subject.proposal.eng.fl_str_mv Clustering
Signal Analysis
Machine Learning
Bat Echolocation
Foraging
Digital Signal Processing
Ultrasound Signals
description ilustraciones, graficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-08T20:00:46Z
dc.date.available.none.fl_str_mv 2022-06-08T20:00:46Z
dc.date.issued.none.fl_str_mv 2022-06-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81540
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81540
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abhay Padda. (2016). Introduction to Random Forest. Retrieved from https://analyticsdefined.com/introduction-random-forests/
Agranat, I. (2013). Bat species identification from zero crossing and full spectrum echolocation calls using Hidden Markov Models, Fisher scores, unsupervised clustering and balanced winnow pairwise classifiers. Acoustical Society of America, 19(1), 00–16. https://doi.org/10.1121/1.4799403
Ahlén, I., & Baagoe, H. J. (1999). Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterologica, 1(2), 137–150.
Altringham, J. (1996). Echolocation. In J. D. Altringham (Ed.), Bats - Biology and Behaviour (pp. 79–113). New York: Oxford University Press.
Angélica Yantén. (2020). Efecto Del Ruido Urbano Sobre El Forrajeo Del Murciélago Pescador Menor, Noctilio Albiventris (Chiroptera: Noctilionidae). 1–74.
Armitage, D. W., \& Ober, H. K. (2010). A comparison of supervised learning techniques in the classification of bat echolocation calls. Ecological Informatics. 5(6), 465–473. https://doi.org/https://doi.org/10.1016/j.ecoinf.2010.08.001
Armitage, David W, & Ober, H. K. (2010). Ecological Informatics A comparison of supervised learning techniques in the classi fi cation of bat echolocation calls. Ecological Informatics, 5(6), 465–473. https://doi.org/10.1016/j.ecoinf.2010.08.001
Bao, L., & Cui, Y. (2005). Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics, 21(10), 2185–2190. https://doi.org/10.1093/bioinformatics/bti365
Behrend, O. & Schuller, G. (2000). The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi. European Journal of Neuroscience, 12, 4268-4280.
Biscardi, S., Oprecio, J., Fenton, M.B., Tsoar, A., Ratcliffe, J. M. (2004). Data, sample sizes and statistics affect the recognition of species of bats by their echolocation calls. Acta Chiropterologica., 6(2), 347–363.
Botto Nuñez, G., Lemus, G., Muñoz Wolf, M., Rodales, A. L., González, E. M., & Crisci, C. (2018). The first artificial intelligence algorithm for identification of bat species in Uruguay. Ecological Informatics, 46(2017), 97–102. https://doi.org/10.1016/j.ecoinf.2018.05.005
Breiman L. (2001). Machine Learning. Statistics Department, University of California, Berkeley, CA 94720., 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brigham, R. M., Kalko, E. K. V, Jones, G., Parsons, S., & Limpens, H. J. G. A. (2004). Bat Echolocation Research: Tools, Techniques and Analysis. Bat Conservation International, 1–174.
Britzke, E. R. (2003). Use of ultrasonic detectors for acoustic identification and study of bat ecology in the eastern United States. A Dissertation Presented to the Faculty of the Graduate School Tennessee Technological University. Bat Conservation International, Austin, TX.
Brown, P. E., Brown, T. W., & Grinnell, A. D. (1983). Echolocation, development, and vocal communication in the lesser bulldog bat, Noctilio albiventris. Behavioral Ecology and Sociobiology, 13(4), 287–298. https://doi.org/10.1007/BF00299676
Champion, C., Blazère, M., Burcelin, R., Loubes, J., Champion, C., Blazère, M., … Camille, C. (2020). Robust spectral clustering using LASSO regularization To cite this version : HAL Id : hal-02535595 Robust spectral clustering using LASSO regularization.
D. Liu, X. wang, J. Zhang & X. Huang. (2010). Feature Extraction using Mel frequency Ceptral Coefficients for Hyperspectral Image Classification. Applied Optics, 49(14).
Durán, M., Viader, S., & Paco, P. (2007). Diseño E Implementación De Un Filtro Paso Banda De Banda Estrecha Con Topología Interdigital a Frecuencias Uhf Y Microondas. Universidad Autónoma de Barcelona, 128.
Eklöf, J., & Rydell, J. (2017). Bats. https://doi.org/10.1007/978-3-319-66538-2
Existence., E. of. (2018). EDGE of Existence : Evolutionarily Distinct & Globally Endangered.
Fenton. (1974). The role echolocation in the evolution of bats. Am Nat, 108, 386–388.
Fenton, M. B. (1994). Echolocation: its impact on the behaviour and ecology of bats. Ecoscience, 1(1), 21–30. https://doi.org/10.1080/11956860.1994.11682224
Fonseca Guerrero, J. M. (2016). Murciélagos: los mamíferos voladores. https://doi.org/ISSN 2529-895X
Fraser, E. E. (2018). Manual analysis of recorded bat echolocation calls: summary, synthesis, and proposal for increased standardization in training practices. Canadian Journal of Zoology, 96(6), 505–512. https://doi.org/10.1139/cjz-2017-0175
Galindo González. (1998). Dispersión de semillas por murciélagos: Su importancia en la conservación y regeneración del bosque tropical. Acta Zoológica Mexicana (Nueva Serie), 73.
Gaston, K. J., & O’Neill, M. A. (2004). Automated species identification: why not? Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1444), 655–667. https://doi.org/10.1098/rstb.2003.1442
Guillén-Servent, A., & Ibáñez, C. (2007). Unusual echolocation behavior in a small molossid bat, Molossops temminckii, that forages near background clutter. Behavioral Ecology and Sociobiology, 61(10), 1599–1613. https://doi.org/10.1007/s00265-007-0392-4
Guillén, A., Juste B, J., \& Ibáñez, C. (2000). Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. J. Evol. Biol., 13(1), 70–80. https://doi.org/10.1046/j.1420-9101.2000.00155.x
Henríquez, A., Alonso, J. B., Travieso, C. M., Rodríguez-Herrera, B., Bolaños, F., Alpízar, P., … Henríquez, P. (2014). An automatic acoustic bat identification system based on the audible spectrum. Expert Systems with Applications, 41(11), 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021
I. Zualkernan, J. Judas, T. Mahbub, A. Bhagwagar, P. C. (2020). A Timy CNN Architecture form Identifying Bat Species from Echolocation Calls. 1–23.
J. G. Proakis, D. G. Manolakis. (2007). Digital Signal Processing. Prentice Hall, New Jersy,.
Jung, K., Kalko, E. K. V., & von Helversen, O. (2007). Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.x
Kalko, E. K. V., & Schnitzler, H. U. (1998). How echolocating bats approach and acquire food. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 197–204). Washington, DC: Smithsonian Institution Press.
Kalko, E. K. V., Schnitzler, H.-U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42(5), 305–319. https://doi.org/10.1007/s002650050443
Kalko, K. V. (1995). Insect pursuit, prey capture and echolocation in pipestirelle bats (Microchiroptera). Anim. Behav., 50(4), 861–880. https://doi.org/10.1016/0003-3472(95)80090-5
Kobayashi, K., Masuda, K., Haga, C., Matsui, T., Fukui, D., & Machimura, T. (2021). Development of a species identification system of Japanese bats from echolocation calls using convolutional neural networks. Ecological Informatics, 62, 101253. https://doi.org/10.1016/j.ecoinf.2021.101253
Larsson, Johan;Isak, Å. (2020). Numerical methods for spectral theory. 101–151. https://doi.org/10.1090/conm/720/14523
Lucas, T. (2010). Bat identification with gaussian process learning. 16–20. https://doi.org/10.6084/m9.figshare.92334.v1
Luciano, L., & Brian, H. (2019). Un Enfoque para Evaluar y Diseñar Nuevas Técnicas de Refactoring de Aplicaciones SOA Índice.
Mallat, S. (2008). A Wavelet Tour of Signal Processing. San Diego California: Elsevier.
Mirzaei, G., Majid, M. W., Ross, J., Jamali, M. M., Gorsevski, P. V., Frizado, J. P., & Bingman, V. P. (2012a). The BIO-acoustic feature extraction and classification of bat echolocation calls. In 2012 IEEE International Conference on Electro/Information Technology. https://doi.org/10.1109/EIT.2012.6220700
Moss, C. F., Redish, D., Gounden, C., & Kunz, T. H. (1997). Ontogeny of vocal signals in the little brown bat, Myotis lucifugus. Animal Behaviour, 54(1), 131–141. https://doi.org/10.1006/anbe.1996.0410
Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. J. Comp. Physiol. A, 189(4), 245–256. https://doi.org/10.1007/s00359-003-0406-2
Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., & Costa, H. H. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behavioral Ecology and Sociobiology, 20(1), 53–67. https://doi.org/10.1007/BF00292166
O’Farrell, M. J., C. Corben, and W. L. G. (2000). Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus). Acta Chiropterologica, 2, 185–196.
Orozco-Lugo, L., Guillén-Servent, A., Valenzuela-Galván, D., & Arita, H. T. (2013). Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya, 4(1), 33–46. https://doi.org/10.12933/therya-13-103
Preatoni, D.G; Nodari, M; Chirichella, R; Tosi, G; Wauters, A. . (2005). Identifying Bats from Time-Expanded Recordings of search Calls: Comparing Classification Methods. The Journal of Wildlife Management., 64(2), 1601–1614.
R. Hasan, M.Jamil, G. R. & S. R. (2004). Speaker Identification using Mel Frequency Ceptral Coefficients. 3th International Conference on Electrical & Computer Engineering, 565–568.
Redgwell, R.D., Szewczak, J.M., Jones, G. & Parsons, S. (2009). Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms, 2, 907– 924.
Rosenberg, A., & Hirschberg, J. (2007). V-Measure: A conditional entropy-based external cluster evaluation measure. EMNLP-CoNLL 2007 - Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, (June), 410–420.
Roverud, R. C., & Grinnell, A. D. (1985a). Discrimination performance and echolocation signal integration requirements for target detection and distance determination in the CF / FM bat , Noctilio Mbiventris.
Roverud, R. C., & Grinnell, A. D. (1985b). Echolocation sound features processed to provide distance information in the CF/FM bat,Noctilio albiventris: evidence for a gated time window utilizing both CF and FM components. Journal of Comparative Physiology A, 156(4), 457–469. https://doi.org/10.1007/BF00613970
Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2
Schnitzler, H., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. 18(8), 386–394. https://doi.org/10.1016/S0169-5347(03)00185-X
Schnitzler, H. U., & Kalko, E. K. V. (1998). How echolocating bats search and find food. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 183–196). Washington, DC: Smithsonian Institution Press.
Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing: A Review Journal, 19(1), 153–183. https://doi.org/10.1016/j.dsp.2007.12.004
Skowronski, M., & Harris, J. (2006). Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition. Journal of the Acoustical Society of America, 119(3), 1817–1833.
Skowronski, M. D., & Harris, J. G. (2006a). Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition. The Journal of the Acoustical Society of America, 119(3), 1817–1833. https://doi.org/10.1121/1.2166948
Skowronski, M. D., & Harris, J. G. (2006b). Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition. J Acoust Soc Am, 119, 1817–1833. Retrieved from http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000119000003001817000001&idtype=cvips&gifs=yes
Stathopoulos, V., Zamora-Gutiérrez, V., Jones, K. E., & Girolami, M. (2014). Bat Call Identication with Gaussian Process Multinomial Probit Regression and a Dynamic Time Warping Kernel. 17th International Conference on Artificial Intelligence and Statistics (AISTATS, JMLR: W&CP, 33, 913–921.
Walters, C. L., Freeman, R., Collen, A., Dietz, C., Brock Fenton, M., Jones, G., … Jones, K. E. (2012). A continental-scale tool for acoustic identification of European bats. Journal of Applied Ecology, 49(5), 1064–1074. https://doi.org/10.1111/j.1365-2664.2012.02182.x
Waters, D., & Barlow, K. (2013). Automatic recognition systems for bat call identification. Bulletin of the Institute of Ecology and Environmental Management. In Practice, 79, 19–23.
Y. Paumen, M. Mälzer, S. Alipek, J. Moll, B. L. & H. S.-W. (2021). Development and test of a bat calls detection and classification method based on convolutional neural networks. Retrieved from https://doi.org/10.1080/09524622.2021.1978863
Zamora-Gutierrez, V., Lopez-Gonzalez, C., MacSwiney Gonzalez, M. C., Fenton, B., Jones, G., Kalko, E. K. V., … Jones, K. E. (2016). Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. Methods in Ecology and Evolution, 7(9), 1082–1091. https://doi.org/10.1111/2041-210X.12556
Zhu, X., Wang, J., Sun, K. P., Jiang, T. L., Jiang, Y. L., & Feng, J. (2008). The echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors. Shengtai Xuebao/ Acta Ecologica Sinica, 28(11), 5248–5258. https://doi.org/10.1016/S1872-2032(09)60007-X
Zurc, D & Guillén-Servent, A & Solari, S. (2017). Chillidos de ecolocación de murciélagos emballonuridae en una sabana xerófila-semiseca del caribe colombiano. Mastozoología Neotropical. Mastozoología Neotropical, 24(1), 201–218.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 151 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81540/1/86073636.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81540/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81540/3/86073636.2022.pdf.jpg
bitstream.checksum.fl_str_mv 64aa8faf16f03b87998ec2a889393ad0
8153f7789df02f0a4c9e079953658ab2
a8c933f7eb95b5b567dac3e2ab52e8bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089723719712768
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cruz Roa, Ángel Alfonso46998d223286d3d4d34f7436c6934037González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Agudelo Villalobos, Leandro Esneyder3830ed0662b8316c5dfd5bdcc98796342022-06-08T20:00:46Z2022-06-08T20:00:46Z2022-06-07https://repositorio.unal.edu.co/handle/unal/81540Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasLos murciélagos cuentan con la capacidad de la generación de llamados de ecolocalización para los procesos de desplazamiento y captura del alimento. Estos llamados presentan una serie de características temporales y espectrales que permiten adelantar la identificación de especies, géneros o familias, partiendo de los comportamientos asociados a las variaciones de frecuencias conocidos como tipos de pulsos (frecuencia modulada - FM, frecuencia constante - CF y frecuencia cuasi-constante - QCF) las cuales están enmarcadas en las fases del proceso de forrajeo (búsqueda, aproximación y terminal). Debido a la dependencia directa de los expertos y la falta de bases de datos anotadas existentes, se adelantó el presente trabajo el cual consiste en la caracterización automática de señales de ecolocalización de murciélagos pescadores por medio de técnicas de procesamiento digital de señales y aprendizaje computacional no supervisado, aplicadas a un conjunto de 4.426 señales anotadas y validadas por biólogos de la Universidad de los Llanos. A cada audio se le adelantó un preprocesamiento que permitió la extracción e identificación de cada señal de ecolocalización, a la cual se le aplicó un filtro Butterworth pasa banda, previo a la extracción de características espectrales y temporales (Fast Fourier Transform FFT, spectral rolloff, chroma, melspectrogram, Mel Frequency Cepstral Coefficients, spectral centroid, zero crossing rate, entre otras), logrando construir un conjunto de datos de 600 características. Al cual, se le aplicaron los algoritmos Random Forest y Principal Component Analysis para adelantar la reducción de la dimensionalidad; A estos resultados se aplicaron los algoritmos de agrupamiento K-means y Spectral Clustering. De la evaluación realizada se encontró como factor predominante que para la etiqueta de tipos de pulsos la cantidad de clústeres con mejores resultados es de tres (3), tanto para K-means y Spectral Clustering, con un valor máximo de 0,610 para la métrica de coeficiente de silueta. Mientras que para la etiqueta de fases de forrajeo la cantidad de clústeres con mejores resultados es de dos (2), se encontró una mejora en los resultados al implementar PCA a las características identificadas como relevantes mediante Random Forest antes de implementar el proceso de agrupamiento. (Texto tomado de la fuente)Bats have the ability to generate echolocation calls for the processes of movement and capture of food. These calls present a series of temporal and spectral characteristics that allow to identification of species, genera or families, starting from the behaviors associated with frequency variations known as pulses types (modulated frequency - FM, constant frequency -CF and quasi-constant frequency - QCF), which are in the phases of the foraging process (search, approach and terminal phases). By the direct dependence of the experts and the lack of existing annotated databases, the present work was carried out, which consists of the automatic characterization of echolocation signals of fishing bats by means of digital signal processing techniques and unsupervised computational learning, applied to a set of 4,426 signals noted and validated by Biologists from the Universidad de los Llanos. Each audio was preprocessed to extraction and identification of each echolocation signal, to which a Butterworth band-pass filter was applied, prior to the extraction of spectral and temporal characteristics (chroma, melspectrogram, cepstral coefficients of Mel frequency, spectral centroid, zero crossing rate, among others), to build a data set of 600 characteristics. Which the Random Forest and Principal Component Analysis algorithms were applied to advance the reduction of dimensionality; The K-means and Spectral Clustering algorithms were applied to these results. From the evaluation carried out, it was found as a predominant factor that for the label of pulse types, the number of clusters with the best results is three (3), both for K-means and Spectral Clustering, with a maximum value of 0,610 for the silhouette coefficient metric.; While for the label of foraging phases, the number of clusters with the best results is two (2), an improvement in the results was found when implementing PCA to the characteristics identified as relevant by Random Forest before implementing the clustering process.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación Aplicadaxxiii, 151 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesEcolocaciónEcolocalizaciónEcholocationAnimal echolocationAgrupamientoAnálisis de SeñalesAprendizaje AutomáticoEcolocalización de murciélagosForrajeoProcesamiento Digital de SeñalesSeñales de UltrasonidoClusteringSignal AnalysisMachine LearningBat EcholocationForagingDigital Signal ProcessingUltrasound SignalsCaracterización automática de señales de ecolocalización de murciélagos pescadores en Villavicencio - Meta para el análisis y apoyo a la investigación en biodiversidad en la Universidad de los LlanosAutomatic characterization of echolocation signals of fishing bats in Villavicencio - Meta for the analysis and support of biodiversity research at the Universidad de los LlanosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbhay Padda. (2016). Introduction to Random Forest. Retrieved from https://analyticsdefined.com/introduction-random-forests/Agranat, I. (2013). Bat species identification from zero crossing and full spectrum echolocation calls using Hidden Markov Models, Fisher scores, unsupervised clustering and balanced winnow pairwise classifiers. Acoustical Society of America, 19(1), 00–16. https://doi.org/10.1121/1.4799403Ahlén, I., & Baagoe, H. J. (1999). Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterologica, 1(2), 137–150.Altringham, J. (1996). Echolocation. In J. D. Altringham (Ed.), Bats - Biology and Behaviour (pp. 79–113). New York: Oxford University Press.Angélica Yantén. (2020). Efecto Del Ruido Urbano Sobre El Forrajeo Del Murciélago Pescador Menor, Noctilio Albiventris (Chiroptera: Noctilionidae). 1–74.Armitage, D. W., \& Ober, H. K. (2010). A comparison of supervised learning techniques in the classification of bat echolocation calls. Ecological Informatics. 5(6), 465–473. https://doi.org/https://doi.org/10.1016/j.ecoinf.2010.08.001Armitage, David W, & Ober, H. K. (2010). Ecological Informatics A comparison of supervised learning techniques in the classi fi cation of bat echolocation calls. Ecological Informatics, 5(6), 465–473. https://doi.org/10.1016/j.ecoinf.2010.08.001Bao, L., & Cui, Y. (2005). Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics, 21(10), 2185–2190. https://doi.org/10.1093/bioinformatics/bti365Behrend, O. & Schuller, G. (2000). The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi. European Journal of Neuroscience, 12, 4268-4280.Biscardi, S., Oprecio, J., Fenton, M.B., Tsoar, A., Ratcliffe, J. M. (2004). Data, sample sizes and statistics affect the recognition of species of bats by their echolocation calls. Acta Chiropterologica., 6(2), 347–363.Botto Nuñez, G., Lemus, G., Muñoz Wolf, M., Rodales, A. L., González, E. M., & Crisci, C. (2018). The first artificial intelligence algorithm for identification of bat species in Uruguay. Ecological Informatics, 46(2017), 97–102. https://doi.org/10.1016/j.ecoinf.2018.05.005Breiman L. (2001). Machine Learning. Statistics Department, University of California, Berkeley, CA 94720., 45(1), 5–32. https://doi.org/10.1023/A:1010933404324Brigham, R. M., Kalko, E. K. V, Jones, G., Parsons, S., & Limpens, H. J. G. A. (2004). Bat Echolocation Research: Tools, Techniques and Analysis. Bat Conservation International, 1–174.Britzke, E. R. (2003). Use of ultrasonic detectors for acoustic identification and study of bat ecology in the eastern United States. A Dissertation Presented to the Faculty of the Graduate School Tennessee Technological University. Bat Conservation International, Austin, TX.Brown, P. E., Brown, T. W., & Grinnell, A. D. (1983). Echolocation, development, and vocal communication in the lesser bulldog bat, Noctilio albiventris. Behavioral Ecology and Sociobiology, 13(4), 287–298. https://doi.org/10.1007/BF00299676Champion, C., Blazère, M., Burcelin, R., Loubes, J., Champion, C., Blazère, M., … Camille, C. (2020). Robust spectral clustering using LASSO regularization To cite this version : HAL Id : hal-02535595 Robust spectral clustering using LASSO regularization.D. Liu, X. wang, J. Zhang & X. Huang. (2010). Feature Extraction using Mel frequency Ceptral Coefficients for Hyperspectral Image Classification. Applied Optics, 49(14).Durán, M., Viader, S., & Paco, P. (2007). Diseño E Implementación De Un Filtro Paso Banda De Banda Estrecha Con Topología Interdigital a Frecuencias Uhf Y Microondas. Universidad Autónoma de Barcelona, 128.Eklöf, J., & Rydell, J. (2017). Bats. https://doi.org/10.1007/978-3-319-66538-2Existence., E. of. (2018). EDGE of Existence : Evolutionarily Distinct & Globally Endangered.Fenton. (1974). The role echolocation in the evolution of bats. Am Nat, 108, 386–388.Fenton, M. B. (1994). Echolocation: its impact on the behaviour and ecology of bats. Ecoscience, 1(1), 21–30. https://doi.org/10.1080/11956860.1994.11682224Fonseca Guerrero, J. M. (2016). Murciélagos: los mamíferos voladores. https://doi.org/ISSN 2529-895XFraser, E. E. (2018). Manual analysis of recorded bat echolocation calls: summary, synthesis, and proposal for increased standardization in training practices. Canadian Journal of Zoology, 96(6), 505–512. https://doi.org/10.1139/cjz-2017-0175Galindo González. (1998). Dispersión de semillas por murciélagos: Su importancia en la conservación y regeneración del bosque tropical. Acta Zoológica Mexicana (Nueva Serie), 73.Gaston, K. J., & O’Neill, M. A. (2004). Automated species identification: why not? Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1444), 655–667. https://doi.org/10.1098/rstb.2003.1442Guillén-Servent, A., & Ibáñez, C. (2007). Unusual echolocation behavior in a small molossid bat, Molossops temminckii, that forages near background clutter. Behavioral Ecology and Sociobiology, 61(10), 1599–1613. https://doi.org/10.1007/s00265-007-0392-4Guillén, A., Juste B, J., \& Ibáñez, C. (2000). Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. J. Evol. Biol., 13(1), 70–80. https://doi.org/10.1046/j.1420-9101.2000.00155.xHenríquez, A., Alonso, J. B., Travieso, C. M., Rodríguez-Herrera, B., Bolaños, F., Alpízar, P., … Henríquez, P. (2014). An automatic acoustic bat identification system based on the audible spectrum. Expert Systems with Applications, 41(11), 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021I. Zualkernan, J. Judas, T. Mahbub, A. Bhagwagar, P. C. (2020). A Timy CNN Architecture form Identifying Bat Species from Echolocation Calls. 1–23.J. G. Proakis, D. G. Manolakis. (2007). Digital Signal Processing. Prentice Hall, New Jersy,.Jung, K., Kalko, E. K. V., & von Helversen, O. (2007). Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology, 272(2), 125–137. https://doi.org/10.1111/j.1469-7998.2006.00250.xKalko, E. K. V., & Schnitzler, H. U. (1998). How echolocating bats approach and acquire food. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 197–204). Washington, DC: Smithsonian Institution Press.Kalko, E. K. V., Schnitzler, H.-U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42(5), 305–319. https://doi.org/10.1007/s002650050443Kalko, K. V. (1995). Insect pursuit, prey capture and echolocation in pipestirelle bats (Microchiroptera). Anim. Behav., 50(4), 861–880. https://doi.org/10.1016/0003-3472(95)80090-5Kobayashi, K., Masuda, K., Haga, C., Matsui, T., Fukui, D., & Machimura, T. (2021). Development of a species identification system of Japanese bats from echolocation calls using convolutional neural networks. Ecological Informatics, 62, 101253. https://doi.org/10.1016/j.ecoinf.2021.101253Larsson, Johan;Isak, Å. (2020). Numerical methods for spectral theory. 101–151. https://doi.org/10.1090/conm/720/14523Lucas, T. (2010). Bat identification with gaussian process learning. 16–20. https://doi.org/10.6084/m9.figshare.92334.v1Luciano, L., & Brian, H. (2019). Un Enfoque para Evaluar y Diseñar Nuevas Técnicas de Refactoring de Aplicaciones SOA Índice.Mallat, S. (2008). A Wavelet Tour of Signal Processing. San Diego California: Elsevier.Mirzaei, G., Majid, M. W., Ross, J., Jamali, M. M., Gorsevski, P. V., Frizado, J. P., & Bingman, V. P. (2012a). The BIO-acoustic feature extraction and classification of bat echolocation calls. In 2012 IEEE International Conference on Electro/Information Technology. https://doi.org/10.1109/EIT.2012.6220700Moss, C. F., Redish, D., Gounden, C., & Kunz, T. H. (1997). Ontogeny of vocal signals in the little brown bat, Myotis lucifugus. Animal Behaviour, 54(1), 131–141. https://doi.org/10.1006/anbe.1996.0410Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. J. Comp. Physiol. A, 189(4), 245–256. https://doi.org/10.1007/s00359-003-0406-2Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., & Costa, H. H. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behavioral Ecology and Sociobiology, 20(1), 53–67. https://doi.org/10.1007/BF00292166O’Farrell, M. J., C. Corben, and W. L. G. (2000). Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus). Acta Chiropterologica, 2, 185–196.Orozco-Lugo, L., Guillén-Servent, A., Valenzuela-Galván, D., & Arita, H. T. (2013). Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya, 4(1), 33–46. https://doi.org/10.12933/therya-13-103Preatoni, D.G; Nodari, M; Chirichella, R; Tosi, G; Wauters, A. . (2005). Identifying Bats from Time-Expanded Recordings of search Calls: Comparing Classification Methods. The Journal of Wildlife Management., 64(2), 1601–1614.R. Hasan, M.Jamil, G. R. & S. R. (2004). Speaker Identification using Mel Frequency Ceptral Coefficients. 3th International Conference on Electrical & Computer Engineering, 565–568.Redgwell, R.D., Szewczak, J.M., Jones, G. & Parsons, S. (2009). Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms, 2, 907– 924.Rosenberg, A., & Hirschberg, J. (2007). V-Measure: A conditional entropy-based external cluster evaluation measure. EMNLP-CoNLL 2007 - Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, (June), 410–420.Roverud, R. C., & Grinnell, A. D. (1985a). Discrimination performance and echolocation signal integration requirements for target detection and distance determination in the CF / FM bat , Noctilio Mbiventris.Roverud, R. C., & Grinnell, A. D. (1985b). Echolocation sound features processed to provide distance information in the CF/FM bat,Noctilio albiventris: evidence for a gated time window utilizing both CF and FM components. Journal of Comparative Physiology A, 156(4), 457–469. https://doi.org/10.1007/BF00613970Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by Insect-Eating Bats. BioScience, 51(7), 557. https://doi.org/10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2Schnitzler, H., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. 18(8), 386–394. https://doi.org/10.1016/S0169-5347(03)00185-XSchnitzler, H. U., & Kalko, E. K. V. (1998). How echolocating bats search and find food. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 183–196). Washington, DC: Smithsonian Institution Press.Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing: A Review Journal, 19(1), 153–183. https://doi.org/10.1016/j.dsp.2007.12.004Skowronski, M., & Harris, J. (2006). Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition. Journal of the Acoustical Society of America, 119(3), 1817–1833.Skowronski, M. D., & Harris, J. G. (2006a). Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition. The Journal of the Acoustical Society of America, 119(3), 1817–1833. https://doi.org/10.1121/1.2166948Skowronski, M. D., & Harris, J. G. (2006b). Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition. J Acoust Soc Am, 119, 1817–1833. Retrieved from http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JASMAN000119000003001817000001&idtype=cvips&gifs=yesStathopoulos, V., Zamora-Gutiérrez, V., Jones, K. E., & Girolami, M. (2014). Bat Call Identication with Gaussian Process Multinomial Probit Regression and a Dynamic Time Warping Kernel. 17th International Conference on Artificial Intelligence and Statistics (AISTATS, JMLR: W&CP, 33, 913–921.Walters, C. L., Freeman, R., Collen, A., Dietz, C., Brock Fenton, M., Jones, G., … Jones, K. E. (2012). A continental-scale tool for acoustic identification of European bats. Journal of Applied Ecology, 49(5), 1064–1074. https://doi.org/10.1111/j.1365-2664.2012.02182.xWaters, D., & Barlow, K. (2013). Automatic recognition systems for bat call identification. Bulletin of the Institute of Ecology and Environmental Management. In Practice, 79, 19–23.Y. Paumen, M. Mälzer, S. Alipek, J. Moll, B. L. & H. S.-W. (2021). Development and test of a bat calls detection and classification method based on convolutional neural networks. Retrieved from https://doi.org/10.1080/09524622.2021.1978863Zamora-Gutierrez, V., Lopez-Gonzalez, C., MacSwiney Gonzalez, M. C., Fenton, B., Jones, G., Kalko, E. K. V., … Jones, K. E. (2016). Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design. Methods in Ecology and Evolution, 7(9), 1082–1091. https://doi.org/10.1111/2041-210X.12556Zhu, X., Wang, J., Sun, K. P., Jiang, T. L., Jiang, Y. L., & Feng, J. (2008). The echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors. Shengtai Xuebao/ Acta Ecologica Sinica, 28(11), 5248–5258. https://doi.org/10.1016/S1872-2032(09)60007-XZurc, D & Guillén-Servent, A & Solari, S. (2017). Chillidos de ecolocación de murciélagos emballonuridae en una sabana xerófila-semiseca del caribe colombiano. Mastozoología Neotropical. Mastozoología Neotropical, 24(1), 201–218.EstudiantesORIGINAL86073636.2022.pdf86073636.2022.pdfTesis de Maestría en Ingeniería de Sistemas y Computaciónapplication/pdf6446189https://repositorio.unal.edu.co/bitstream/unal/81540/1/86073636.2022.pdf64aa8faf16f03b87998ec2a889393ad0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81540/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL86073636.2022.pdf.jpg86073636.2022.pdf.jpgGenerated Thumbnailimage/jpeg6111https://repositorio.unal.edu.co/bitstream/unal/81540/3/86073636.2022.pdf.jpga8c933f7eb95b5b567dac3e2ab52e8bbMD53unal/81540oai:repositorio.unal.edu.co:unal/815402024-08-06 23:10:07.54Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK