Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café

ilustraciones, diagramas

Autores:
Uribe Vargas, Camilo Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80809
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80809
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Condensación
Condensation
Condensación fraccionada
Pirólisis
Bioaceite
Fractional condensation
Bio-oil
Pyrolysis
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9472937a62b27f559dc01f19819e23d0
oai_identifier_str oai:repositorio.unal.edu.co:unal/80809
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
dc.title.translated.eng.fl_str_mv Study of the fractional condensation of coffee husk pyrolysis vapors
title Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
spellingShingle Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Condensación
Condensation
Condensación fraccionada
Pirólisis
Bioaceite
Fractional condensation
Bio-oil
Pyrolysis
title_short Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
title_full Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
title_fullStr Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
title_full_unstemmed Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
title_sort Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café
dc.creator.fl_str_mv Uribe Vargas, Camilo Alejandro
dc.contributor.advisor.none.fl_str_mv Chejne Jana, Farid
dc.contributor.author.none.fl_str_mv Uribe Vargas, Camilo Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada y Energías Alternativas
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
topic 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Condensación
Condensation
Condensación fraccionada
Pirólisis
Bioaceite
Fractional condensation
Bio-oil
Pyrolysis
dc.subject.lemb.none.fl_str_mv Condensación
Condensation
dc.subject.proposal.spa.fl_str_mv Condensación fraccionada
Pirólisis
Bioaceite
dc.subject.proposal.eng.fl_str_mv Fractional condensation
Bio-oil
Pyrolysis
description ilustraciones, diagramas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-01-31T14:49:44Z
dc.date.available.none.fl_str_mv 2022-01-31T14:49:44Z
dc.date.issued.none.fl_str_mv 2022-01-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80809
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80809
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1] M. Chai, Y. He, Nishu, C. Sun, and R. Liu, “Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis,” J. Energy Inst., vol. 93, no. 2, pp. 811–821, 2020. [2] C. W. Lewis, “Biomass through the ages,” Biomass, vol. 1, no. 1, pp. 5–15, 1981. [3] P. Basu, Pyrolysis and Torrefaction, First Edit. © 2010 Elsevier Inc., 2010. [4] S. Papari and K. Hawboldt, “A review on condensing system for biomass pyrolysis process,” Fuel Process. Technol., vol. 180, no. July, pp. 1–13, 2018. [5] S. Papari, K. Hawboldt, and P. Fransham, “Study of selective condensation for woody biomass pyrolysis oil vapours,” Fuel, vol. 245, no. November 2018, pp. 233– 239, 2019. [6] A. Tumbalam Gooty, D. Li, C. Briens, and F. Berruti, “Fractional condensation of bio-oil vapors produced from birch bark pyrolysis,” Sep. Purif. Technol., vol. 124, pp. 81–88, 2014. [7] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Process. Technol., vol. 195, no. May, 2019. [8] T. Chen, C. Deng, and R. Liu, “Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor,” Energy and Fuels, vol. 24, no. 12, pp. 6616–6623, 2010. [9] Y. Zhang and A. Faghri, Transport phenomena in multiphase systems. Chapter 8: Condensation. Elsevier B.V., 2006. [10] E. D. Wikramanayake and V. Bahadur, “Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation,” Int. J. Heat Mass Transf., vol. 140, pp. 260–268, 2019. [11] H. . Xiang, “Chapter 8. Surface Tension,” Corresp. Princ. Its Pract., pp. 215–228, 2005. [12] “Surface Tension.” [Online]. Available: http://hyperphysics.phyastr.gsu.edu/hbase/surten.html. [Accessed: 06-Apr-2021]. [13] J. W. Rose, “Surface tension effects and enhancement of condensation heat transfer,” Chem. Eng. Res. Des., vol. 82, no. 4, pp. 419–429, 2004. [14] C. A. Bishop, Process Diagnostics and Coating Characteristics. 