Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus
fotografías a color, gráficas, ilustraciones, tablas
- Autores:
-
Trujillo Morales, Paula Camila
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81796
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Staphylococcus aureus
hemólisis
biofilm
Com_YlbF
YmcA
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_95783873d18e14b37b2fbc2521f7cf17 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81796 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
dc.title.translated.eng.fl_str_mv |
DETERMINATION OF THE PARTICIPATION OF THE YmcA PROTEIN IN THE REGULATION OF HEMOLYSIS AND BIOFILM FORMATION IN Staphylococcus aureus Determination of the participation of the YmcA protein in the regulation of hemolysis and biofilm formation in Staphylococcus aureus |
title |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
spellingShingle |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus 570 - Biología::572 - Bioquímica Staphylococcus aureus hemólisis biofilm Com_YlbF YmcA |
title_short |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
title_full |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
title_fullStr |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
title_full_unstemmed |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
title_sort |
Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus |
dc.creator.fl_str_mv |
Trujillo Morales, Paula Camila |
dc.contributor.advisor.none.fl_str_mv |
Castellanos Parra, Jaime Eduardo |
dc.contributor.author.none.fl_str_mv |
Trujillo Morales, Paula Camila |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Staphylococcus aureus hemólisis biofilm Com_YlbF YmcA |
dc.subject.proposal.spa.fl_str_mv |
Staphylococcus aureus hemólisis biofilm Com_YlbF YmcA |
description |
fotografías a color, gráficas, ilustraciones, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-05T19:44:34Z |
dc.date.available.none.fl_str_mv |
2022-08-05T19:44:34Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81796 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81796 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Cervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). General characteristics of Staphylococcus aureus. Revista latinoamericana de patología clínica y medicina de laboratorio, 61(1), 28-40 Velázquez-Meza, Maria Elena. (2005). Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. Salud Pública de México, 47(5), 381- 387. Paganini, Hugo R., Della Latta, Paula, Soto, Adriana, Casimir, Lidia, Mónaco, Andrea, Verdaguer, Virginia, Berberian, Griselda, Rosanova, María T., González, Fernando, & Sarkis, Claudia. (2010). Bacteriemias por Staphylococcus aureus adquiridas en la comunidad: 17 años de experiencia en niños de la Argentina. Archivos argentinos de pediatría, 108(4), 311-317 Calderini, M., Sanabria, B. G., Taboada, A., Samaniego, S., Irala, B. J., & Estigarribia, G. B. (2015). Colonización nasal de Staphylococcus aureus y su relación con afectación sistémica en pacientes adultos intearndos en el Instituto de Medicina Tropical. de Medicina Tropical, 13. Dalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., ... & Prévost, G. (2005). Staphylococcus aureus bicomponent γ-hemolysins, HlgA, HlgB, and HlgC, can form mixed pores containing all components. Jouarnl of chemical information and modeling, 45(6), 1539-1545. Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2(5), 445-459. Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., ... & Smeltzer, M. S. (2004). Global gene expression in Staphylococcus aureus biofilms. Jouarnl of bacteriology, 186(14), 4665-4684. Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008). Gauliard, E., Ouellette, S. P., Rueden, K. J., & Ladant, D. (2015). Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Frontiers in cellular and infection microbiology, 5, 13. Otto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine, 64, 175- 188. Abee T, Kovács ÁT, Kuipers OP, van der Veen S. (2011) Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology. Valle, J., Toledo‐Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penadés, J. R., & Lasa, I. (2003). SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular microbiology, 48(4), 1075-1087. Beenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and immunity, 71(7), 4206-4211. Chan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Jouarnl of medicinal chemistry, 47(19), 4633-4641. Beenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., ... & Smeltzer, M. S. (2010). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS one, 5(5). Kong, K. F., Vuong, C., & Otto, M. (2006). Staphylococcus quorum sensing in biofilm formation and infection. Intearntional Jouarnl of Medical Microbiology, 296(2-3), 133-139. Liu, Q., Yeo, W. S., & Bae, T. (2016). The SaeRS two‐component system of Staphylococcus aureus. Genes, 7(10), 81. Nicholas, R. O., Li, T., McDevitt, D., Marra, A., Sucoloski, S., Demarsh, P. L., & Gentry, D. R. (1999). Isolation and Characterization of a sigBDeletion Mutant of Staphylococcus aureus. Infection and immunity, 67(7), 3667-3669. Rachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M., & Ziebuhr, W. (2000). Altearntive Transcription Factor ςB Is Involved in Regulation of Biofilm Expression in a Staphylococcus aureus Mucosal Isolate. Jouarnl of bacteriology, 182(23), 6824-6826. Kennedy, A. D., Wardenburg, J. B., Gardner, D. J., Long, D., Whitney, A. R., Braughton, K. R., ... & DeLeo, F. R. (2010). Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. The Jouarnl of infectious diseases, 202(7), 1050-1058. Berube, B. J., & Wardenburg, J. B. (2013). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5(6), 1140-1166. Camussone, C. M., & Calvinho, L. F. (2013). Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevanciay rol como agentes inmunógenos. 11.Revista Argentina de Microbiología, 45(2), 119–130. https://doi.org/10.1016/S0325-7541(13)70011-7 Vandenesch, F., Lina, G., & Henry, T. (2012). Staphylococcus aureus Hemolysins, bicomponent Leukocidins, and Cytolytic Peptides: ¿A Redundant Arsenal of MembraneDamaging Virulence Factors? Frontiers in Cellular and Infection Microbiology, 2, 12. https://doi.org/10.3389/fcimb.2012.00012 Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32– 37. https://doi.org/10.1016/j.mib.2013.11.004. Verdon, J., Girardin, N., Lacombe, C., Berjeaud, J. M., & Héchard, Y. (2009). δHemolysin, an update on a membrane-interacting peptide. Peptides, 30(4), 817-823. Spaan, A. N., Vrieling, M., Wallet, P., Badiou, C., Reyes-Robles, T., Ohneck, E. A., ... & Lina, G. (2014). The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature communications, 5(1), 1- 11 Kessel, C. (2017). molecular subtyping of Staphylococcus aureus isolates from the u.p. community for the presence of toxin-encoding genes. All NMU Master’s Theses. Retrieved from https://commons.nmu.edu/theses/133 Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300. Tanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837– 850. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 55(3), 739-749. Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol. 2016;101(4):606–24. Epub 2016/08/09. pmid:27501195; PubMed Central PMCID: PMCPMC4978174. DeLoughery A, Dengler V, Chai Y, Losick R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mARN levels for the matrix gene repressor SinR. Mol Microbiol 2016; 99(2): 425- 37.[http://dx.doi.org/10.1111/mmi.13240] [PMID: 26434553] DeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mARNs by the endoribonuclease ARNse Y and its associated Y- complex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 115(24), E5585-E5594. Hamouche, L., Billaudeau, C., Rocca, A., Chastanet, A., Ngo, S., Laalami, S., & Putzer, H. (2020). Dynamic membrane localization of RNase Y in Bacillus subtilis. MBio, 11(1), e03337-19. Escobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus aureus. The Open Bioinformatics Jouarnl, 12(1). Adusei-Danso, F., Khaja, F. T., DeSantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., ... & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis RicProteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and ARN Processing. mBio, 10(5), e01841-19. Reverdy, A., Chen, Y., Hunter, E., Gozzi, K., & Chai, Y. (2018). Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PloS one, 13(9), e0204687. Kaito, C., Kurokawa, K., Matsumoto, Y., Terao, Y., Kawabata, S., Hamada, S., & Sekimizu, K. (2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Molecular microbiology, 56(4), 934-944. Numata, S., Nagata, M., Mao, H., Sekimizu, K., & Kaito, C. (2014). CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. Jouarnl of Biological Chemistry, 289(12), 8420- 8431. Kaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K., & Sekimizu, K. (2006). Novel ADN binding protein SarZ contributes to virulence in Staphylococcus aureus. Molecular microbiology, 62(6), 1601-1617. Nagata, M., Kaito, C., & Sekimizu, K. (2008). Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. Jouarnl of Biological Chemistry, 283(4), 2176-2184. Marincola, G., Schäfer, T., Behler, J., Bernhardt, J., Ohlsen, K., Goerke, C., & Wolz, C. (2012). ARNse Y of Staphylococcus aureus and its role in the activation of virulence genes. Molecular microbiology, 85(5), 817-832 Arnaud, M., Chastanet, A., & Débarbouillé, M. (2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and environmental microbiology, 70(11), 6887-6891. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 2004; 70: 6076-85. Christensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006 (1985). Moreno-González, P. A., Diaz, G. J., & Ramírez-Hernández, M. H. (2013). Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+.Revista colombiana de quimica, 42(2), 12-20. Walsh, B. W., Lenhart, J. S., Schroeder, J. W., & Simmons, L. A. (2012). Far Western Blotting as a rapid and efficient method for detecting interactions between ADN replication and ADN repair proteins. In Single-Stranded ADN Binding Proteins (pp. 161-168). Humana Press, Totowa, NJ. Rodríguez Tamayo, E. A., & Jiménez Quiceno, J. N. (2015). Factors related with colonization by Staphylococcus aureus. Iatreia, 28(1), 66-77. Deinhardt-Emmer, S., Sachse, S., Geraci, J., Fischer, C., Kwetkat, A., Dawczynski, K., ... & Löffler, B. (2018). Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. Jouarnl of Hospital Infection, 100(3), 309-315. Van Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus bacteremia. Clinical microbiology reviews, 25(2), 362-386. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67:5427-33. Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010; 65:1955- 8. Escobar Pérez, J. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus Ohniwa, R. L., Ushijima, Y., Saito, S. & Morikawa, K. Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 6, e19172 (2011). Vergara-Irigaray, M. et al. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections †.Infect. Immun. 77, 3978–3991 (2009). O’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008). Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300. Ramos, J.L., Martinez-Bueno, M., Molina-Henares, A.J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., Tobes, R., 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356. Seidl, K., Goerke, C., Wolz, C., Mack, D., Berger-Bachi, B., Bischoff, M., 2008. Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 76, 2044–2050. O’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D.A.; O’Gara, J.P. Association between Methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J. Clin. Microbiol. 2007, 45, 1379–1388. Regassa, L.B.; Novick, R.P.; Betley, M.J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect. Immun. 1992, 60, 3381–3388 Boles, B.R.; Horswill, A.R. Staphylococcal biofilm disassembly. Trends Microbiol. 2011, 19, 449–455. Foulston, L.; Elsholz, A.K.W.; DeFrancesco, A.S.; Losick, R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 2014, 5, e01667-14. Dengler, V.; Foulston, L.; DeFrancesco, A.S.; Losick, R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J. Bacteriol. 2015, 197, 3779–3787. Wang, B., & Muir, T. W. (2016). Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chemical Biology, 23(2), 214– 224. https://doi.org/10.1016/j.chembiol.2016.01.004 Li, T., He, L., Song, Y., Villaruz, A. E., Joo, H.-S., Liu, Q., … Li, M. (2015). AraC-Type Regulator Rsp Adapts Staphylococcus aureus Gene Expression to Acute Infection. Infection and Immunity, 84(3), 723–734. https://doi.org/10.1128/IAI.01088-15 Tsompanidou, E., Sibbald, M. J. J. B., Chlebowicz, M. A., Dreisbach, A., Back, J. W., van Dijl, J. M., … Denham, E. L. (2011). Requirement of the agr Locus for Colony 54 Spreading of Staphylococcus aureus. JouARNl of Bacteriology, 193(5), 1267–1272. https://doi.org/10.1128/JB.01276-10 Hanada, Y., Sekimizu, K., & Kaito, C. (2011). Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. The JouARNl of Biological Chemistry, 286(45), 39360–39369. https://doi.org/10.1074/jbc.M111.278416 Omae, Y., Hanada, Y., Sekimizu, K., & Kaito, C. (2013). Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. The JouARNl of Biological Chemistry, 288(35), 25542–25550. https://doi.org/10.1074/jbc.M113.495051 Rogasch, K., Ruhmling, V., Pane-Farre, J., Hoper, D., Weinberg, C., Fuchs, S., … Engelmann, S. (2006). Influence of the Two-Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 188(22), 7742–7758. https://doi.org/10.1128/JB.00555-06 Nguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334. Lee, S., Kim, S., Lee, H., Ha, J., Lee, J., Choi, Y., ... & Choi, K. H. (2018). icaA gene of Staphylococcus aureus responds to NaCl, leading to increased biofilm formation. Journal of food protection, 81(3), 412-416. Jenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology spectrum, 7(2), 7-2. Morales L, Velandia M, Calderón M. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue. Biomédica [Internet]. 2017;37:131–40. Available from: http://www.scielo.org.co/pdf/bio/v37n1/0120-4157-bio-37-01-00131.pdf Cossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28:2151–6. Tortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol. 2000;35(5). Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, et al. Microarray analysis of the Bacillus subtilis K-state: Genome-wide expression changes dependent on ComK. Mol Microbiol. 2002;43(5). Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Vol. 30, Nucleic Acids Research. 2002. Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol. 2002;184(9). Khemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet. 2015;11(10). Cho KH. The structure and function of the gram-positive bacterial RNA degradosome. Vol. 8, Frontiers in Microbiology. 2017. Tucker AT, Bobay BG, Banse A V., Olson AL, Soderblom EJ, Moseley MA, et al. A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol. 2014;426(9). Deutscher MP. The metabolic role of RNases. Trends Biochem Sci. 1988;13(4). Durand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of bacillus subtilis mRNAs. PLoS Genet. 2012;8(3). Richards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, et al. An RNA Bonnin RA, Bouloc P. RNA degradation in Staphylococcus aureus: Diversity of ribonucleases and their impact. Vol.2015, International Journal of Genomics. 2015 Marincola G, Wolz C. Downstream element determines RNase y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 2017;45(10). Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10). Adhikari RP, Novick RP. Regulatory organization of the staphylococcal sae locus. Microbiology. 2008;154(3). Steinhuber A, Goerke C, Bayer MG, Döring G, Wolz C. Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors. J Bacteriol. 2003;185(21). Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 4(4), e1000052. O'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D. A., & O'Gara, J. P. (2007). Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. Journal of clinical microbiology, 45(5), 1379-1388. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
79 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81796/3/1014293569.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81796/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81796/5/1014293569.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
bcfc44856d12a90a9d0d1a956dcf07d8 8153f7789df02f0a4c9e079953658ab2 60f8cb2b7d924d524c1168a1fe14386c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089403878866944 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Parra, Jaime Eduardod005422b5147ff1af3f046ffaf4328e6Trujillo Morales, Paula Camila8b0122c160f21467fd6d061bd7cf540e2022-08-05T19:44:34Z2022-08-05T19:44:34Z2022https://repositorio.unal.edu.co/handle/unal/81796Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías a color, gráficas, ilustraciones, tablasStaphylococcus aureus es una bacteria gram positiva, patógeno oportunista con capacidad de generar infecciones potencialmente mortales en humanos por la producción de varios factores de virulencia, del mismo modo muchos procesos biológicos de esta bacteria no son completamente entendidos, como por ejemplo el procesamiento de su ARN. Recientemente, en nuestro laboratorio, se identificó la proteína Qrp/YheA la cual posee el dominio Com_YlbF, la deleción del gen qrp produce un aumento en la hemólisis de eritrocitos y disminución en la formación de biofilm, posiblemente asociada a la desregulación en la transcripción de algunos factores de virulencia de la bacteria. Otra proteína con dominio Com_YlbF es YmcA, cuya ausencia en Bacillus subtilis inhibe la formación de biofilm, a través de la alteración de la actividad de la RNasa Y, con quien también interactúa. En S. aureus no se conoce el rol de YmcA. Por lo cual el objetivo de este trabajo fue determinar la interacción de la proteína YmcA con RNasa Y y determinar su participación en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus. Para ello se realizó la mutación delecional del gen ymcA, que causó un descenso en la capacidad hemolítica de la bacteria y un incremento en la capacidad de formación de biofilm de esta. Por otro lado, con el ensayo de Far Western Blot se demostró la interacción de la proteína YmcA con la ribonucleasa RNasa Y. Concluyendo así que la proteína YmcA participa en la hemólisis y biofilm de S. aureus probablemente debido a la interacción de YmcA con la RNasa Y. (Texto tomado de la fuente)Staphylococcus aureus is a gram-positive bacterium, an opportunistic pathogen with the capacity to generate life-threatening infections in humans due to the production of various virulence factors. Currently, many biological processes of this bacterium are not fully understood, such as the processing of its RNA. Recently, in our laboratory, the Qrp/YheA protein was identified, which has the Com_YlbF domain. The deletion of the qrp gene produces an increase in erythrocyte hemolysis and a decrease in biofilm formation, possibly associated with transcription deregulation. some bacterial virulence factors. Another protein with a Com_YlbF domain is YmcA, whose absence in Bacillus subtilis inhibits biofilm formation by altering the activity of RNase Y, with which it also interacts. In S. aureus the role of YmcA is not known. Therefore, the objective of this work is to determine the interaction of the YmcA protein with RNase Y and to determine its participation in the regulation of hemolysis and biofilm formation in Staphylococcus aureus. For this, the deletional mutation of the ymcA gene was carried out, obtaining a decrease in the hemolytic capacity of the bacteria and an increase in its biofilm formation capacity. The Far Western Blot assay also demonstrated the interaction of the YmcA protein with ribonuclease RNase Y. Concluding that the YmcA protein participates in the hemolysis and biofilm of S. aureus and this is possibly due to the interaction of YmcA with RNase Y (Text taken of source)MaestríaEstudio de factores de virulencia y elementos genéticos móviles bacterianos.79 páginasapplication/pdfspa570 - Biología::572 - BioquímicaStaphylococcus aureushemólisisbiofilmCom_YlbFYmcADeterminación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureusDETERMINATION OF THE PARTICIPATION OF THE YmcA PROTEIN IN THE REGULATION OF HEMOLYSIS AND BIOFILM FORMATION IN Staphylococcus aureusDetermination of the participation of the YmcA protein in the regulation of hemolysis and biofilm formation in Staphylococcus aureusTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). General characteristics of Staphylococcus aureus. Revista latinoamericana de patología clínica y medicina de laboratorio, 61(1), 28-40Velázquez-Meza, Maria Elena. (2005). Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. Salud Pública de México, 47(5), 381- 387.Paganini, Hugo R., Della Latta, Paula, Soto, Adriana, Casimir, Lidia, Mónaco, Andrea, Verdaguer, Virginia, Berberian, Griselda, Rosanova, María T., González, Fernando, & Sarkis, Claudia. (2010). Bacteriemias por Staphylococcus aureus adquiridas en la comunidad: 17 años de experiencia en niños de la Argentina. Archivos argentinos de pediatría, 108(4), 311-317Calderini, M., Sanabria, B. G., Taboada, A., Samaniego, S., Irala, B. J., & Estigarribia, G. B. (2015). Colonización nasal de Staphylococcus aureus y su relación con afectación sistémica en pacientes adultos intearndos en el Instituto de Medicina Tropical. de Medicina Tropical, 13.Dalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., ... & Prévost, G. (2005). Staphylococcus aureus bicomponent γ-hemolysins, HlgA, HlgB, and HlgC, can form mixed pores containing all components. Jouarnl of chemical information and modeling, 45(6), 1539-1545.Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2(5), 445-459.Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., ... & Smeltzer, M. S. (2004). Global gene expression in Staphylococcus aureus biofilms. Jouarnl of bacteriology, 186(14), 4665-4684.Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).Gauliard, E., Ouellette, S. P., Rueden, K. J., & Ladant, D. (2015). Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Frontiers in cellular and infection microbiology, 5, 13.Otto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine, 64, 175- 188.Abee T, Kovács ÁT, Kuipers OP, van der Veen S. (2011) Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology.Valle, J., Toledo‐Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penadés, J. R., & Lasa, I. (2003). SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular microbiology, 48(4), 1075-1087.Beenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and immunity, 71(7), 4206-4211.Chan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Jouarnl of medicinal chemistry, 47(19), 4633-4641.Beenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., ... & Smeltzer, M. S. (2010). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS one, 5(5).Kong, K. F., Vuong, C., & Otto, M. (2006). Staphylococcus quorum sensing in biofilm formation and infection. Intearntional Jouarnl of Medical Microbiology, 296(2-3), 133-139.Liu, Q., Yeo, W. S., & Bae, T. (2016). The SaeRS two‐component system of Staphylococcus aureus. Genes, 7(10), 81.Nicholas, R. O., Li, T., McDevitt, D., Marra, A., Sucoloski, S., Demarsh, P. L., & Gentry, D. R. (1999). Isolation and Characterization of a sigBDeletion Mutant of Staphylococcus aureus. Infection and immunity, 67(7), 3667-3669.Rachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M., & Ziebuhr, W. (2000). Altearntive Transcription Factor ςB Is Involved in Regulation of Biofilm Expression in a Staphylococcus aureus Mucosal Isolate. Jouarnl of bacteriology, 182(23), 6824-6826.Kennedy, A. D., Wardenburg, J. B., Gardner, D. J., Long, D., Whitney, A. R., Braughton, K. R., ... & DeLeo, F. R. (2010). Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. The Jouarnl of infectious diseases, 202(7), 1050-1058.Berube, B. J., & Wardenburg, J. B. (2013). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5(6), 1140-1166.Camussone, C. M., & Calvinho, L. F. (2013). Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevanciay rol como agentes inmunógenos. 11.Revista Argentina de Microbiología, 45(2), 119–130. https://doi.org/10.1016/S0325-7541(13)70011-7Vandenesch, F., Lina, G., & Henry, T. (2012). Staphylococcus aureus Hemolysins, bicomponent Leukocidins, and Cytolytic Peptides: ¿A Redundant Arsenal of MembraneDamaging Virulence Factors? Frontiers in Cellular and Infection Microbiology, 2, 12. https://doi.org/10.3389/fcimb.2012.00012Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32– 37. https://doi.org/10.1016/j.mib.2013.11.004.Verdon, J., Girardin, N., Lacombe, C., Berjeaud, J. M., & Héchard, Y. (2009). δHemolysin, an update on a membrane-interacting peptide. Peptides, 30(4), 817-823.Spaan, A. N., Vrieling, M., Wallet, P., Badiou, C., Reyes-Robles, T., Ohneck, E. A., ... & Lina, G. (2014). The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature communications, 5(1), 1- 11Kessel, C. (2017). molecular subtyping of Staphylococcus aureus isolates from the u.p. community for the presence of toxin-encoding genes. All NMU Master’s Theses. Retrieved from https://commons.nmu.edu/theses/133Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.Tanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837– 850.Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 55(3), 739-749.Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol. 2016;101(4):606–24. Epub 2016/08/09. pmid:27501195; PubMed Central PMCID: PMCPMC4978174.DeLoughery A, Dengler V, Chai Y, Losick R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mARN levels for the matrix gene repressor SinR. Mol Microbiol 2016; 99(2): 425- 37.[http://dx.doi.org/10.1111/mmi.13240] [PMID: 26434553]DeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mARNs by the endoribonuclease ARNse Y and its associated Y- complex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 115(24), E5585-E5594.Hamouche, L., Billaudeau, C., Rocca, A., Chastanet, A., Ngo, S., Laalami, S., & Putzer, H. (2020). Dynamic membrane localization of RNase Y in Bacillus subtilis. MBio, 11(1), e03337-19.Escobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus aureus. The Open Bioinformatics Jouarnl, 12(1).Adusei-Danso, F., Khaja, F. T., DeSantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., ... & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis RicProteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and ARN Processing. mBio, 10(5), e01841-19.Reverdy, A., Chen, Y., Hunter, E., Gozzi, K., & Chai, Y. (2018). Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PloS one, 13(9), e0204687.Kaito, C., Kurokawa, K., Matsumoto, Y., Terao, Y., Kawabata, S., Hamada, S., & Sekimizu, K. (2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Molecular microbiology, 56(4), 934-944.Numata, S., Nagata, M., Mao, H., Sekimizu, K., & Kaito, C. (2014). CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. Jouarnl of Biological Chemistry, 289(12), 8420- 8431.Kaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K., & Sekimizu, K. (2006). Novel ADN binding protein SarZ contributes to virulence in Staphylococcus aureus. Molecular microbiology, 62(6), 1601-1617.Nagata, M., Kaito, C., & Sekimizu, K. (2008). Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. Jouarnl of Biological Chemistry, 283(4), 2176-2184.Marincola, G., Schäfer, T., Behler, J., Bernhardt, J., Ohlsen, K., Goerke, C., & Wolz, C. (2012). ARNse Y of Staphylococcus aureus and its role in the activation of virulence genes. Molecular microbiology, 85(5), 817-832Arnaud, M., Chastanet, A., & Débarbouillé, M. (2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and environmental microbiology, 70(11), 6887-6891.Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 2004; 70: 6076-85.Christensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006 (1985).Moreno-González, P. A., Diaz, G. J., & Ramírez-Hernández, M. H. (2013). Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+.Revista colombiana de quimica, 42(2), 12-20.Walsh, B. W., Lenhart, J. S., Schroeder, J. W., & Simmons, L. A. (2012). Far Western Blotting as a rapid and efficient method for detecting interactions between ADN replication and ADN repair proteins. In Single-Stranded ADN Binding Proteins (pp. 161-168). Humana Press, Totowa, NJ.Rodríguez Tamayo, E. A., & Jiménez Quiceno, J. N. (2015). Factors related with colonization by Staphylococcus aureus. Iatreia, 28(1), 66-77.Deinhardt-Emmer, S., Sachse, S., Geraci, J., Fischer, C., Kwetkat, A., Dawczynski, K., ... & Löffler, B. (2018). Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. Jouarnl of Hospital Infection, 100(3), 309-315.Van Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus bacteremia. Clinical microbiology reviews, 25(2), 362-386.Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67:5427-33.Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010; 65:1955- 8.Escobar Pérez, J. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureusOhniwa, R. L., Ushijima, Y., Saito, S. & Morikawa, K. Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 6, e19172 (2011).Vergara-Irigaray, M. et al. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections †.Infect. Immun. 77, 3978–3991 (2009).O’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008).Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.Ramos, J.L., Martinez-Bueno, M., Molina-Henares, A.J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., Tobes, R., 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356.Seidl, K., Goerke, C., Wolz, C., Mack, D., Berger-Bachi, B., Bischoff, M., 2008. Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 76, 2044–2050.O’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D.A.; O’Gara, J.P. Association between Methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J. Clin. Microbiol. 2007, 45, 1379–1388.Regassa, L.B.; Novick, R.P.; Betley, M.J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect. Immun. 1992, 60, 3381–3388Boles, B.R.; Horswill, A.R. Staphylococcal biofilm disassembly. Trends Microbiol. 2011, 19, 449–455.Foulston, L.; Elsholz, A.K.W.; DeFrancesco, A.S.; Losick, R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 2014, 5, e01667-14.Dengler, V.; Foulston, L.; DeFrancesco, A.S.; Losick, R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J. Bacteriol. 2015, 197, 3779–3787.Wang, B., & Muir, T. W. (2016). Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chemical Biology, 23(2), 214– 224. https://doi.org/10.1016/j.chembiol.2016.01.004Li, T., He, L., Song, Y., Villaruz, A. E., Joo, H.-S., Liu, Q., … Li, M. (2015). AraC-Type Regulator Rsp Adapts Staphylococcus aureus Gene Expression to Acute Infection. Infection and Immunity, 84(3), 723–734. https://doi.org/10.1128/IAI.01088-15Tsompanidou, E., Sibbald, M. J. J. B., Chlebowicz, M. A., Dreisbach, A., Back, J. W., van Dijl, J. M., … Denham, E. L. (2011). Requirement of the agr Locus for Colony 54 Spreading of Staphylococcus aureus. JouARNl of Bacteriology, 193(5), 1267–1272. https://doi.org/10.1128/JB.01276-10Hanada, Y., Sekimizu, K., & Kaito, C. (2011). Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. The JouARNl of Biological Chemistry, 286(45), 39360–39369. https://doi.org/10.1074/jbc.M111.278416Omae, Y., Hanada, Y., Sekimizu, K., & Kaito, C. (2013). Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. The JouARNl of Biological Chemistry, 288(35), 25542–25550. https://doi.org/10.1074/jbc.M113.495051Rogasch, K., Ruhmling, V., Pane-Farre, J., Hoper, D., Weinberg, C., Fuchs, S., … Engelmann, S. (2006). Influence of the Two-Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 188(22), 7742–7758. https://doi.org/10.1128/JB.00555-06Nguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334.Lee, S., Kim, S., Lee, H., Ha, J., Lee, J., Choi, Y., ... & Choi, K. H. (2018). icaA gene of Staphylococcus aureus responds to NaCl, leading to increased biofilm formation. Journal of food protection, 81(3), 412-416.Jenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology spectrum, 7(2), 7-2.Morales L, Velandia M, Calderón M. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue. Biomédica [Internet]. 2017;37:131–40. Available from: http://www.scielo.org.co/pdf/bio/v37n1/0120-4157-bio-37-01-00131.pdfCossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28:2151–6.Tortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol. 2000;35(5).Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, et al. Microarray analysis of the Bacillus subtilis K-state: Genome-wide expression changes dependent on ComK. Mol Microbiol. 2002;43(5).Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Vol. 30, Nucleic Acids Research. 2002.Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol. 2002;184(9).Khemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet. 2015;11(10).Cho KH. The structure and function of the gram-positive bacterial RNA degradosome. Vol. 8, Frontiers in Microbiology. 2017.Tucker AT, Bobay BG, Banse A V., Olson AL, Soderblom EJ, Moseley MA, et al. A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol. 2014;426(9).Deutscher MP. The metabolic role of RNases. Trends Biochem Sci. 1988;13(4).Durand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of bacillus subtilis mRNAs. PLoS Genet. 2012;8(3).Richards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, et al. An RNABonnin RA, Bouloc P. RNA degradation in Staphylococcus aureus: Diversity of ribonucleases and their impact. Vol.2015, International Journal of Genomics. 2015Marincola G, Wolz C. Downstream element determines RNase y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 2017;45(10).Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10).Adhikari RP, Novick RP. Regulatory organization of the staphylococcal sae locus. Microbiology. 2008;154(3).Steinhuber A, Goerke C, Bayer MG, Döring G, Wolz C. Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors. J Bacteriol. 2003;185(21).Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 4(4), e1000052.O'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D. A., & O'Gara, J. P. (2007). Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. Journal of clinical microbiology, 45(5), 1379-1388.ORIGINAL1014293569.2022.pdf1014293569.2022.pdfTesis de Maestría en Bioquímicaapplication/pdf2057303https://repositorio.unal.edu.co/bitstream/unal/81796/3/1014293569.2022.pdfbcfc44856d12a90a9d0d1a956dcf07d8MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81796/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1014293569.2022.pdf.jpg1014293569.2022.pdf.jpgGenerated Thumbnailimage/jpeg4205https://repositorio.unal.edu.co/bitstream/unal/81796/5/1014293569.2022.pdf.jpg60f8cb2b7d924d524c1168a1fe14386cMD55unal/81796oai:repositorio.unal.edu.co:unal/817962023-08-06 23:03:59.94Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |