Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno

ilustraciones, diagramas

Autores:
Villota Alava, María Alejandra
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86062
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86062
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Antígenos de Neoplasias
Antígenos Virales/análisis
Inmunoterapia/métodos
Antigens, Neoplasm
Antigens, Viral/analysis
Immunotherapy/methods
Minigenes
Neoantígenos
Células presentadoras de antígeno artificiales
Transfección
Transducción
Citometría de Flujo
Inmunoterapia
Minigene
Neoantigens
Artificial Antigen Presenting Cells
Transfection
Flow Cytometry
Transduction
Immunotherapy
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_96394703b3f85e18900399ca42abc643
oai_identifier_str oai:repositorio.unal.edu.co:unal/86062
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
dc.title.translated.eng.fl_str_mv Assessment of the immunogenicity of antigens formulated in minigenes transfected into antigen-presenting cells
title Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
spellingShingle Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
610 - Medicina y salud::615 - Farmacología y terapéutica
Antígenos de Neoplasias
Antígenos Virales/análisis
Inmunoterapia/métodos
Antigens, Neoplasm
Antigens, Viral/analysis
Immunotherapy/methods
Minigenes
Neoantígenos
Células presentadoras de antígeno artificiales
Transfección
Transducción
Citometría de Flujo
Inmunoterapia
Minigene
Neoantigens
Artificial Antigen Presenting Cells
Transfection
Flow Cytometry
Transduction
Immunotherapy
title_short Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
title_full Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
title_fullStr Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
title_full_unstemmed Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
title_sort Evaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígeno
dc.creator.fl_str_mv Villota Alava, María Alejandra
dc.contributor.advisor.spa.fl_str_mv Parra López, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Villota Alava, María Alejandra
dc.contributor.educationalvalidator.spa.fl_str_mv Clavijo Ramirez, Carlos Arturo
dc.contributor.researchgroup.spa.fl_str_mv Inmunología y Medicina Traslacional
dc.contributor.subjectmatterexpert.spa.fl_str_mv Patarroyo Gutiérrez, Manuel Alfonso
dc.contributor.cvlac.spa.fl_str_mv Villota Alava, María Alejandra [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001786060]
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Antígenos de Neoplasias
Antígenos Virales/análisis
Inmunoterapia/métodos
Antigens, Neoplasm
Antigens, Viral/analysis
Immunotherapy/methods
Minigenes
Neoantígenos
Células presentadoras de antígeno artificiales
Transfección
Transducción
Citometría de Flujo
Inmunoterapia
Minigene
Neoantigens
Artificial Antigen Presenting Cells
Transfection
Flow Cytometry
Transduction
Immunotherapy
dc.subject.decs.spa.fl_str_mv Antígenos de Neoplasias
Antígenos Virales/análisis
Inmunoterapia/métodos
dc.subject.decs.eng.fl_str_mv Antigens, Neoplasm
Antigens, Viral/analysis
Immunotherapy/methods
dc.subject.proposal.spa.fl_str_mv Minigenes
Neoantígenos
Células presentadoras de antígeno artificiales
Transfección
Transducción
Citometría de Flujo
Inmunoterapia
dc.subject.proposal.eng.fl_str_mv Minigene
Neoantigens
Artificial Antigen Presenting Cells
Transfection
Flow Cytometry
Transduction
Immunotherapy
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-09T18:42:36Z
dc.date.available.none.fl_str_mv 2024-05-09T18:42:36Z
dc.date.issued.none.fl_str_mv 2024-04-19
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86062
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86062
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Tan, S., D. Li, and X. Zhu, Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother, 2020. 124: p. 109821.
Dagher, O.K., et al., Advances in cancer immunotherapies. Cell, 2023. 186(8): p. 1814-1814.e1.
Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.
Lollini, P.L., et al., Vaccines for tumour prevention. Nat Rev Cancer, 2006. 6(3): p. 204-16.
Fu, C., et al., DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel), 2020. 8(4).
Devi, G.R. and S. Nath, Delivery of Synthetic mRNA Encoding FOXP3 Antigen into Dendritic Cells for Inflammatory Breast Cancer Immunotherapy. Methods Mol Biol, 2016. 1428: p. 231-43.
Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.
Carreno, B.M., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015. 348(6236): p. 803-8.
Patente, T.A., et al., Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol, 2018. 9: p. 3176.
Lesterhuis, W.J., et al., Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 2010. 30(12): p. 5091-7.
Cafri, G., et al., mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation, 2020. 130(11).
Aurisicchio, L., et al., A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology, 2014. 3(1).
Tateshita, N., et al., Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release : official journal of the Controlled Release Society, 2019. 310.
Lu, Y., et al., Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014. 20(13).
Gelband, H., et al., Cancer: Disease Control Priorities, Third Edition (Volume 3). 2015.
Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
Kennedy, L.B. and A.K.S. Salama, A review of cancer immunotherapy toxicity. CA Cancer J Clin, 2020. 70(2): p. 86-104.
Igarashi, Y. and T. Sasada, Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res, 2020. 2020: p. 5825401.
Maus, M.V., et al., Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol, 2014. 32: p. 189-225.
Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer, 2018. 18(1): p. 77.
Karpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718.
Wells, D.K., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3): p. 818-834.e13.
Bradley, P. and P.G. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol, 2019. 37: p. 547-570.
E, S., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, N.Y.), 2016. 352(6291).
Ali, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.
Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.
Aurisicchio, L., et al., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019. 38(1): p. 78.
Farkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 2016. 14: p. 73.
van der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643-7.
Gaugler, B., et al., Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994. 179(3): p. 921-30.
Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.
Kawakami, Y., et al., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6458-62.
Kantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.
Mou, Z., Y. He, and Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett, 2009. 278(2): p. 123-129.
Di Oto, E., et al., Prognostic impact of HER-2 Subclonal Amplification in breast cancer. Virchows Arch, 2017. 471(3): p. 313-319.
Brinkman, J.A., et al., Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther, 2004. 4(2): p. 181-98.
Disis, M.L., et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002. 20(11): p. 2624-32.
Rivoltini, L., et al., Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol, 1995. 154(5): p. 2257-65.
Simpson, A.J., et al., Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer, 2005. 5(8): p. 615-25.
Thomas, R., et al., NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol, 2018. 9: p. 947.
Kakimi, K., et al., A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer, 2011. 129(12): p. 2836-46.
Chamucero-Millares, J.A., D.A. Bernal-Estévez, and C.A. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol, 2021. 360: p. 104257.
Spaete, R.R., R.C. Gehrz, and M.P. Landini, Human cytomegalovirus structural proteins. J Gen Virol, 1994. 75 ( Pt 12): p. 3287-308.
Solache, A., et al., Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol, 1999. 163(10): p. 5512-8.
Wloch, M.K., et al., Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis, 2008. 197(12): p. 1634-42.
Bouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4(Suppl 4): p. D49-53.
Choo, J.A., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol, 2014. 88(18): p. 10613-23.
Lillie, P.J., et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis, 2012. 55(1): p. 19-25.
Dörrie, J., et al., Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics, 2020. 12(2).
Chen, Y.Z., et al., Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol, 2010. 2010: p. 565643.
Li, G.B. and G.X. Lu, Gene delivery efficiency in bone marrow-derived dendritic cells: comparison of four methods and optimization for lentivirus transduction. Mol Biotechnol, 2009. 43(3): p. 250-6.
Mack, C.A., et al., Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 1997. 8(1): p. 99-109.
Foged, C., et al., Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine, 2004. 22(15-16): p. 1903-13.
Yamada, M., et al., Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release, 2004. 98(1): p. 157-67.
Lu, Y., et al., Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007. 28(21): p. 3255-62.
Kim, T.H., et al., Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2796-803.
Ali, O.A. and D.J. Mooney, Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J Control Release, 2008. 132(3): p. 273-8.
Potter, H. and R. Heller, Transfection by Electroporation. Curr Protoc Mol Biol, 2018. 121: p. 9.3.1-9.3.13.
Schwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34.
Butler, M.O. and N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev, 2014. 257(1): p. 191-209.
Kim, J.V., et al., The ABCs of artificial antigen presentation. Nat Biotechnol, 2004. 22(4): p. 403-10.
Neal, L.R., et al., The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther, 2017. 2(1): p. 68-79.
Klein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer, 1976. 18(4): p. 421-31.
Butler, M.O., et al., A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol, 2010. 22(11): p. 863-73.
Stepanenko, A.A. and V.V. Dmitrenko, HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene, 2015. 569(2): p. 182-90.
Hong, C.H., et al., Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother, 2017. 40(6): p. 201-210.
Lee, M.N. and M. Meyerson, Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol, 2021. 6(55).
Prasher, D.C., Using GFP to see the light. Trends Genet, 1995. 11(8): p. 320-3.
Schmidt, A., et al., lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc, 1998. 3(1): p. 54-60.
Hoffman, R.M., Green fluorescent protein imaging of tumor cells in mice. Lab Anim (NY), 2002. 31(4): p. 34-41.
Okabe, M., et al., 'Green mice' as a source of ubiquitous green cells. FEBS Lett, 1997. 407(3): p. 313-9.
Yang, M., et al., Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1206-11.
Han, Q., et al., Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1607-12.
Peng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep, 2019. 28(10): p. 2728-2738.e7.
Bentzen, A.K. and S.R. Hadrup, Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother, 2017. 66(5): p. 657-666.
Zappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods Enzymol, 2020. 631: p. 43-59.
Rochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90.
Jicha, D.L., J.J. Mulé, and S.A. Rosenberg, Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med, 1991. 174(6): p. 1511-5.
Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.
Boyman, O., et al., Cytokines and T-cell homeostasis. Curr Opin Immunol, 2007. 19(3): p. 320-6.
Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79.
van den Broek, T., J.A.M. Borghans, and F. van Wijk, The full spectrum of human naive T cells. Nat Rev Immunol, 2018. 18(6): p. 363-373.
Melichar, B., et al., Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol, 2000. 119(1): p. 19-27.
Young, J.W., et al., The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest, 1992. 90(1): p. 229-37.
Li, Z., et al., CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol, 2019. 10: p. 1312.
Hirano, N., et al., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood, 2006. 107(4): p. 1528-36.
Wallet, M.A., P. Sen, and R. Tisch, Immunoregulation of dendritic cells. Clin Med Res, 2005. 3(3): p. 166-75.
Shuford, W.W., et al., 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997. 186(1): p. 47-55.
Martinez-Perez, A.G., et al., 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci, 2021. 22(12).
Díaz, Á., et al., CD40-CD154: A perspective from type 2 immunity. Semin Immunol, 2021. 53: p. 101528.
Alunno, A., et al., Novel Therapeutic Strategies in Primary Sjögren's Syndrome. Isr Med Assoc J, 2017. 19(9): p. 576-580.
Hassan, G.S., J. Stagg, and W. Mourad, Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev, 2015. 41(5): p. 431-40.
Bacher, P. and A. Scheffold, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A, 2013. 83(8): p. 692-701.
Dawicki, W. and T.H. Watts, Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol, 2004. 34(3): p. 743-751.
Otano, I., et al., CD137 (4-1BB) costimulation of CD8. Nat Commun, 2021. 12(1): p. 7296.
Bajnok, A., et al., The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm, 2017. 2017: p. 8045161.
Spetz, J., A.G. Presser, and K.A. Sarosiek, T Cells and Regulated Cell Death: Kill or Be Killed. Int Rev Cell Mol Biol, 2019. 342: p. 27-71.
Reddy, M., et al., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods, 2004. 293(1-2): p. 127-42.
Marzio, R., J. Mauël, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82.
González-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.
Lim, L.C., et al., A whole-blood assay for qualitative and semiquantitative measurements of CD69 surface expression on CD4 and CD8 T lymphocytes using flow cytometry. Clin Diagn Lab Immunol, 1998. 5(3): p. 392-8.
Gorabi, A.M., et al., The pivotal role of CD69 in autoimmunity. J Autoimmun, 2020. 111: p. 102453.
Mallett, S., S. Fossum, and A.N. Barclay, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J, 1990. 9(4): p. 1063-8.
Croft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev, 2009. 229(1): p. 173-91.
Rogers, P.R., et al., OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 2001. 15(3): p. 445-55.
Walker, L.S., et al., Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med, 1999. 190(8): p. 1115-22.
Jubel, J.M., et al., The Role of PD-1 in Acute and Chronic Infection. Front Immunol, 2020. 11: p. 487.
Keir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 677-704.
Pentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.
Walunas, T.L., et al., CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol, 1996. 156(3): p. 1006-13.
Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.
Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.
Workman, C.J., et al., Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol, 2004. 172(9): p. 5450-5.
Ménager, J., et al., Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014. 9(2): p. e89897.
Aspord, C., et al., pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol, 2014. 44(10): p. 2880-92.
Wang, M., et al., Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011. 132(4): p. 482-91.
Dhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 2019. 47(W1): p. W502-W506.
Czerniecki, B.J., et al., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res, 2007. 67(4): p. 1842-52.
Jain, R.K., et al., Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J, 2001. 360(Pt 3): p. 645-9.
Arnaud, M., et al., Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol, 2022. 40(5): p. 656-660.
Liu, Y., et al., Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol, 2022. 13: p. 1016817.
Phetsouphanh, C., J.J. Zaunders, and A.D. Kelleher, Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci, 2015. 16(8): p. 18878-93.
Azuma, M., Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol, 2019. 1189: p. 3-23.
Curtsinger, J.M., et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol, 1999. 162(6): p. 3256-62.
Tanimoto, K., et al., Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy, 2014. 16(1): p. 135-46.
Riedhammer, C., D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol, 2016. 1304: p. 53-61.
Van Camp, K., et al., Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods, 2010. 354(1-2): p. 1-10.
Chong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165.
Nastasi, C., L. Mannarino, and M. D'Incalci, DNA Damage Response and Immune Defense. Int J Mol Sci, 2020. 21(20).
Mortara, L., et al., Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol, 2007. 37(12): p. 3381-92.
Lejeune, F.J., et al., Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun, 2006. 6: p. 6.
Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.
Jouanguy, E., et al., A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet, 1999. 21(4): p. 370-8.
Ikeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109.
Ikeda, H, R.R., A.M. Ghoneim, and N. El-Mashad, TNF-α gene polymorphisms and expression. Springerplus, 2016. 5(1): p. 1508.
Trapani, J.A. and V.R. Sutton, Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol, 2003. 15(5): p. 533-43.
de Jong, R., et al., Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol, 1991. 146(8): p. 2488-94.
Walker, L.S., et al., Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today, 2000. 21(7): p. 333-7.
Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.
Kaminski, D.A., et al., CD28 and inducible costimulator (ICOS) signalling can sustain CD154 expression on activated T cells. Immunology, 2009. 127(3): p. 373-85.
Wolfl, M., et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007. 110(1): p. 201-10.
Ahn, E., et al., Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A, 2018. 115(18): p. 4749-4754.
Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995. 270(5238): p. 985-8.
Steiner, K., et al., Enhanced expression of CTLA-4 (CD152) on CD4+ T cells in HIV infection. Clin Exp Immunol, 1999. 115(3): p. 451-7.
Goldberg, M.V. and C.G. Drake, LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol, 2011. 344: p. 269-78.
Fuertes Marraco, S.A., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol, 2015. 6: p. 310.
Wang, W., et al., PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation, 2008. 86(6): p. 836-44.
Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer, 2016. 16: p. 591.
Kaech, S.M., E.J. Wherry, and R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol, 2002. 2(4): p. 251-62.
Hsiue, E.H., et al., Targeting a neoantigen derived from a common. Science, 2021. 371(6533).
Maus, M.V., et al., Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002. 20(2): p. 143-8.
Zeng, W., et al., Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 2014. 219(8): p. 583-92.
Shao, J., et al., Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol, 2018. 334: p. 78-86.
Butler, M.O., et al., Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res, 2007. 13(6): p. 1857-67.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 164 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Inmunología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86062/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86062/4/1032476383.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fa96bd2ecde0b472a2b2f3037202885c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886509710671872
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra López, Carlos Alberto72ac583cfa47cd3a2fb760ecf10befcc600Villota Alava, María Alejandra304cff981c087fba7679071d7b010f61Clavijo Ramirez, Carlos ArturoInmunología y Medicina TraslacionalPatarroyo Gutiérrez, Manuel AlfonsoVillota Alava, María Alejandra [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001786060]2024-05-09T18:42:36Z2024-05-09T18:42:36Z2024-04-19https://repositorio.unal.edu.co/handle/unal/86062Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa deficiente presentación del antígeno por parte de las células tumorales juega un papel importante en la evasión de la respuesta inmune antitumoral por parte de los linfocitos T, siendo, de hecho, un factor primordial del origen de los tumores. Por esta razón distintos tipos de células presentadoras de antígeno (APCs) han sido ampliamente utilizadas para la inmunoterapia del cáncer debido a su capacidad de procesar y presentar eficientemente antígenos a los linfocitos T en pacientes con cáncer. Frecuentemente las APCs son pulsadas con el antígeno en forma de péptidos, sin embargo, este enfoque puede resultar en la presentación de epítopes que no son generadas producto del procesamiento natural por las células tumorales, afectando la efectividad de este tipo de inmunoterapia. En este contexto, el uso de minigenes, que corresponden a secuencias de antígenos concatenados, emerge como una alternativa propicia para la selección de antígenos procesados naturalmente por las APCs. Se espera que esta estrategia simule el procesamiento y presentación natural de los antígenos a los linfocitos T y aumente la probabilidad de identificar antígenos inmunogénicos, evitando así la selección de epítopes que no son procesados y presentados naturalmente como candidatos a vacuna para la inmunoterapia. Para hacer entrega de estos minigenes a las APCs, se han explorado distintos métodos, siendo la electroporación, la administración mediante liposomas catiónicos y la transducción por vectores virales los más comunes. Aunque se reconocen las ventajas y desventajas inherentes a cada método, pocos estudios han comparado el rendimiento en la estimulación de los linfocitos T por parte de APCs transfectadas con diferentes sistemas. En este sentido, el presente trabajo propuso la evaluación de la capacidad que tienen las APCs transfectadas con un constructo de minigen que codifica para antígenos inmunogénicos restringidos al haplotipo HLA-A*0201, de estimular precursores de linfocitos T-CD8+ (LT-CD8+) antígeno-específicos in vitro. Además de la transfección con el minigen, también se diseñaron APCs artificiales (en adelante denominaremos aAPCs), cotransfectando las líneas celulares HEK293 y K562 con plásmidos que codifican para moléculas co-estimuladoras (CD80, CD83, CD137L) y en el caso de las K562 también con un plásmido que codifica para la molécula HLA-A*0201, con el fin de evaluar la eficiencia de activación de LT-CD8+ por estas aAPCs, en términos de la producción de citoquinas intracelulares, la actividad citotóxica, la expresión de marcadores de activación y agotamiento; y el perfil de las subpoblaciones de memoria de los LT-CD8+ estimulados. Los resultados de este trabajo permitieron implementar una metodología de transfección con el uso de lipofectamina y electroporación en células HEK293 de un minigen codificante para epítopes HLA-A*0201. Estas células se emplearon como aAPCs para analizar el fenotipo de poblaciones de LT-CD8+ antígeno-específicas. Considerando que el uso de las células HEK293 como aAPCs no ha sido explorado, y debido a su alta eficiencia de transfección y transducción con minigenes, la metodología implementada en este trabajo posibilita su uso para la identificación de neoantígenos inmunogénicos naturalmente procesados. Consideramos que nuestros hallazgos pueden contribuir con la selección y el diseño de vacunas personalizadas basadas en neoantígenos tumorales útiles para la inmunoterapia del cáncer. (Texto tomado de la fuente).The deficient antigen presentation by tumor cells plays a significant role in the evasion of the anti-tumor immune response by T lymphocytes, being, in fact, a primordial factor in tumor genesis. For this reason, various types of antigen-presenting cells (APCs) have been widely used for cancer immunotherapy due to their ability to efficiently process and present antigens to T lymphocytes in cancer patients. APCs are often pulsed with antigenic peptides; however, this approach may result in the presentation of epitopes that are not naturally processed by tumor cells, affecting the effectiveness of this type of immunotherapy. In this context, the use of minigenes, which correspond to concatenated antigen sequences, emerges as a promising alternative for the selection of antigens naturally processed by APCs. It is expected that this strategy mimics the natural processing and presentation of antigens to T lymphocytes, increasing the probability of identifying immunogenic antigens, thus avoiding the selection of epitopes that are not naturally processed and presented as vaccine candidates for immunotherapy. To deliver these minigenes to APCs, various methods have been explored, with electroporation, administration via cationic liposomes, and transduction by viral vectors being the most common. Although the advantages and disadvantages of each method are recognized, few studies have compared the performance in T lymphocyte stimulation by APCs transfected with different systems. In this regard, the present work proposed the evaluation of the capacity of APCs transfected with a minigen construct encoding for HLA-A0201-restricted immunogenic antigens to stimulate antigen-specific CD8+ T lymphocyte (CD8+ LT) precursors in vitro. In addition to transfection with the minigen, artificial APCs (hereinafter referred to as aAPCs) were also designed, co-transfecting the HEK293 and K562 cell lines with plasmids encoding co-stimulatory molecules (CD80, CD83, CD137L), and in the case of K562 also with a plasmid encoding the HLA-A0201 molecule, in order to evaluate the efficiency of CD8+ LT activation by these aAPCs, in terms of intracellular cytokine production, cytotoxic activity, expression of activation and exhaustion markers, and the profile of stimulated CD8+ LT memory subpopulations. The results of this work allowed the implementation of a transfection methodology using lipofectamine and electroporation in HEK293 cells of a minigen encoding HLA-A*0201 epitopes. These cells were used as aAPCs to analyze the phenotype of antigen specific CD8+ LT populations. Considering that the use of HEK293 cells as aAPCs has not been explored, and due to their high transfection and transduction efficiency with minigenes, the methodology implemented in this work enables their use for the identification of naturally processed immunogenic neoantigens. We believe that our findings can contribute to the selection and design of personalized vaccines based on tumor neoantigens useful for cancer immunotherapy.MaestríaMagíster en InmunologíaMedicina Traslacional164 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en InmunologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaAntígenos de NeoplasiasAntígenos Virales/análisisInmunoterapia/métodosAntigens, NeoplasmAntigens, Viral/analysisImmunotherapy/methodsMinigenesNeoantígenosCélulas presentadoras de antígeno artificialesTransfecciónTransducciónCitometría de FlujoInmunoterapiaMinigeneNeoantigensArtificial Antigen Presenting CellsTransfectionFlow CytometryTransductionImmunotherapyEvaluación de la inmunogenicidad de antígenos formulados en minigenes transfectados a células presentadoras de antígenoAssessment of the immunogenicity of antigens formulated in minigenes transfected into antigen-presenting cellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeTan, S., D. Li, and X. Zhu, Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother, 2020. 124: p. 109821.Dagher, O.K., et al., Advances in cancer immunotherapies. Cell, 2023. 186(8): p. 1814-1814.e1.Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.Lollini, P.L., et al., Vaccines for tumour prevention. Nat Rev Cancer, 2006. 6(3): p. 204-16.Fu, C., et al., DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel), 2020. 8(4).Devi, G.R. and S. Nath, Delivery of Synthetic mRNA Encoding FOXP3 Antigen into Dendritic Cells for Inflammatory Breast Cancer Immunotherapy. Methods Mol Biol, 2016. 1428: p. 231-43.Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.Carreno, B.M., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015. 348(6236): p. 803-8.Patente, T.A., et al., Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol, 2018. 9: p. 3176.Lesterhuis, W.J., et al., Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 2010. 30(12): p. 5091-7.Cafri, G., et al., mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation, 2020. 130(11).Aurisicchio, L., et al., A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology, 2014. 3(1).Tateshita, N., et al., Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release : official journal of the Controlled Release Society, 2019. 310.Lu, Y., et al., Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014. 20(13).Gelband, H., et al., Cancer: Disease Control Priorities, Third Edition (Volume 3). 2015.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.Kennedy, L.B. and A.K.S. Salama, A review of cancer immunotherapy toxicity. CA Cancer J Clin, 2020. 70(2): p. 86-104.Igarashi, Y. and T. Sasada, Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res, 2020. 2020: p. 5825401.Maus, M.V., et al., Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol, 2014. 32: p. 189-225.Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer, 2018. 18(1): p. 77.Karpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718.Wells, D.K., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3): p. 818-834.e13.Bradley, P. and P.G. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol, 2019. 37: p. 547-570.E, S., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, N.Y.), 2016. 352(6291).Ali, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.Aurisicchio, L., et al., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019. 38(1): p. 78.Farkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 2016. 14: p. 73.van der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643-7.Gaugler, B., et al., Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994. 179(3): p. 921-30.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.Kawakami, Y., et al., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6458-62.Kantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.Mou, Z., Y. He, and Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett, 2009. 278(2): p. 123-129.Di Oto, E., et al., Prognostic impact of HER-2 Subclonal Amplification in breast cancer. Virchows Arch, 2017. 471(3): p. 313-319.Brinkman, J.A., et al., Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther, 2004. 4(2): p. 181-98.Disis, M.L., et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002. 20(11): p. 2624-32.Rivoltini, L., et al., Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol, 1995. 154(5): p. 2257-65.Simpson, A.J., et al., Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer, 2005. 5(8): p. 615-25.Thomas, R., et al., NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol, 2018. 9: p. 947.Kakimi, K., et al., A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer, 2011. 129(12): p. 2836-46.Chamucero-Millares, J.A., D.A. Bernal-Estévez, and C.A. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol, 2021. 360: p. 104257.Spaete, R.R., R.C. Gehrz, and M.P. Landini, Human cytomegalovirus structural proteins. J Gen Virol, 1994. 75 ( Pt 12): p. 3287-308.Solache, A., et al., Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol, 1999. 163(10): p. 5512-8.Wloch, M.K., et al., Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis, 2008. 197(12): p. 1634-42.Bouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4(Suppl 4): p. D49-53.Choo, J.A., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol, 2014. 88(18): p. 10613-23.Lillie, P.J., et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis, 2012. 55(1): p. 19-25.Dörrie, J., et al., Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics, 2020. 12(2).Chen, Y.Z., et al., Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol, 2010. 2010: p. 565643.Li, G.B. and G.X. Lu, Gene delivery efficiency in bone marrow-derived dendritic cells: comparison of four methods and optimization for lentivirus transduction. Mol Biotechnol, 2009. 43(3): p. 250-6.Mack, C.A., et al., Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 1997. 8(1): p. 99-109.Foged, C., et al., Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine, 2004. 22(15-16): p. 1903-13.Yamada, M., et al., Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release, 2004. 98(1): p. 157-67.Lu, Y., et al., Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007. 28(21): p. 3255-62.Kim, T.H., et al., Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2796-803.Ali, O.A. and D.J. Mooney, Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J Control Release, 2008. 132(3): p. 273-8.Potter, H. and R. Heller, Transfection by Electroporation. Curr Protoc Mol Biol, 2018. 121: p. 9.3.1-9.3.13.Schwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34.Butler, M.O. and N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev, 2014. 257(1): p. 191-209.Kim, J.V., et al., The ABCs of artificial antigen presentation. Nat Biotechnol, 2004. 22(4): p. 403-10.Neal, L.R., et al., The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther, 2017. 2(1): p. 68-79.Klein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer, 1976. 18(4): p. 421-31.Butler, M.O., et al., A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol, 2010. 22(11): p. 863-73.Stepanenko, A.A. and V.V. Dmitrenko, HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene, 2015. 569(2): p. 182-90.Hong, C.H., et al., Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother, 2017. 40(6): p. 201-210.Lee, M.N. and M. Meyerson, Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol, 2021. 6(55).Prasher, D.C., Using GFP to see the light. Trends Genet, 1995. 11(8): p. 320-3.Schmidt, A., et al., lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc, 1998. 3(1): p. 54-60.Hoffman, R.M., Green fluorescent protein imaging of tumor cells in mice. Lab Anim (NY), 2002. 31(4): p. 34-41.Okabe, M., et al., 'Green mice' as a source of ubiquitous green cells. FEBS Lett, 1997. 407(3): p. 313-9.Yang, M., et al., Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1206-11.Han, Q., et al., Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1607-12.Peng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep, 2019. 28(10): p. 2728-2738.e7.Bentzen, A.K. and S.R. Hadrup, Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother, 2017. 66(5): p. 657-666.Zappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods Enzymol, 2020. 631: p. 43-59.Rochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90.Jicha, D.L., J.J. Mulé, and S.A. Rosenberg, Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med, 1991. 174(6): p. 1511-5.Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.Boyman, O., et al., Cytokines and T-cell homeostasis. Curr Opin Immunol, 2007. 19(3): p. 320-6.Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79.van den Broek, T., J.A.M. Borghans, and F. van Wijk, The full spectrum of human naive T cells. Nat Rev Immunol, 2018. 18(6): p. 363-373.Melichar, B., et al., Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol, 2000. 119(1): p. 19-27.Young, J.W., et al., The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest, 1992. 90(1): p. 229-37.Li, Z., et al., CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol, 2019. 10: p. 1312.Hirano, N., et al., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood, 2006. 107(4): p. 1528-36.Wallet, M.A., P. Sen, and R. Tisch, Immunoregulation of dendritic cells. Clin Med Res, 2005. 3(3): p. 166-75.Shuford, W.W., et al., 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997. 186(1): p. 47-55.Martinez-Perez, A.G., et al., 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci, 2021. 22(12).Díaz, Á., et al., CD40-CD154: A perspective from type 2 immunity. Semin Immunol, 2021. 53: p. 101528.Alunno, A., et al., Novel Therapeutic Strategies in Primary Sjögren's Syndrome. Isr Med Assoc J, 2017. 19(9): p. 576-580.Hassan, G.S., J. Stagg, and W. Mourad, Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev, 2015. 41(5): p. 431-40.Bacher, P. and A. Scheffold, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A, 2013. 83(8): p. 692-701.Dawicki, W. and T.H. Watts, Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol, 2004. 34(3): p. 743-751.Otano, I., et al., CD137 (4-1BB) costimulation of CD8. Nat Commun, 2021. 12(1): p. 7296.Bajnok, A., et al., The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm, 2017. 2017: p. 8045161.Spetz, J., A.G. Presser, and K.A. Sarosiek, T Cells and Regulated Cell Death: Kill or Be Killed. Int Rev Cell Mol Biol, 2019. 342: p. 27-71.Reddy, M., et al., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods, 2004. 293(1-2): p. 127-42.Marzio, R., J. Mauël, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82.González-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.Lim, L.C., et al., A whole-blood assay for qualitative and semiquantitative measurements of CD69 surface expression on CD4 and CD8 T lymphocytes using flow cytometry. Clin Diagn Lab Immunol, 1998. 5(3): p. 392-8.Gorabi, A.M., et al., The pivotal role of CD69 in autoimmunity. J Autoimmun, 2020. 111: p. 102453.Mallett, S., S. Fossum, and A.N. Barclay, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J, 1990. 9(4): p. 1063-8.Croft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev, 2009. 229(1): p. 173-91.Rogers, P.R., et al., OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 2001. 15(3): p. 445-55.Walker, L.S., et al., Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med, 1999. 190(8): p. 1115-22.Jubel, J.M., et al., The Role of PD-1 in Acute and Chronic Infection. Front Immunol, 2020. 11: p. 487.Keir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 677-704.Pentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.Walunas, T.L., et al., CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol, 1996. 156(3): p. 1006-13.Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.Workman, C.J., et al., Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol, 2004. 172(9): p. 5450-5.Ménager, J., et al., Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014. 9(2): p. e89897.Aspord, C., et al., pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol, 2014. 44(10): p. 2880-92.Wang, M., et al., Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011. 132(4): p. 482-91.Dhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 2019. 47(W1): p. W502-W506.Czerniecki, B.J., et al., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res, 2007. 67(4): p. 1842-52.Jain, R.K., et al., Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J, 2001. 360(Pt 3): p. 645-9.Arnaud, M., et al., Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol, 2022. 40(5): p. 656-660.Liu, Y., et al., Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol, 2022. 13: p. 1016817.Phetsouphanh, C., J.J. Zaunders, and A.D. Kelleher, Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci, 2015. 16(8): p. 18878-93.Azuma, M., Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol, 2019. 1189: p. 3-23.Curtsinger, J.M., et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol, 1999. 162(6): p. 3256-62.Tanimoto, K., et al., Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy, 2014. 16(1): p. 135-46.Riedhammer, C., D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol, 2016. 1304: p. 53-61.Van Camp, K., et al., Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods, 2010. 354(1-2): p. 1-10.Chong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165.Nastasi, C., L. Mannarino, and M. D'Incalci, DNA Damage Response and Immune Defense. Int J Mol Sci, 2020. 21(20).Mortara, L., et al., Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol, 2007. 37(12): p. 3381-92.Lejeune, F.J., et al., Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun, 2006. 6: p. 6.Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.Jouanguy, E., et al., A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet, 1999. 21(4): p. 370-8.Ikeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109.Ikeda, H, R.R., A.M. Ghoneim, and N. El-Mashad, TNF-α gene polymorphisms and expression. Springerplus, 2016. 5(1): p. 1508.Trapani, J.A. and V.R. Sutton, Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol, 2003. 15(5): p. 533-43.de Jong, R., et al., Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol, 1991. 146(8): p. 2488-94.Walker, L.S., et al., Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today, 2000. 21(7): p. 333-7.Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.Kaminski, D.A., et al., CD28 and inducible costimulator (ICOS) signalling can sustain CD154 expression on activated T cells. Immunology, 2009. 127(3): p. 373-85.Wolfl, M., et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007. 110(1): p. 201-10.Ahn, E., et al., Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A, 2018. 115(18): p. 4749-4754.Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995. 270(5238): p. 985-8.Steiner, K., et al., Enhanced expression of CTLA-4 (CD152) on CD4+ T cells in HIV infection. Clin Exp Immunol, 1999. 115(3): p. 451-7.Goldberg, M.V. and C.G. Drake, LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol, 2011. 344: p. 269-78.Fuertes Marraco, S.A., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol, 2015. 6: p. 310.Wang, W., et al., PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation, 2008. 86(6): p. 836-44.Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer, 2016. 16: p. 591.Kaech, S.M., E.J. Wherry, and R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol, 2002. 2(4): p. 251-62.Hsiue, E.H., et al., Targeting a neoantigen derived from a common. Science, 2021. 371(6533).Maus, M.V., et al., Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002. 20(2): p. 143-8.Zeng, W., et al., Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 2014. 219(8): p. 583-92.Shao, J., et al., Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol, 2018. 334: p. 78-86.Butler, M.O., et al., Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res, 2007. 13(6): p. 1857-67.Universidad Nacional de ColombiaMincienciasEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86062/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032476383.2024.pdf1032476383.2024.pdfTesis de Maestría en Inmunologíaapplication/pdf8404843https://repositorio.unal.edu.co/bitstream/unal/86062/4/1032476383.2024.pdffa96bd2ecde0b472a2b2f3037202885cMD54unal/86062oai:repositorio.unal.edu.co:unal/860622024-05-09 13:44:24.161Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=