2015. [15] H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” vol. 1, 1960. [16] O. Carrier and D. Bonn, Contact Angles and the Surface Free Energy of Solids, no. 1950. Elsevier Inc., 2015. [17] R. Tadmor, “Line energy and the relation between advancing, receding, and Young contact angles,” Langmuir, vol. 20, no. 18, pp. 7659–7664, 2004. [18] C. Y. Hui and A. Jagota, “Surface tension, surface energy, and chemical potential78 due to their difference,” Langmuir, vol. 29, no. 36, pp. 11310–11316, 2013. [19] X. Liu and P. Cheng, “Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux,” Int. J. Heat Mass Transf., vol. 83, pp. 842–849, 2015. [20] R. Wen, X. Zhou, B. Peng, Z. Lan, R. Yang, and X. Ma, “Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas,” Int. J. Heat Mass Transf., vol. 140, pp. 173–186, 2019. [21] M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, “Biofuels production through biomass pyrolysis- A technological review,” Energies, vol. 5, no. 12, pp. 4952–5001, 2012. [22] E. Lazzari et al., “Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis,” Ind. Crops Prod., vol. 111, no. October 2017, pp. 856–864, 2018. [23] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. GarciaPerez, “Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review,” Energy and Fuels, vol. 30, no. 8, pp. 6179–6200, 2016. [24] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017. [25] A. Oasmaa and C. Peacocke, “A guide to physical property characterisation of biomass-derived fast pyrolysis liquids,” VTT Publ., no. 450, pp. 2–65, 2001. [26] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, no. 8, pp. 6505–6524, 2016. [27] J. Montoya, B. Pecha, F. C. Janna, and M. Garcia-Perez, “Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 122, pp. 106–121, 2016. [28] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019. [29] R. J. M. Westerhof, N. J. M. Kuipers, S. R. A. Kersten, and W. P. M. Van Swaaij, “Controlling the water content of biomass fast pyrolysis oil,” Ind. Eng. Chem. Res., vol. 46, no. 26, pp. 9238–9247, 2007. [30] V. S. K. K. Palla, K. Papadikis, and S. Gu, “A numerical model for the fractional condensation of pyrolysis vapours,” Biomass and Bioenergy, vol. 74, pp. 180–192, 2015. [31] K. Papadikis, S. Gu, and A. V. Bridgwater, “Eulerian model for the condensation of pyrolysis vapors in a water condenser,” Energy and Fuels, vol. 25, no. 4, pp. 1859– 1868, 2011. [32] R. J. M. Westerhof et al., “Fractional condensation of biomass pyrolysis vapors,” Energy and Fuels, vol. 25, no. 4, pp. 1817–1829, 2011. [33] A. S. Pollard, M. R. Rover, and R. C. Brown, “Characterization of bio-oil recovered79 as stage fractions with unique chemical and physical properties,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 129–138, 2012. [34] A. V. Bridgwater, “Renewable fuels and chemicals by thermal processing of biomass,” Chem. Eng. J., vol. 91, no. 2–3, pp. 87–102, 2003. [35] H. Sui, H. Yang, J. Shao, X. Wang, Y. Li, and H. Chen, “Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk,” Energy and Fuels, vol. 28, no. 8, pp. 5095–5102, 2014. [36] N. M. Mkhize et al., “Influence of reactor and condensation system design on tyre pyrolysis products yields,” J. Anal. Appl. Pyrolysis, vol. 143, no. August, p. 104683, 2019. [37] M. Bunbury, The destructive distillation of wood. New York: Van Nostrand Co., 1926. [38] A. Pattiya and S. Suttibak, “Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter,” J. Energy Inst., vol. 90, no. 1, pp. 110–119, 2017. [39] M. Amutio, G. Lopez, J. Alvarez, M. Olazar, and J. Bilbao, “Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor,” Bioresour. Technol., vol. 194, pp. 225–232, 2015. [40] A. Adrados, A. Lopez-Urionabarrenechea, J. Solar, J. Requies, I. De Marco, and J. F. Cambra, “Upgrading of pyrolysis vapours from biomass carbonization,” J. Anal. Appl. Pyrolysis, vol. 103, pp. 293–299, 2013. [41] H. Zhang, R. Xiao, H. Huang, and G. Xiao, “Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,” Bioresour. Technol., vol. 100, no. 3, pp. 1428–1434, 2009. [42] B. Pidtasang, P. Udomsap, S. Sukkasi, N. Chollacoop, and A. Pattiya, “Influence of alcohol addition on properties of bio-oil produced from fast pyrolysis of eucalyptus bark in a free-fall reactor,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 1851–1857, 2013. [43] S. Papari, K. Hawboldt, and R. Helleur, “Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil,” Ind. Eng. Chem. Res., vol. 54, no. 2, pp. 605–611, 2015. [44] M. A. F. Mazlan, Y. Uemura, N. B. Osman, and S. Yusup, “Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer,” Energy Convers. Manag., vol. 98, pp. 208–214, 2015. [45] S. Thangalazhy-Gopakumar et al., “Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor,” Bioresour. Technol., vol. 101, no. 21, pp. 8389–8395, 2010. [46] S. Du, Y. Sun, D. P. Gamliel, J. A. Valla, and G. M. Bollas, “Catalytic pyrolysis of miscanthus×giganteus in a spouted bed reactor,” Bioresour. Technol., vol. 169, pp. 188–197, 2014. [47] J. Jae, R. Coolman, T. J. Mountziaris, and G. W. Huber, “Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal,” Chem. Eng. Sci., vol. 108, pp. 33–46, 2014.80 [48] S. Ma, L. Zhang, L. Zhu, and X. Zhu, “Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation,” J. Anal. Appl. Pyrolysis, vol. 131, no. November 2017, pp. 113–119, 2018. [49] A. Moutsoglou, B. Lawburgh, and J. Lawburgh, “Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 135, no. August, pp. 350–360, 2018. [50] C. Wang, H. Ding, Y. Zhang, and X. Zhu, “Analysis of property variation and stability on the aging of bio-oil from fractional condensation,” Renew. Energy, no. xxxx, 2019. [51] S. Deutch et al., “Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 123, pp. 244–254, 2016. [52] W. Cai and R. Liu, “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production,” Fuel, vol. 182, pp. 677–686, 2016. [53] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” Univ. Nac. Colomb., p. Ph.D. Thesis, 2016. [54] D. M. Brewis, “Surface properties accociated with adhesion,” Polym. Eng. Sci., vol. 7, no. 1, pp. 17–20, 1967. [55] C. W. Karl, W. Rahimi, S. Kubowicz, A. Lang, H. Geisler, and U. Giese, “Surface Modification of Ethylene Propylene Diene Terpolymer Rubber by Plasma Polymerization Using Organosilicon Precursors,” ACS Appl. Polym. Mater., vol. 2, no. 9, pp. 3789–3796, 2020. [56] R. Matjie, S. Zhang, Q. Zhao, N. Mabuza, and J. R. Bunt, “Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit,” Fuel, vol. 181, pp. 573–578, 2016. [57] S. K. Rhee, “Surface energies of silicate glasses calculated from their wettability data,” J. Mater. Sci., vol. 12, no. 4, pp. 823–824, 1977. [58] E. Christensen and J. Ferrell, “Quantification of Semi-Volatile Oxygenated Components of Pyrolysis Bio-Oil by Gas Chromatography / Mass Spectrometry ( GC / MS ),” no. March, 2016. [59] S. A. Bekalo and H. W. Reinhardt, “Fibers of coffee husk and hulls for the production of particleboard,” Mater. Struct. Constr., vol. 43, no. 8, pp. 1049–1060, 2010. [60] A. O. Oyedun, M. Patel, M. Kumar, and A. Kumar, “The upgrading of bio-oil via hydrodeoxygenation,” Chem. Catal. Biomass Upgrad., pp. 35–60, 2019. [61] S. Kim, R. W. Kramer, and P. G. Hatcher, “Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram,” Anal. Chem., vol. 75, no. 20, pp. 5336–5344, 2003. [62] Y. a. Cengel and G. A. Afshin, Heat and Mass Transfer: Fundamentals and Applications - Fifth Edition. 2015. [63] A. P. Colburn and O. A. Hougen, “Design of Cooler Condensers for Mixtures of81 Vapors with Noncondensing Gases,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1178– 1182, 1934. [64] R. SZIJÁRTÓ, “Condensation of steam in horizontal pipes: model development and validation,” Budapest Univ., 2015. [65] H. Uchida, A. Oyama, and Y. Togo, “Evaluation of post-incident cooling systems of light water power reactors,” Vol 30. Int. Conf. Peac. uses At. energy, 1964. [66] T. Tagami, “Interim report on safety assessments and facilities establishment project for June 1965,” Japanese At. Energy Res. Agency, 1965. [67] Y. Kataoka, T. Fukui, S. Hatamiya, T. Nakao, M. Naitoh, and I. Sumida, “Experiments on convection heat transfer along a vertical flat plate between pools with different temperatures,” Nucl. Technol., vol. 99, no. 3, pp. 386–396, 1992. [68] A. A. Dehbi, W. M. Golay, and S. M. Kazimi, “The effects of noncondensable gases on steam condensation under turbulent natural conditions.” 1991. [69] S. T. Anderson and R. . Newell, “Information programs for technology adoption: the case of energy-efficiency audits,” Resour. Energy Econ., vol. 26, no. 1, pp. 27–50, 2004. [70] S. Zhang, X. Cheng, and F. Shen, “Condensation Heat Transfer with NonCondensable Gas on a Vertical Tube,” Energy Power Eng., vol. 10, no. 04, pp. 25– 34, 2018. [71] A. Dehbi, “A generalized correlation for steam condensation rates in the presence of air under turbulent free convection,” Int. J. Heat Mass Transf., vol. 86, pp. 1–15, 2015. [72] J. M. Martín-Valdepeñas, M. A. Jiménez, F. Martín-Fuertes, and J. A. F. Benítez, “Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code,” Heat Mass Transf. und Stoffuebertragung, vol. 41, no. 11, pp. 961–976, 2005. [73] S. M. Ghiaasiaan, B. K. Kamboj, and S. I. Abdel-Khalik, “Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flows,” Nucl. Sci. Eng., vol. 119, no. 1, pp. 1–17, 1995. [74] M. K. Groff, S. J. Ormiston, and H. M. Soliman, “Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3899–3912, 2007. [75] M. H. Kim and M. L. Corradini, “Modeling of condensation heat transfer in a reactor containment,” Nucl. Eng. Des., vol. 118, no. 2, pp. 193–212, 1990. [76] L. E. Herranz, M. H. Anderson, and M. L. Corradini, “A diffusion layer model for steam condensation within the AP600 containment,” Nucl. Eng. Des., vol. 183, no. 1–2, pp. 133–150, 1998. [77] D. Kern, “Process heat transfer,” McGraw Hill, vol. 250, no. 5. pp. 462–463, 1965. [78] S. Kim and K. J. Kim, “Dropwise condensation modeling suitable for superhydrophobic surfaces,” J. Heat Transfer, vol. 133, no. 8, pp. 1–8, 2011. [79] W. Liu and X. Ling, “Heat transfer model based on diffusion layer theory for82 dropwise condensation with high non-condensable gas,” AIP Adv., vol. 10, no. 12, 2020. [80] J. W. · U. M. · R. W. Dibble, Combustion. . [81] R. C. Reid, T. K. Sherwood, and R. E. Street, “ The Properties of Gases and Liquids ,” Physics Today, vol. 12, no. 4. pp. 38–40, 1959. [82] A. Matuszkiewicz and P. H. Vernier, “TWO-PHASE STRUCTURE OF THE CONDENSATION BOUNDARY LAYER WITH A NON-CONDENSING GAS AND LIQUID DROPLETS Forced convection condensation on a flat plate in the presence of a non-condensing gas has been studied by many authors ( e . g . Sparrow et al . 1967 ; H,” vol. 17, no. 2, pp. 213–225, 1991. [83] J. W. Rose, “Further aspects of dropwise condensation theory,” Int. J. Heat Mass Transf., vol. 19, no. 12, pp. 1363–1370, 1976. [84] Y. Zhao, D. J. Preston, Z. Lu, L. Zhang, J. Queeney, and E. N. Wang, “Effects of millimetric geometric features on dropwise condensation under different vapor conditions,” Int. J. Heat Mass Transf., vol. 119, pp. 931–938, 2018. [85] S. Khandekar and K. Muralidhar, Modeling Dropwise Condensation: From Atomic Scale to Drop Instability. 2020. [86] R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, “Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system.” [87] B. K. Cheng, B. Naccarato, K. J. Kim, A. Kumar, A. Materials, and L. Vegas, “Theoretical considerations of contact angle histeresis,” pp. 1–23, 2019. [88] F. P. Incropera, Fundamentals of Heat and Mass Transfer, Seventh Edition. 2011. [89] R. J. Bedmutha, L. Ferrante, C. Briens, F. Berruti, and I. Inculet, “Single and twostage electrostatic demisters for biomass pyrolysis application,” Chem. Eng.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 95 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80809/2/1037621809.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80809/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80809/4/1037621809.2021.pdf.jpg
bitstream.checksum.fl_str_mv 791ce51a363c3cd6ad98cf3c1541da47
8153f7789df02f0a4c9e079953658ab2
809db5e0858346aa91846c629c8476b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089609316925440
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Jana, Farid2a98e42794da260a3d5d39fd8f16175e600Uribe Vargas, Camilo Alejandro370257cfc525b9a1f703aee4bd2db35cTermodinámica Aplicada y Energías Alternativas2022-01-31T14:49:44Z2022-01-31T14:49:44Z2022-01-09https://repositorio.unal.edu.co/handle/unal/80809Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSe hicieron experimentos de condensación de vapores pirolíticos de cisco de café en un sistema de condensación fraccionada de dos etapas, con temperaturas de condensación de 80 y 0 °C respectivamente. Se probaron condensadores de tres materiales con diferentes energías superficiales, con el fin de observar su efecto en el rendimiento y composición del bioaceite, utilizando las técnicas de GC/MS, FTIR y titulación Karl Fischer en las fracciones líquidas obtenidas. Los rendimientos de bioaceite por unidad de área obtenidos fueron proporcionales a la energía de la superficie de condensación, lo que se atribuye a la mayor mojabilidad de estas superficies que afecta el tamaño crítico de las gotas durante la condensación. En ambas etapas, se obtuvieron fracciones con diferentes características: el líquido condensado a 80 °C tuvo una menor humedad y fue abundante en fenoles y azúcares, mientras que la condensada a 0 °C fue rica en compuestos más livianos como ácidos y cetonas, lo que le brindan potencial para la refinación de biocombustibles. Aunque no hubo diferencias significativas en las composiciones de las fracciones condensadas en diferentes superficies, el uso de materiales de baja energía superficial podría ser beneficioso en el diseño de nuevos sistemas de colección de bioaceite, debido a sus mejores tasas de condensación. Finalmente, a partir de un modelo de transferencia de calor para la condensación por película de gases de pirólisis, se diseñó un sistema de condensación fraccionada para un reactor de lecho fluidizado de escala semiindustrial. (texto tomado de la fuente)Coffee is the major crop produced in Colombia, making it worthwhile to investigate ways to put its wastes to effective use, to improve the industry competitiveness. In this work, coffee husk pyrolysis vapor condensation experiments were performed in a two-stage condensation system, with condenser temperatures of 80 °C and 0°C. Three different condenser surface materials of varying surface energy were tested to observe their effect on bio-oil yields and composition, using GC/MS, FTIR spectroscopy and Karl Fischer in the obtained fractions. Bio-oil yields per unit area were found to be proportional to the condensation surface energy, attributed to the higher surface wettability effect on critical drop size during condensation. In both stages, fractions with different characteristics were obtained: the liquid condensed at 80°C had a much lower water content and was abundant in phenols and sugars, while the one condensed at 0 °C was rich in lighter compounds like acids and ketones, giving the first stage fraction potential for further refining into biofuels. Although there were no noticeable differences in the compositions of the fractions condensed on different surfaces, the use of low energy materials could be beneficial in the design of new bio-oil collection systems, owing to the improved rate of condensation.MaestríaMagíster en Ingeniería - Ingeniería QuímicaAprovechamiento de la biomasaÁrea Curricular de Ingeniería Química e Ingeniería de Petróleos95 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosCondensaciónCondensationCondensación fraccionadaPirólisisBioaceiteFractional condensationBio-oilPyrolysisEstudio de la condesnación fraccionada de los gases de pirólisis de cisco de caféStudy of the fractional condensation of coffee husk pyrolysis vaporsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1] M. Chai, Y. He, Nishu, C. Sun, and R. Liu, “Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis,” J. Energy Inst., vol. 93, no. 2, pp. 811–821, 2020. [2] C. W. Lewis, “Biomass through the ages,” Biomass, vol. 1, no. 1, pp. 5–15, 1981. [3] P. Basu, Pyrolysis and Torrefaction, First Edit. © 2010 Elsevier Inc., 2010. [4] S. Papari and K. Hawboldt, “A review on condensing system for biomass pyrolysis process,” Fuel Process. Technol., vol. 180, no. July, pp. 1–13, 2018. [5] S. Papari, K. Hawboldt, and P. Fransham, “Study of selective condensation for woody biomass pyrolysis oil vapours,” Fuel, vol. 245, no. November 2018, pp. 233– 239, 2019. [6] A. Tumbalam Gooty, D. Li, C. Briens, and F. Berruti, “Fractional condensation of bio-oil vapors produced from birch bark pyrolysis,” Sep. Purif. Technol., vol. 124, pp. 81–88, 2014. [7] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Process. Technol., vol. 195, no. May, 2019. [8] T. Chen, C. Deng, and R. Liu, “Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor,” Energy and Fuels, vol. 24, no. 12, pp. 6616–6623, 2010. [9] Y. Zhang and A. Faghri, Transport phenomena in multiphase systems. Chapter 8: Condensation. Elsevier B.V., 2006. [10] E. D. Wikramanayake and V. Bahadur, “Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation,” Int. J. Heat Mass Transf., vol. 140, pp. 260–268, 2019. [11] H. . Xiang, “Chapter 8. Surface Tension,” Corresp. Princ. Its Pract., pp. 215–228, 2005. [12] “Surface Tension.” [Online]. Available: http://hyperphysics.phyastr.gsu.edu/hbase/surten.html. [Accessed: 06-Apr-2021]. [13] J. W. Rose, “Surface tension effects and enhancement of condensation heat transfer,” Chem. Eng. Res. Des., vol. 82, no. 4, pp. 419–429, 2004. [14] C. A. Bishop, Process Diagnostics and Coating Characteristics. 2015. [15] H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” vol. 1, 1960. [16] O. Carrier and D. Bonn, Contact Angles and the Surface Free Energy of Solids, no. 1950. Elsevier Inc., 2015. [17] R. Tadmor, “Line energy and the relation between advancing, receding, and Young contact angles,” Langmuir, vol. 20, no. 18, pp. 7659–7664, 2004. [18] C. Y. Hui and A. Jagota, “Surface tension, surface energy, and chemical potential78 due to their difference,” Langmuir, vol. 29, no. 36, pp. 11310–11316, 2013. [19] X. Liu and P. Cheng, “Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux,” Int. J. Heat Mass Transf., vol. 83, pp. 842–849, 2015. [20] R. Wen, X. Zhou, B. Peng, Z. Lan, R. Yang, and X. Ma, “Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas,” Int. J. Heat Mass Transf., vol. 140, pp. 173–186, 2019. [21] M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, “Biofuels production through biomass pyrolysis- A technological review,” Energies, vol. 5, no. 12, pp. 4952–5001, 2012. [22] E. Lazzari et al., “Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis,” Ind. Crops Prod., vol. 111, no. October 2017, pp. 856–864, 2018. [23] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. GarciaPerez, “Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review,” Energy and Fuels, vol. 30, no. 8, pp. 6179–6200, 2016. [24] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017. [25] A. Oasmaa and C. Peacocke, “A guide to physical property characterisation of biomass-derived fast pyrolysis liquids,” VTT Publ., no. 450, pp. 2–65, 2001. [26] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, no. 8, pp. 6505–6524, 2016. [27] J. Montoya, B. Pecha, F. C. Janna, and M. Garcia-Perez, “Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 122, pp. 106–121, 2016. [28] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019. [29] R. J. M. Westerhof, N. J. M. Kuipers, S. R. A. Kersten, and W. P. M. Van Swaaij, “Controlling the water content of biomass fast pyrolysis oil,” Ind. Eng. Chem. Res., vol. 46, no. 26, pp. 9238–9247, 2007. [30] V. S. K. K. Palla, K. Papadikis, and S. Gu, “A numerical model for the fractional condensation of pyrolysis vapours,” Biomass and Bioenergy, vol. 74, pp. 180–192, 2015. [31] K. Papadikis, S. Gu, and A. V. Bridgwater, “Eulerian model for the condensation of pyrolysis vapors in a water condenser,” Energy and Fuels, vol. 25, no. 4, pp. 1859– 1868, 2011. [32] R. J. M. Westerhof et al., “Fractional condensation of biomass pyrolysis vapors,” Energy and Fuels, vol. 25, no. 4, pp. 1817–1829, 2011. [33] A. S. Pollard, M. R. Rover, and R. C. Brown, “Characterization of bio-oil recovered79 as stage fractions with unique chemical and physical properties,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 129–138, 2012. [34] A. V. Bridgwater, “Renewable fuels and chemicals by thermal processing of biomass,” Chem. Eng. J., vol. 91, no. 2–3, pp. 87–102, 2003. [35] H. Sui, H. Yang, J. Shao, X. Wang, Y. Li, and H. Chen, “Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk,” Energy and Fuels, vol. 28, no. 8, pp. 5095–5102, 2014. [36] N. M. Mkhize et al., “Influence of reactor and condensation system design on tyre pyrolysis products yields,” J. Anal. Appl. Pyrolysis, vol. 143, no. August, p. 104683, 2019. [37] M. Bunbury, The destructive distillation of wood. New York: Van Nostrand Co., 1926. [38] A. Pattiya and S. Suttibak, “Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter,” J. Energy Inst., vol. 90, no. 1, pp. 110–119, 2017. [39] M. Amutio, G. Lopez, J. Alvarez, M. Olazar, and J. Bilbao, “Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor,” Bioresour. Technol., vol. 194, pp. 225–232, 2015. [40] A. Adrados, A. Lopez-Urionabarrenechea, J. Solar, J. Requies, I. De Marco, and J. F. Cambra, “Upgrading of pyrolysis vapours from biomass carbonization,” J. Anal. Appl. Pyrolysis, vol. 103, pp. 293–299, 2013. [41] H. Zhang, R. Xiao, H. Huang, and G. Xiao, “Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,” Bioresour. Technol., vol. 100, no. 3, pp. 1428–1434, 2009. [42] B. Pidtasang, P. Udomsap, S. Sukkasi, N. Chollacoop, and A. Pattiya, “Influence of alcohol addition on properties of bio-oil produced from fast pyrolysis of eucalyptus bark in a free-fall reactor,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 1851–1857, 2013. [43] S. Papari, K. Hawboldt, and R. Helleur, “Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil,” Ind. Eng. Chem. Res., vol. 54, no. 2, pp. 605–611, 2015. [44] M. A. F. Mazlan, Y. Uemura, N. B. Osman, and S. Yusup, “Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer,” Energy Convers. Manag., vol. 98, pp. 208–214, 2015. [45] S. Thangalazhy-Gopakumar et al., “Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor,” Bioresour. Technol., vol. 101, no. 21, pp. 8389–8395, 2010. [46] S. Du, Y. Sun, D. P. Gamliel, J. A. Valla, and G. M. Bollas, “Catalytic pyrolysis of miscanthus×giganteus in a spouted bed reactor,” Bioresour. Technol., vol. 169, pp. 188–197, 2014. [47] J. Jae, R. Coolman, T. J. Mountziaris, and G. W. Huber, “Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal,” Chem. Eng. Sci., vol. 108, pp. 33–46, 2014.80 [48] S. Ma, L. Zhang, L. Zhu, and X. Zhu, “Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation,” J. Anal. Appl. Pyrolysis, vol. 131, no. November 2017, pp. 113–119, 2018. [49] A. Moutsoglou, B. Lawburgh, and J. Lawburgh, “Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 135, no. August, pp. 350–360, 2018. [50] C. Wang, H. Ding, Y. Zhang, and X. Zhu, “Analysis of property variation and stability on the aging of bio-oil from fractional condensation,” Renew. Energy, no. xxxx, 2019. [51] S. Deutch et al., “Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 123, pp. 244–254, 2016. [52] W. Cai and R. Liu, “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production,” Fuel, vol. 182, pp. 677–686, 2016. [53] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” Univ. Nac. Colomb., p. Ph.D. Thesis, 2016. [54] D. M. Brewis, “Surface properties accociated with adhesion,” Polym. Eng. Sci., vol. 7, no. 1, pp. 17–20, 1967. [55] C. W. Karl, W. Rahimi, S. Kubowicz, A. Lang, H. Geisler, and U. Giese, “Surface Modification of Ethylene Propylene Diene Terpolymer Rubber by Plasma Polymerization Using Organosilicon Precursors,” ACS Appl. Polym. Mater., vol. 2, no. 9, pp. 3789–3796, 2020. [56] R. Matjie, S. Zhang, Q. Zhao, N. Mabuza, and J. R. Bunt, “Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit,” Fuel, vol. 181, pp. 573–578, 2016. [57] S. K. Rhee, “Surface energies of silicate glasses calculated from their wettability data,” J. Mater. Sci., vol. 12, no. 4, pp. 823–824, 1977. [58] E. Christensen and J. Ferrell, “Quantification of Semi-Volatile Oxygenated Components of Pyrolysis Bio-Oil by Gas Chromatography / Mass Spectrometry ( GC / MS ),” no. March, 2016. [59] S. A. Bekalo and H. W. Reinhardt, “Fibers of coffee husk and hulls for the production of particleboard,” Mater. Struct. Constr., vol. 43, no. 8, pp. 1049–1060, 2010. [60] A. O. Oyedun, M. Patel, M. Kumar, and A. Kumar, “The upgrading of bio-oil via hydrodeoxygenation,” Chem. Catal. Biomass Upgrad., pp. 35–60, 2019. [61] S. Kim, R. W. Kramer, and P. G. Hatcher, “Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram,” Anal. Chem., vol. 75, no. 20, pp. 5336–5344, 2003. [62] Y. a. Cengel and G. A. Afshin, Heat and Mass Transfer: Fundamentals and Applications - Fifth Edition. 2015. [63] A. P. Colburn and O. A. Hougen, “Design of Cooler Condensers for Mixtures of81 Vapors with Noncondensing Gases,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1178– 1182, 1934. [64] R. SZIJÁRTÓ, “Condensation of steam in horizontal pipes: model development and validation,” Budapest Univ., 2015. [65] H. Uchida, A. Oyama, and Y. Togo, “Evaluation of post-incident cooling systems of light water power reactors,” Vol 30. Int. Conf. Peac. uses At. energy, 1964. [66] T. Tagami, “Interim report on safety assessments and facilities establishment project for June 1965,” Japanese At. Energy Res. Agency, 1965. [67] Y. Kataoka, T. Fukui, S. Hatamiya, T. Nakao, M. Naitoh, and I. Sumida, “Experiments on convection heat transfer along a vertical flat plate between pools with different temperatures,” Nucl. Technol., vol. 99, no. 3, pp. 386–396, 1992. [68] A. A. Dehbi, W. M. Golay, and S. M. Kazimi, “The effects of noncondensable gases on steam condensation under turbulent natural conditions.” 1991. [69] S. T. Anderson and R. . Newell, “Information programs for technology adoption: the case of energy-efficiency audits,” Resour. Energy Econ., vol. 26, no. 1, pp. 27–50, 2004. [70] S. Zhang, X. Cheng, and F. Shen, “Condensation Heat Transfer with NonCondensable Gas on a Vertical Tube,” Energy Power Eng., vol. 10, no. 04, pp. 25– 34, 2018. [71] A. Dehbi, “A generalized correlation for steam condensation rates in the presence of air under turbulent free convection,” Int. J. Heat Mass Transf., vol. 86, pp. 1–15, 2015. [72] J. M. Martín-Valdepeñas, M. A. Jiménez, F. Martín-Fuertes, and J. A. F. Benítez, “Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code,” Heat Mass Transf. und Stoffuebertragung, vol. 41, no. 11, pp. 961–976, 2005. [73] S. M. Ghiaasiaan, B. K. Kamboj, and S. I. Abdel-Khalik, “Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flows,” Nucl. Sci. Eng., vol. 119, no. 1, pp. 1–17, 1995. [74] M. K. Groff, S. J. Ormiston, and H. M. Soliman, “Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3899–3912, 2007. [75] M. H. Kim and M. L. Corradini, “Modeling of condensation heat transfer in a reactor containment,” Nucl. Eng. Des., vol. 118, no. 2, pp. 193–212, 1990. [76] L. E. Herranz, M. H. Anderson, and M. L. Corradini, “A diffusion layer model for steam condensation within the AP600 containment,” Nucl. Eng. Des., vol. 183, no. 1–2, pp. 133–150, 1998. [77] D. Kern, “Process heat transfer,” McGraw Hill, vol. 250, no. 5. pp. 462–463, 1965. [78] S. Kim and K. J. Kim, “Dropwise condensation modeling suitable for superhydrophobic surfaces,” J. Heat Transfer, vol. 133, no. 8, pp. 1–8, 2011. [79] W. Liu and X. Ling, “Heat transfer model based on diffusion layer theory for82 dropwise condensation with high non-condensable gas,” AIP Adv., vol. 10, no. 12, 2020. [80] J. W. · U. M. · R. W. Dibble, Combustion. . [81] R. C. Reid, T. K. Sherwood, and R. E. Street, “ The Properties of Gases and Liquids ,” Physics Today, vol. 12, no. 4. pp. 38–40, 1959. [82] A. Matuszkiewicz and P. H. Vernier, “TWO-PHASE STRUCTURE OF THE CONDENSATION BOUNDARY LAYER WITH A NON-CONDENSING GAS AND LIQUID DROPLETS Forced convection condensation on a flat plate in the presence of a non-condensing gas has been studied by many authors ( e . g . Sparrow et al . 1967 ; H,” vol. 17, no. 2, pp. 213–225, 1991. [83] J. W. Rose, “Further aspects of dropwise condensation theory,” Int. J. Heat Mass Transf., vol. 19, no. 12, pp. 1363–1370, 1976. [84] Y. Zhao, D. J. Preston, Z. Lu, L. Zhang, J. Queeney, and E. N. Wang, “Effects of millimetric geometric features on dropwise condensation under different vapor conditions,” Int. J. Heat Mass Transf., vol. 119, pp. 931–938, 2018. [85] S. Khandekar and K. Muralidhar, Modeling Dropwise Condensation: From Atomic Scale to Drop Instability. 2020. [86] R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, “Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system.” [87] B. K. Cheng, B. Naccarato, K. J. Kim, A. Kumar, A. Materials, and L. Vegas, “Theoretical considerations of contact angle histeresis,” pp. 1–23, 2019. [88] F. P. Incropera, Fundamentals of Heat and Mass Transfer, Seventh Edition. 2011. [89] R. J. Bedmutha, L. Ferrante, C. Briens, F. Berruti, and I. Inculet, “Single and twostage electrostatic demisters for biomass pyrolysis application,” Chem. Eng.Estrategia de transformación del sector energético colombiano en el horizonte 2030MincienciasPúblico generalORIGINAL1037621809.2021.pdf1037621809.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf4861527https://repositorio.unal.edu.co/bitstream/unal/80809/2/1037621809.2021.pdf791ce51a363c3cd6ad98cf3c1541da47MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80809/3/license.txt8153f7789df02f0a4c9e079953658ab2MD53THUMBNAIL1037621809.2021.pdf.jpg1037621809.2021.pdf.jpgGenerated Thumbnailimage/jpeg4257https://repositorio.unal.edu.co/bitstream/unal/80809/4/1037621809.2021.pdf.jpg809db5e0858346aa91846c629c8476b4MD54unal/80809oai:repositorio.unal.edu.co:unal/808092024-08-02 23:10:33.17Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK