Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60

ilustraciones, diagramas, fotografías a color

Autores:
Martínez Bustos, Anthony Jesús
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84635
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84635
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::546 - Química inorgánica
Aminoácidos
Amino Acids
Fulleropirrolidina
Iluro de azometino
Sintesis de α-aminoacidos
Fulleropyrrolidine
Azomethine ylide
Synthesis of α-amino acids
Ileto de azometina
Síntese de α-aminoácidos
Fuleropirrolidina
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_944ccbe229d676978ebe00e7c9f957a4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84635
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
dc.title.translated.eng.fl_str_mv Synthesis of 5-(carboxymethylamino)isopthalic acid for the synthesis of a new fullerene C60 monoadduct
dc.title.translated.por.fl_str_mv Síntese do ácido 5-(carboximetilamino)isoftálico para a síntese de um novo monoaduto de fulereno C60
title Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
spellingShingle Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::546 - Química inorgánica
Aminoácidos
Amino Acids
Fulleropirrolidina
Iluro de azometino
Sintesis de α-aminoacidos
Fulleropyrrolidine
Azomethine ylide
Synthesis of α-amino acids
Ileto de azometina
Síntese de α-aminoácidos
Fuleropirrolidina
title_short Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
title_full Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
title_fullStr Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
title_full_unstemmed Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
title_sort Síntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60
dc.creator.fl_str_mv Martínez Bustos, Anthony Jesús
dc.contributor.advisor.none.fl_str_mv Duarte Ruíz, Álvaro
dc.contributor.author.none.fl_str_mv Martínez Bustos, Anthony Jesús
dc.contributor.researchgroup.spa.fl_str_mv Nuevos Materiales Nano y Supramoleculares
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::546 - Química inorgánica
Aminoácidos
Amino Acids
Fulleropirrolidina
Iluro de azometino
Sintesis de α-aminoacidos
Fulleropyrrolidine
Azomethine ylide
Synthesis of α-amino acids
Ileto de azometina
Síntese de α-aminoácidos
Fuleropirrolidina
dc.subject.decs.spa.fl_str_mv Aminoácidos
dc.subject.decs.eng.fl_str_mv Amino Acids
dc.subject.proposal.spa.fl_str_mv Fulleropirrolidina
Iluro de azometino
Sintesis de α-aminoacidos
dc.subject.proposal.eng.fl_str_mv Fulleropyrrolidine
Azomethine ylide
Synthesis of α-amino acids
dc.subject.proposal.por.fl_str_mv Ileto de azometina
Síntese de α-aminoácidos
Fuleropirrolidina
description ilustraciones, diagramas, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-04T16:31:39Z
dc.date.available.none.fl_str_mv 2023-09-04T16:31:39Z
dc.date.issued.none.fl_str_mv 2023-09-04
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84635
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84635
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Lu, X., Akasaka, T. and Slanina, Z. (2021). Handbook of fullerene science and technology. 1st ed. Singapore: Springer Singapore, pp.1-32. doi:10.1007/978-981-13-3242-5
Yamada, M., Nagase, S., Akasaka, T. (2021). Functionalization of Fullerenes: Addition Reactions. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. doi:1007/978-981-13-3242-5_33-1
Li, C., Yip, H. and Jen, A. (2012). Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 22(10), p.4161. doi:10.1039/C2JM15126J
Karakawa, M., Nagai, T., Adachi, K., Ie, Y. and Aso, Y. (2014). N-phenyl[60]fulleropyrrolidines: alternative acceptor materials to PC61BM for high performance organic photovoltaic cells. J. Mater. Chem. A, 2(48), pp.20889-20895. doi:10.1039/c4ta04857a
Yang, Z., Zhong, M., Liang, Y., Yang, L., Liu, X., Li, Q., Xu, D. (2019). SnO 2 ‐C60 Pyrrolidine Tris‐Acid (CPTA) as the Electron Transport Layer for Highly Efficient and Stable Planar Sn‐Based Perovskite Solar Cells. Advanced Functional Materials, 1903621. doi:10.1002/adfm.201903621
Peng, P., Li, F.-F., Neti, V. S. P. K., Metta-Magana, A. J., & Echegoyen, L. (2013). Design, Synthesis, and X-Ray Crystal Structure of a Fullerene-Linked Metal-Organic Framework. Angewandte Chemie International Edition, 53(1), 160–163. doi:10.1002/anie.201306761
Sondheimer, F., Wolovsky, R., & Amiel, Y. (1962). Unsaturated Macrocyclic Compounds. XXIII.1The Synthesis of the Fully Conjugated Macrocyclic Polyenes Cycloöctadecanonaene ([18]Annulene),2Cyclotetracosadodecaene ([24]Annulene), and Cyclotriacontapentadecaene ([30]Annulene). Journal of the American Chemical Society, 84(2), 274–284. doi:10.1021/ja00861a030
Ōsawa, E., Kroto, H. W., Fowler, P. W., Wasserman, E., Lindsay Mackay, A., Turner, G., & Walton, D. R. M. (1993). The evolution of the football structure for the C60 molecule: a retrospective. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 343, 1–8. doi:10.1017/cbo9780511622946.001
Barth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi,mno]fluoranthene. Journal of the American Chemical Society, 88(2), 380–381. doi:10.1021/ja00954a049
Kanagaraj, K., Lin, K., Wu, W., Gao, G., Zhong, Z., Su, D., & Yang, C. (2017). Chiral Buckybowl Molecules. Symmetry, 9(9), 174. doi:10.3390/sym9090174
Rohlfing, E. A., Cox, D. M., & Kaldor, A. (1984). Production and characterization of supersonic carbon cluster beams. The Journal of Chemical Physics, 81(7), 3322–3330. doi:10.1063/1.447994
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. doi:10.1038/318162a0
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: a new form of carbon. Nature, 347(6291), 354–358. doi:10.1038/347354a0
Murayama, H., Tomonoh, S., Alford, J. M., & Karpuk, M. E. (2005). Fullerene Production in Tons and More: From Science to Industry. Fullerenes, Nanotubes and Carbon Nanostructures, 12(1-2), 1–9. doi:10.1081/fst-120027125
Stalling, D. L., Kuo, K. C., Guo, C. Y., & Saim, S. (1993). Separation of Fullerenes C60, C70, and C76-84 on Polystyrene Divinylbenzene Columns. Journal of Liquid Chromatography, 16(3), 699–722. doi:10.1080/10826079308019558
Yan, Q.-L., Gozin, M., Zhao, F.-Q., Cohen, A., & Pang, S.-P. (2016). Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799–4851. doi:10.1039/c5nr07855e
Katz, E. A. (2006). Fullerene Thin Films as Photovoltaic Material. Nanostructured Materials for Solar Energy Conversion, 361–443. doi:10.1016/b978-044452844-5/50014-7
Speranza, G. (2021). Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 11(4), 967. doi:10.3390/nano11040967
Hirsch, A., Lamparth, I., & Karfunkel, H. R. (1994). Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene. Angewandte Chemie International Edition in English, 33(4), 437–438. doi:10.1002/anie.199404371
Cerón, M. R., & Echegoyen, L. (2016). Recent progress in the synthesis of regio-isomerically pure bis-adducts of empty and endohedral fullerenes. Journal of Physical Organic Chemistry, 29(11), 613–619. doi:10.1002/poc.3563
Rašović, I. (2016). Water-soluble fullerenes for medical applications. Materials Science and Technology, 33(7), 777–794. doi:10.1080/02670836.2016.1198114
Cataldo, F., & Da Ros, T. (Eds.). (2008). Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes (Vol. 1). Springer Science & Business Media.
Semenov, K. N., Charykov, N. A., Keskinov, V. A., Piartman, A. K., Blokhin, A. A., & Kopyrin, A. A. (2010). Solubility of Light Fullerenes in Organic Solvents. Journal of Chemical & Engineering Data, 55(1), 13–36. doi:10.1021/je900296s
Thilgen, C., Herrmann, A., & Diederich, F. (1997). The Covalent Chemistry of Higher Fullerenes: C70 and Beyond. Angewandte Chemie International Edition in English, 36(21), 2268–2280. doi:10.1002/anie.199722681
Rao, C. N. R., Seshadri, R., Govindaraj, A., & Sen, R. (1995). Fullerenes, nanotubes, onions and related carbon structures. Materials Science and Engineering: R: Reports, 15(6), 209–262, PP.69.. doi:10.1016/s0927-796x(95)00181-6
Umeyama, T., Takahara, S., Shibata, S., Igarashi, K., Higashino, T., Mishima, K., Yamashita, K., & Imahori, H. (2018). Cis -1 Isomers of tethered bismethano[70]fullerene as electron acceptors in organic photovoltaics. RSC Advances, 8(33), 18316–18326. doi:10.1039/c8ra02896f
Haddon, R. C., Palmer, R. E., Kroto, H. W., & Sermon, P. A. (1993). The Fullerenes: Powerful Carbon-Based Electron Acceptors [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 343(1667), 53–62. doi:10.1098/rsta.1993.0040
Cho, H. Y., Ansems, R. B. M., & Scott, L. T. (2014). Site-selective covalent functionalization at interior carbon atoms and on the rim of circumtrindene, a C36H12 open geodesic polyarene. Beilstein Journal of Organic Chemistry, 10, 956–968. doi:10.3762/bjoc.10.94
Fleming, I. (2011). “Molecular Orbitals and the Structures of Organic Molecules,” in Molecular orbitals and organic chemical reactions. Chichéster, West Sussex, U.K.: Wiley, pp. 69–125. doi:10.1002/9780470689493
Hirsch, A. (2006). Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (b), 243(13), 3209–3212. doi:10.1002/pssb.200669191
Yan, W., Seifermann, S. M., Pierrat, P., & Bräse, S. (2015). Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Organic & Biomolecular Chemistry, 13(1), 25–54. doi:10.1039/c4ob01663g
Samal, S., & Sahoo, S. K. (1997). An overview of fullerene chemistry. Bulletin of Materials Science, 20(2), 141–230. doi:10.1007/bf02744892
Jensen, A. W., Wilson, S. R., & Schuster, D. I. (1996). Biological applications of fullerenes. Bioorganic & Medicinal Chemistry, 4(6), 767–779. doi:10.1016/0968-0896(96)00081-8
Ikeda, A., Iizuka, T., Maekubo, N., Aono, R., Kikuchi, J., Akiyama, M. Shiozaki, K. (2013). Cyclodextrin Complexed [60]Fullerene Derivatives with High Levels of Photodynamic Activity by Long Wavelength Excitation. ACS Medicinal Chemistry Letters, 4(8), 752–756. doi:10.1021/ml4001535
Li, J., Takeuchi, A., Ozawa, M., Li, X., Saigo, K., & Kitazawa, K. (1993). C60 fullerol formation catalysed by quaternary ammonium hydroxides. Journal of the Chemical Society, Chemical Communications, (23), 1784. doi:10.1039/c39930001784
Chiang, L. Y., Wang, L.-Y., Swirczewski, J. W., Soled, S., & Cameron, S. (1994). Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. The Journal of Organic Chemistry, 59(14), 3960–3968. doi:10.1021/jo00093a030
Maggini, M., Scorrano, G., & Prato, M. (1993). Addition of Azomethine Ylides to C60: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines. Journal of the American Chemical Society, 115(21), 9798–9799. doi:10.1021/ja00074a056
Hirsch, A., Li, Q., & Wudl, F. (1991). Globe-trotting Hydrogens on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6. Angewandte Chemie International Edition in English, 30(10), 1309–1310. doi:10.1002/anie.199113091
Li, Y., & Gan, L. (2014). Selective Addition of Secondary Amines to C60: Formation of Penta- and Hexaamino[60]fullerenes. The Journal of Organic Chemistry, 79(18), 8912–8916. doi:10.1021/jo5015867
Bingel, C. (1993). Cyclopropanierung von Fullerenen. Chemische Berichte, 126(8), 1957–1959. doi:10.1002/cber.19931260829
Wudl, F. (1992). The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Accounts of Chemical Research, 25(3), 157–161. doi:10.1021/ar00015a009
Hirsch, A. and Brettreich, M. (2005) “4. Cicloadition” in Fullerenes Chemistry and reactions. Weinheim: Wiley-VCH, pp. 101–184. doi:10.1002/3527603492
Camps, X., & Hirsch, A. (1997). Efficient cyclopropanation of C60 starting from malonates. Journal of the Chemical Society, Perkin Transactions 1, (11), 1595–1596. doi:10.1039/a702055d
Martínez, J. P., Garcia-Borràs, M., Osuna, S., Poater, J., Bickelhaupt, F. M., & Solà, M. (2016). Reaction Mechanism and Regioselectivity of the Bingel-Hirsch Addition of Dimethyl Bromomalonate to La@C2v-C82. Chemistry - A European Journal, 22(17), 5953–5962. doi:10.1002/chem.201504668
Biglova, Y. N., & Mustafin, A. G. (2019). Nucleophilic cyclopropanation of [60]fullerene by the addition–elimination mechanism. RSC Advances, 9(39), 22428–22498. doi:10.1039/c9ra04036f
Sattarova, A. F., Biglova, Y. N., & Mustafin, A. G. (2022). Quantum‐chemical approaches in the study of fullerene and its derivatives by the example of the most typical cycloaddition reactions: A review. International Journal of Quantum Chemistry, 122(7), e26863. doi: 10.1002/qua.26863
Li, H., Haque, S. A., Kitaygorodskiy, A., Meziani, M. J., Torres-Castillo, M., & Sun, Y.-P. (2006). Alternatively Modified Bingel Reaction for Efficient Syntheses of C60 Hexakis- Adducts. Organic Letters, 8(24), 5641–5643. doi:10.1021/ol062391d
Pereira, G. R., Santos, L. J., Luduvico, I., Alves, R. B., & de Freitas, R. P. (2010). “Click” chemistry as a tool for the facile synthesis of fullerene glycoconjugate derivatives. Tetrahedron Letters, 51(7), 1022–1025. doi:10.1016/j.tetlet.2009.12.050
Riala, M., & Chronakis, N. (2011). A Facile Access to Enantiomerically Pure [60]Fullerene Bisadducts with the Inherently ChiralTrans-3 Addition Pattern. Organic Letters, 13(11), 2844–2847. doi:10.1021/ol200816z
Jin, B., Shen, J., Peng, R., Zheng, R., & Chu, S. (2014). Efficient cyclopropanation of [60]fullerene starting from bromo-substituted active methylene compounds without using a basic catalyst. Tetrahedron Letters, 55(36), 5007–5010. doi:10.1016/j.tetlet.2014.07.048
Prato, M. (1997). [60]Fullerene chemistry for materials science applications. Journal of Materials Chemistry, 7(7), 1097–1109. doi:10.1039/a700080d
Langa, F., De La Cruz, P., Espíldora, E., García, J. J., Pérez, M. C., & De La Hoz, A. (2000). Fullerene chemistry under microwave irradiation. Carbon, 38(11), 1641–1646. doi:10.1016/S0008-6223(99)00284-5
Safaei-Ghomi, J., & Masoomi, R. (2015). Rapid microwave-assisted synthesis of N-benzyl fulleropyrrolidines under solvent free conditions. RSC Advances, 5(20), 15591–15596. doi:10.1039/c4ra16020g
Guryanov, I., Montellano López, A., Carraro, M., Da Ros, T., Scorrano, G., Maggini, M., Prato, M., & Bonchio, M. (2009). Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chemical Communications, 26, 3940–3942. doi:10.1039/b906813a
P. Economopoulos, S., Karousis, N., Rotas, G., Pagona, G., & Tagmatarchis, N. (2011). Microwave-assisted Functionalization of Carbon Nanostructured Materials. Current Organic Chemistry, 15(8), 1121–1132. doi:10.2174/138527211795203031
Zhang, J., Yang, W., He, P., Zhu, S., & Wang, S. (2005). Microwave‐promoted One‐Pot Three‐Component Reaction to [60]Fulleropyrrolidine Derivatives. Synthetic Communications, 35(1), 89–96. doi:10.1081/scc-200046505
Martinis, E. M., Montellano, A., Sartorel, A., Carraro, M., Prato, M., & Bonchio, M. (2021). Microwave‐Assisted 1,3‐Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bis‐Addition with Ionic Liquids Additives. European Journal of Organic Chemistry, 2021(25), 3545–3551. doi:10.1002/ejoc.202100546
BinSabt, M. H., Al-Matar, H. M., Balch, A. L., & Shalaby, M. A. (2021). Synthesis and Electrochemistry of Novel Dumbbell-Shaped Bis-pyrazolino[60]fullerene Derivatives Formed Using Microwave Radiation. ACS Omega, 6(31), 20321–20330. doi:10.1021/acsomega.1c02245
Rudolf, M., Kirner, S. V., & Guldi, D. M. (2016). A multicomponent molecular approach to artificial photosynthesis – the role of fullerenes and endohedral metallofullerenes. Chemical Society Reviews, 45(3), 612–630. doi:10.1039/c5cs00774g
Matsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y.-W., Nakae, T., & Nakamura, E. (2008). Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society, 130(15), 5016–5017. doi:10.1021/ja800481d
Pérez, L., García-Martínez, J. C., Díez-Barra, E., Atienzar, P., García, H., Rodríguez-López, J., & Langa, F. (2006). Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 12(19), 5149–5157. doi:10.1002/chem.200600207
Foote, C. S. (1994). Photophysical and photochemical properties of fullerenes. Topics in Current Chemistry, 347–363. doi:10.1007/3-540-57565-0_80
Leach, S., Vervloet, M., Desprès, A., Bréheret, E., Hare, J. P., John Dennis, T. Walton, D. R. M. (1992). Electronic spectra and transitions of the fullerene C60. Chemical Physics, 160(3), 451–466. doi:10.1016/0301-0104(92)80012-k
Prato, M., & Maggini, M. (1998). Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives. Accounts of Chemical Research, 31(9), 519–526. doi:10.1021/ar970210p
Isaacs, L., Haldimann, R. F., & Diederich, F. (1994). Tether‐Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation. Angewandte Chemie International Edition in English, 33(22), 2339–2342. doi:10.1002/anie.199423391
Schwenninger, R., Muller, T., & Kräutler, B. (1997). Concise Route to Symmetric Multiadducts of [60] Fullerene : Preparation of an Equatorial Tetraadduct by Orthogonal Transposition and the development of a preparative method for their synthesis by Kra regioselectively multifunctionalized derivatives of t. Journal of American Chemical Society, 2(9 mL), 9317–9318. doi:10.1021/ja971875p
Zhang, S., Lukoyanova, O., & Echegoyen, L. (2006). Synthesis of fullerene adducts with terpyridyl- or pyridylpyrrolidine groups in trans-1 positions. Chemistry - A European Journal, 12(10), 2846–2853. doi:10.1002/chem.200501333
Duarte-Ruiz, A., Wurst, K., & Kräutler, B. (2001). Regioselective “one-pot” synthesis of antipodal bis-adducts by heating of solid [5,6]fullerene-C60-Ih and anthracenes. Helvetica Chimica Acta, 84(8), 2167–2177. doi:10.1002/1522-2675(20010815)84:8<2167::AID-HLCA2167>3.0.CO;2-V
Duarte-Ruiz, A., Müller, T., Wurst, K., & Kräutler, B. (2001). The bis-adducts of the [5,6]-fullerene C60 and anthracene. Tetrahedron, 57(17), 3709–3714. doi:10.1016/S0040-4020(01)00237-X
Duarte-Ruiz, A., Neti, V. S. P. K., Cerón, M. R., Olmstead, M. M., Balch, A. L., & Echegoyen, L. (2014). High-yield, regiospecific bis-functionalization of C70 using a Diels-Alder reaction in molten anthracene. Chemical Communications, 50(73), 10584–10587. doi:10.1039/c4cc02472a
Ortiz, A. L., Rivera, D. M., Athans, A. J., & Echegoyen, L. (2009). Regioselective addition of N-(4-Thiocyanatophenyl)pyrrolidine addends to fullerenes. European Journal of Organic Chemistry, 20, 3396–3403. doi:10.1002/ejoc.200900228
Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, (20), 1423. doi:10.1039/c39900001423
Tian, C., Castro, E., Betancourt-Solis, G., Nan, Z., Fernandez-Delgado, O., Jankuru, S., & Echegoyen, L. (2018). Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 42(4), 2896–2902. doi:10.1039/c7nj04978a
Fernandez-Delgado, O., Castro, E., Ganivet, C. R., Fosnacht, K., Liu, F., Mates, T., Liu, Y., Wu, X., & Echegoyen, L. (2019). Variation of Interfacial Interactions in PC61BM-like Electron-Transporting Compounds for Perovskite Solar Cells [Research-article]. ACS Applied Materials and Interfaces, 11(37), 34408–34415. doi.org:10.1021/acsami.9b09018
Tian, C., Kochiss, K., Castro, E., Betancourt-Solis, G., Han, H., & Echegoyen, L. (2017). A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 5(16), 7326–7332. doi:10.1039/c7ta00362e
Castro, E., Murillo, J., Fernandez-Delgado, O., & Echegoyen, L. (2018). Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 6(11), 2635–2651. doi:10.1039/c7tc04302c
Tian, C., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., & Echegoyen, L. (2016). Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Applied Materials and Interfaces, 8(45), 31426–31432. doi:10.1021/acsami.6b10668
Hassanzadeh, Z., Ghavami, R., & Kompany-Zareh, M. (2016). Radial basis function neural networks based on the projection pursuit and principal component analysis approaches: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors. Medicinal Chemistry Research, 25(1), 19–29. https://doi.org/10.1007/s00044-015-1466-x
Pan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., Liang, Q., He, Q., Yuan, X., Huang, D., & Chen, M. (2020). Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Applied Catalysis B: Environmental, 265, 118579. doi:10.1016/j.apcatb.2019.118579
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., & Zhou, H. C. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1–35. doi:10.1002/adma.201704303
Babu, S. S., Möhwald, H., & Nakanishi, T. (2010). Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chemical Society Reviews, 39(11), 4021–4035. doi:10.1039/c000680g
Kamat, P. V. (2007). Meeting clean energy demand with nanostructure architectures. ACS National Meeting Book of Abstracts, 2834–2860.
NREL. (2020). Best Research-Cell Efficiencies: Rev. 04-06-2020. In Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL (p. https://www.nrel.gov/pv/cell-efficiency.html). https://www.nrel.gov/pv/cell-efficiency.html
Thomas, T., Mellor, A., Hylton, N. P., Fuhrer, M., Alonso-Àlvarez, D., Braun, A., Ekins-Daukes, N. J., David, J. P. R., & Sweeney, S. J. (2015). Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semiconductor Science and Technology, 30(9). doi:10.1088/0268-1242/30/9/094010
Araki, K., Yamaguchi, M., Kondo, M., & Uozumi, H. (2003, May). Which is the best number of junctions for solar cells under ever-changing terrestrial spectrum?. In 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of (Vol. 1, pp. 307-310). IEEE.
Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S. N., Glatthaar, M., Meyer, T., & Meyer, A. (2007). Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells, 91(5), 379–384. doi:10.1016/j.solmat.2006.10.013
Kim, T., Kim, J. H., Kang, T. E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T. S., & Kim, B. J. (2015). Flexible, highly efficient all-polymer solar cells. Nature Communications, 6(May), 1–7. doi:10.1038/ncomms9547
Song, S., Hill, R., Choi, K., Wojciechowski, K., Barlow, S., Leisen, J., Snaith, H. J., Marder, S. R., & Park, T. (2018). Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 49, 324–332. doi:10.1016/j.nanoen.2018.04.068
Li, C., Fuxhi, W., Xu, J., Yao, J., Zhang, B., Xhang, C., Min, X., Songyuan, D., Li, Y., & Z, T. (2015). Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 21(7), 9771–9778. doi:10.1039/c4nr06240j
Brédas, J.-L., Norton, J. E., Cornil, J., & Coropceanu, V. (2009). Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42(11), 1691–1699. doi:10.1021/ar900099h
Mazzio, K. A., & Luscombe, C. K. (2015). The future of organic photovoltaics. Chemical Society Reviews, 44(1), 78–90. doi:10.1039/c4cs00227j
Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. doi:10.1016/j.jcis.2016.11.021
Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J. T.-W., Stranks, S. D., Nicholas, R. J. (2015). Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 11(7), 582–587. doi:10.1038/nphys3357
Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., & Cahen, D. (2014). Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nature Communications, 5(1). doi:10.1038/ncomms4461
Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L., & Meredith, P. (2014). Electro-optics of perovskite solar cells. Nature Photonics, 9(2), 106–112. doi:10.1038/nphoton.2014.284
Collavini, S., Völker, S. F., & Delgado, J. L. (2015). Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie International Edition, 54(34), 9757–9759. doi:10.1002/anie.201505321
Völker, S. F., Collavini, S., & Delgado, J. L. (2015). Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 8(18), 3012–3028. doi:10.1002/cssc.201500742
Cook, S., Katoh, R., & Furube, A. (2009). Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM. The Journal of Physical Chemistry C, 113(6), 2547–2552. doi:10.1021/jp8050774
Sheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., & Green, M. A. (2015). Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. The Journal of Physical Chemistry C, 119(7), 3545–3549. doi:10.1021/jp512936z
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764–1769. doi:10.1021/nl400349b
Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S., & Oort, M. J. M. V. (1990). Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Canadian Journal of Chemistry, 68(3), 412–422. doi:10.1139/v90-063
Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982. doi:10.1039/c3ee43822h
Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J., & Grätzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition, 53(12), 3151–3157. doi:10.1002/anie.201309361
Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1), e1501170–e1501170. doi:10.1126/sciadv.1501170
McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Horantner, M. T., Snaith, H. J. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351(6269), 151–155. doi:10.1126/science.aad5845
Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S. M., Gratzel, M. (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206–209. doi:10.1126/science.aah5557
Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476–480. doi:10.1038/nature14133
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591
O’Mahony, F. T. F., Lee, Y. H., Jellett, C., Dmitrov, S., Bryant, D. T. J., Durrant, J. R., Haque, S. A. (2015). Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. Journal of Materials Chemistry A, 3(14), 7219–7223. doi:10.1039/c5ta01221j
Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. (2015). Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3), 995–1004. doi:10.1039/c4ee03664f
Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., Zhang, W. (2014). Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(9), 1511–1515. doi:10.1021/jz500113x
Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Yu, D. (2014). Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(21), 3937–3945. doi:10.1021/jz502111u
Frost, J. M., Butler, K. T., & Walsh, A. (2014). Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Materials, 2(8), 081506. doi:10.1063/1.4890246
Richardson, G., O’Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J., & Walker, A. B. (2016). Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy & Environmental Science, 9(4), 1476–1485. doi:10.1039/c5ee02740c
Wojciechowski, K., Stranks, S. D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Snaith, H. J. (2014). Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 8(12), 12701–12709. doi:10.1021/nn505723h
Hu, C., Xiao, J.-D., Mao, X.-D., Song, L.-L., Yang, X.-Y., & Liu, S.-J. (2019). Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive. Materials Letters. doi:10.1016/j.matlet.2018.12.123.
Xing, X.-S., Fu, Z., Zhang, N.-N., Yu, X.-Q., Wang, M.-S., & Guo, G.-C. (2019). High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chemical Communications. doi:10.1039/c8cc08700h
Mirkovic, I., Lei, L., Ljubic, D., & Zhu, S. (2019). Crystal Growth of Metal–Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega, 4(1), 169–175. doi:10.1021/acsomega.8b02332
Yang, H., Bright, J., Kasani, S., Zheng, P., Musho, T., Chen, B, Wu, N. (2018). Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Research. doi:10.1007/s12274-019-2272-4
Huan, W., Xing, M., Cheng, C., & Li, J. (2018). Facile Fabrication of Magnetic Metal-Organic Framework Nanofibers for Specific Capture of Phosphorylated peptides. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.8b04928
Mohaghegh, N., Faraji, M., & Abedini, A. (2018). Highly efficient multifunctional Ag/TiO2 nanotubes/Ti plate coated with MIL-88B(Fe) as a photocatalyst, adsorbent, and disinfectant in water treatment. Applied Physics A, 125(1). doi:10.1007/s00339-018-2324-8
Kim, M.-K., Kim, S. H., Park, M., Ryu, S. G., & Jung, H. (2018). Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH2. RSC Advances, 8(72), 41633–41638. doi:10.1039/c8ra06805d
Shen, J., Wang, N., Wang, Y., Yu, D., & Ouyang, X. (2018). Efficient Adsorption of Pb(II) from Aqueous Solutions by Metal Organic Framework (Zn-BDC) Coated Magnetic Montmorillonite. Polymers, 10(12), 1383. doi:10.3390/polym10121383
Esmaeilzadeh, M. (2018). A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchimica Acta, 186(1). doi:10.1007/s00604-018-3093-y
Zhang, L., Li, S., Xin, J., Ma, H., Pang, H., Tan, L., & Wang, X. (2018). A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchimica Acta, 186(1). doi:10.1007/s00604-018-3128-4
Henrique, A., Rodrigues, A. E., & Correia Silva, J. A. (2018). Separation of Hexane Isomers in ZIF-8 by Fixed Bed Adsorption. Industrial & Engineering Chemistry Research. doi:10.1021/acs.iecr.8b05126
Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and Applications. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2019.06.007.
Chen, X.-Y., Zhao, B., Shi, W., Xia, J., Cheng, P., Liao, D.-Z., Jiang, Z.-H. (2005). Microporous Metal−Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. Chemistry of Materials, 17(11), 2866–2874. doi:10.1021/cm050526o
Wang, D., He, H., Chen, X., Feng, S., Niu, Y., & Sun, D. (2010). A 3D porous metal–organic framework constructed of 1D zigzag and helical chains exhibiting selective anion exchange. CrystEngComm, 12(4), 1041–1043. doi:10.1039/b910988a
Wu, J.-Y., Chao, T.-C., & Zhong, M.-S. (2013). Influence of Counteranions on the Structural Modulation of Silver–Di(3-pyridylmethyl)amine Coordination Polymers. Crystal Growth & Design, 13(7), 2953–2964. doi:10.1021/cg400363e
Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3•6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186–2187. doi:10.1021/ja974172g
Piñeiro-López, L., Arcís-Castillo, Z., Muñoz, M. C., & Real, J. A. (2014). Clathration of Five-Membered Aromatic Rings in the Bimetallic Spin Crossover Metal–Organic Framework [Fe (TPT)2/3{MI (CN)2}2]•G (MI = Ag, Au). Crystal Growth & Design, 14(12), 6311–6319. doi:10.1021/cg5010616
Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23-24), 2891–2911. doi:10.1016/j.ccr.2009.07.020
Shen, L., Wu, W., Liang, R., Lin, R., & Wu, L. (2013). Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 5(19), 9374. doi:10.1039/c3nr03153e
Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)- Based solids: MIL-53 or CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x.H2Oy. Journal of the American Chemical Society, 124(45), 13519–13526. doi:10.1021/ja0276974
Zhang, Y., Bo, X., Nsabimana, A., Han, C., Li, M., & Guo, L. (2015). Electrocatalytically active cobalt-based metal–organic framework with incorporated macroporous carbon composite for electrochemical applications. Journal of Materials Chemistry A, 3(2), 732–738. doi:10.1039/c4ta04411h
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626–636. doi:10.1039/b511962f
Van Assche, T. R. C., Desmet, G., Ameloot, R., De Vos, D. E., Terryn, H., & Denayer, J. F. M. (2012). Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous and Mesoporous Materials, 158, 209–213. doi:10.1016/j.micromeso.2012.03.029
Campagnol, N., Souza, E. R., De Vos, D. E., Binnemans, K., & Fransaer, J. (2014). Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun., 50(83), 12545–12547. doi:10.1039/c4cc05742b
MacGillivray, L.R. (2010) Metal-organic frameworks: Design and application. Hoboken, NJ: Wiley.
Pichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3), 211. doi:10.1039/b513750k
James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 41(1), 413–447. doi:10.1039/c1cs15171a
Masoomi, M. Y., Morsali, A., & Junk, P. C. (2015). Rapid mechanochemical synthesis of two new Cd(ii)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm, 17(3), 686–692. doi:10.1039/c4ce01783h
Phang, W. J., Lee, W. R., Yoo, K., Ryu, D. W., Kim, B., & Hong, C. S. (2014). pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material. Angewandte Chemie International Edition, 53(32), 8383–8387. doi:10.1002/anie.201404164
Jhung, S. H., Yoon, J. W., Hwang, J.-S., Cheetham, A. K., & Chang, J.-S. (2005). Facile Synthesis of Nanoporous Nickel Phosphates without Organic Templates under Microwave Irradiation. Chemistry of Materials, 17(17), 4455–4460. doi:10.1021/cm047708n
Jhung, S. H., Chang, J.-S., Hwang, J. S., & Park, S.-E. (2003). Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 64(1-3), 33–39. doi:10.1016/s1387-1811(03)00501-8
Hwang, Y. K., Chang, J.-S., Park, S.-E., Kim, D. S., Kwon, Y.-U., Jhung, S. H., Park, M. S. (2005). Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angewandte Chemie International Edition, 44(4), 556–560. doi:10.1002/anie.200461403
Ni, Z., & Masel, R. I. (2006). Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. doi:10.1021/ja0635231
Sabouni, R., Kazemian, H., & Rohani, S. (2012). Microwave Synthesis of the CPM-5 Metal Organic Framework. Chemical Engineering & Technology, 35(6), 1085–1092. doi:10.1002/ceat.201100626
Morsali, A., Monfared, H. H., Morsali, A., & Janiak, C. (2015). Ultrasonic irradiation assisted syntheses of one-dimensional di(azido)-dipyridylamine Cu(II) coordination polymer nanoparticles. Ultrasonics Sonochemistry, 23, 208–211. doi:10.1016/j.ultsonch.2014.06.005
Jung, D.-W., Yang, D.-A., Kim, J., Kim, J., & Ahn, W.-S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39(11), 2883. doi:10.1039/b925088c
Son, W.-J., Kim, J., Kim, J., & Ahn, W.-S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, (47), 6336. doi:10.1039/b814740j
Haque, E., Khan, N. A., Park, J. H., & Jhung, S. H. (2009). Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 16(3), 1046–1052. doi:10.1002/chem.200902382
Jin, L.-N., Liu, Q., & Sun, W.-Y. (2014). An introduction to synthesis and application of nanoscale metal–carboxylate coordination polymers. CrystEngComm, 16(19), 3816. doi:10.1039/c3ce41962b
Kraft, A., Roth, P., Schmidt, D., Stangl, J., Müller-Buschbaum, K., & Beuerle, F. (2016). Three-Dimensional Metal-Fullerene Frameworks. Chemistry - A European Journal, 22(17), 5982–5987. doi:10.1002/chem.201505137
Kraft, A., Stangl, J., Krause, A.-M., Müller-Buschbaum, K., & Beuerle, F. (2017). Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic Chemistry, 13, 1–9. doi:10.3762/bjoc.13.1
Lerma‐Berlanga, B., Ganivet, C. R., Almora‐Barrios, N., Vismara, R., Navarro, J. A., Tatay, S., Martí‐Gastaldo, C. (2022). Tetrazine linkers as Plug‐and‐play tags for general metal‐organic framework functionalization and C60 conjugation. Angewandte Chemie International Edition, 61(41). doi:10.1002/anie.202208139
Moosavi, S. M., Nandy, A., Jablonka, K. M., Ongari, D., Janet, J. P., Boyd, P. G., Kulik, H. J. (2020). Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 11(1). doi:10.1038/s41467-020-17755-8
Habicher, T., Nierengarten, J. F., Gramlich, V., & Diederich, F. (1998). PtII‐Directed Self‐Assembly of a Dinuclear Cyclophane Containing Two Fullerenes. Angewandte Chemie International Edition, 37(13‐14), 1916-1919.
Fan, J., Wang, Y., Blake, A. J., Wilson, C., Davies, E. S., Khlobystov, A. N., & Schröder, M. (2007). Controlled Assembly of Silver(I)-Pyridylfullerene Networks. Angewandte Chemie International Edition, 46(42), 8013–8016. doi:10.1002/anie.200700769
Muller, T., Bräse, S., Pierrat, P., & Réthoré, C. (2008). Design and Efficient Synthesis of Fullerene Bismalonates as Building Blocks for Metal Organic Frameworks and Organic Nanostructures. Synlett, 2008(11), 1706–1710. doi:10.1055/s-2008-1077880
Peng, P., Li, F.-F., Bowles, F. L., Neti, V. S. P. K., J. Metta-Magana, A., Olmstead, M. M., Echegoyen, L. (2013). High yield synthesis of a new fullerene linker and its use in the formation of a linear coordination polymer by silver complexation. Chemical Communications, 49(31), 3209. doi:10.1039/c3cc40697k
Sun, D., Tham, F. S., Reed, C. A., & Boyd, P. D. W. (2002). Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks. Proceedings of the National Academy of Sciences, 99(8), 5088–5092. doi:10.1073/pnas.072602399
Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523–527. doi:10.1038/nature02311
Constable, E. C., Zhang, G., Housecroft, C. E., & Zampese, J. A. (2012). Bucky-blocks: templating a coordination network with C60. CrystEngComm, 14(5), 1770–1774. doi:10.1039/c2ce06156b
Holm, R., & Elder, D. P. (2016). Analytical advances in pharmaceutical impurity profiling. European Journal of Pharmaceutical Sciences, 87, 118–135. doi:10.1016/j.ejps.2015.12.007
Gupta, D., Bhatia, D., Dave, V., Sutariya, V., & Varghese Gupta, S. (2018). Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules, 23(7), 1719. doi:10.3390/molecules2307171
Tilborg, A., Norberg, B., & Wouters, J. (2014). Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. European Journal of Medicinal Chemistry, 74, 411–426. doi:10.1016/j.ejmech.2013.11.045
Albert, A. (1984). Determination of ionization constants by Potentiometric titration using a glass electrode. In The determination of ionization constants (3rd ed., pp. 14–68). essay, Chapman and Hall. doi:10.1007/978-94-009-5548-6
Garrett, R. H., &amp; Grisham, C. M. (2017). Amino Acids and the Peptide Bond. In Biochemistry (5th ed., p. 77-100). Australia: Cengage Learning. ISBN-13: 9781305636231
Reijenga, J., van Hoof, A., van Loon, A., & Teunissen, B. (2013). Development of Methods for the Determination of pKa Values. Analytical Chemistry Insights, 8, ACI.S12304. doi:10.4137/aci.s12304
Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno E., B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences, 108(13), 5260–5265. doi:10.1073/pnas.1010750108
Allen, R. I., Box, K. J., Comer, J. E. A., Peake, C., & Tam, K. Y. (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17(4-5), 699–712. doi:10.1016/s0731-7085(98)00010-7
Martínez, C. H. R., & Dardonville, C. (2012). Rapid Determination of Ionization Constants (pKa) by UV Spectroscopy Using 96-Well Microtiter Plates. ACS Medicinal Chemistry Letters, 4(1), 142–145. doi:10.1021/ml300326v
Mansouri, K., Cariello, N. F., Korotcov, A., Tkachenko, V., Grulke, C. M., Sprankle, C. S., Williams, A. J. (2019). Open-source QSAR models for pKa prediction using multiple machine learning approaches. Journal of Cheminformatics, 11(1). doi:10.1186/s13321-019-0384-1
Pliego, J. R., & Riveros, J. M. (2002). Theoretical Calculation of pKaUsing the Cluster−Continuum Model. The Journal of Physical Chemistry A, 106(32), 7434–7439. doi:10.1021/jp025928n
Gibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.
Lara, J. C. O., & López, A. B. (2017). Importancia de las sales orgánicas en la industria farmacéutica. Revista Mexicana de Ciencias Farmacéuticas, 48(1), 18-42.
Stahl, P.H. and Wermuth, C.G. (2011) Handbook of Pharmaceutical Salts: Properties, selection, and use. Zürich: Verlag Helvetica Chimica Acta. ISBN 3-906390-26-8
Giron, D. (2003). Characterisation of salts of drug substances. Journal of thermal analysis and calorimetry, 73(2), 441-457. doi:10.1023/a:1025461625782
Attia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025
Gabbott, P. (Ed.). (2008). Principles and applications of thermal analysis. John Wiley & Sons. ISBN 9780470698129
Haines, J.P. (1995) Thermal methods of analysis: Principles, applications and Problems. Dordrecht: Springer-Science+Business Media, B.V. ISBN 9780470698129
Giron, D. (1995). Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochimica Acta, 248, 1–59. doi:10.1016/0040-6031(94)01953-e
Bartolomei, M., Bertocchi, P., Cotta Ramusino, M., & Ciranni Signoretti, E. (1998). Thermal studies on the polymorphic modifications of (R,S) propranolol hydrochloride. Thermochimica Acta, 321(1-2), 43–52. doi:10.1016/s0040-6031(98)00438-9
White, J. D., Kranemann, C. L., &amp; Kuntiyong, P. (2002). [4-Oxazolecarboxylic acid, 2-methyl-, methyl éster]. Organic Syntheses, 10(799), 244. doi:10.15227/orgsyn.
Ananda, K., & Suresh Babu, V. V. (2001). Deprotonation of hydrochloride salts of amino acid ésters and peptide ésters using commercial zinc dust. Journal of Peptide Research, 57(3), 223–226. doi:10.1111/j.1399-3011.2001.00790.x
Phillips, R. E., & Soulen, R. L. (1995). Propylene Oxide Addition to Hydrochloric Acid: A Textbook Error. Journal of Chemical Education, 72(7), 624. doi:10.1021/ed072p624
D, F. (1973). U.S. Patent No. US5227483A. Washington, DC: U.S. Patent and Trademark Office.
Fleck, M., Petrosyan, A. M. (2014). Chapter 2 Amino Acid Structures. In Salts of amino acids crystallization, structure and properties (1st ed., pp. 21-72). Cham: Springer International Publishing. doi:10.1007/978-3-319-06299-0
Boeyens, J. C. A., & Ogilvie, J. F. (Eds.). (2008). Models, Mysteries and Magic of Molecules. doi:10.1007/978-1-4020-5941-4
Langan, P., Mason, S. A., Myles, D., & Schoenborn, B. P. (2002). Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallographica Section B Structural Science, 58(4), 728–733. doi:10.1107/s0108768102004263
Drebushchak, T. N., Boldyreva, E. V., & Shutova, E. S. (2002). β-Glycine. Acta Crystallographica Section E Structure Reports Online, 58(6), o634–o636. doi:10.1107/s160053680200836x
Matei, A., Drichko, N., Gompf, B., & Dressel, M. (2005). Far-infrared spectra of amino acids. Chemical Physics, 316(1-3), 61–71. doi:10.1016/j.chemphys.2005.04.03
Schieber, M. (1971). The growth of single crystals. Journal of Crystal Growth, 11(3), 358–359. doi:10.1016/0022-0248(71)90111-4
Anbu Chudar Azhagan, S., & Ganesan, S. (2017). Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals. Arabian Journal of Chemistry, 10, S2615–S2624. doi:10.1016/j.arabjc.2013.09.041
Rodríguez, J. S., Costa, G., da Silva, M. B., Silva, B. P., Honório, L. J., de Lima-Neto, P., Freire, V. N. (2019). Structural and Optoelectronic Properties of the α-, β-, and γ-Glycine Polymorphs and the Glycine Dihydrate Crystal: A DFT Study. Crystal Growth & Design, 19(9), 5204–5217. doi:10.1021/acs.cgd.9b00593
Bastiat, G., & Leroux, J.-C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry, 19(23), 3867. doi:10.1039/b822657a
Triboni, E.R.; Moraes, T.B.F.; Politi, M.J. Supramolecular Gels. In: Nano Design for Smart Gels; Elsevier, 2019; pp. 35–69. ISBN 9780128148266
Sangeetha, N. M., & Maitra, U. (2005). Supramolecular gels: Functions and uses. Chemical Society Reviews, 34(10), 821. doi:10.1039/b417081b
Naota, T., & Koori, H. (2005). Molecules That Assemble by Sound: An Application to the Instant Gelation of Stable Organic Fluids. Journal of the American Chemical Society, 127(26), 9324–9325. doi:10.1021/ja050809h
Núñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742a
Liao, L., Liu, R., Hu, S., Jiang, W., Chen, Y., Zhong, J., ... & Luo, X. (2022). Self-assembled sonogels formed from 1, 4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC advances, 12(31), 20218-20226. doi: 10.1039/D2RA01391F
Ichihara, K., Sugahara, T., Akamatsu, M., Sakai, K., & Sakai, H. (2021). Rheology of α-Gel Formed by Amino Acid-Based Surfactant with Long-Chain Alcohol: Effects of Inorganic Salt Concentration. Langmuir, 37(23), 7032–7038. doi:10.1021/acs.langmuir.1c00626
Yu, G., Yan, X., Han, C., & Huang, F. (2013). Characterization of supramolecular gels. Chemical Society Reviews, 42(16), 6697. doi:10.1039/c3cs60080g
Chivers, P. R. A., & Smith, D. K. (2019). Shaping and structuring supramolecular gels. Nature Reviews Materials. doi:10.1038/s41578-019-0111-6
Stenzel, K., & Fleck, M. (2004). Poly[[[diaquacobalt(II)]-di-μ-glycine] dichloride]. Acta Crystallographica Section E Structure Reports Online, 60(10), m1470–m1472. doi:10.1107/s1600536804022573
Yang, W., Greenaway, A., Lin, X., Matsuda, R., Blake, A. J., Wilson, C., Schröder, M. (2010). Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 132(41), 14457–14469. doi:10.1021/ja1042935
Wang, B., Lin, R.-B., Zhang, Z., Xiang, S., & Chen, B. (2020). Hydrogen-Bonded Organic Frameworks as A Tunable Platform for Functional Materials. Journal of the American Chemical Society. doi:10.1021/jacs.0c06473
Armer, R., Belfield, A., Binghman, M., Johnson, A., Margathe, J., Avery, C., Hughes, S., &amp; Morrison, A. (2016). U.S. Patent No. WO2016051193A1. Washington, DC: U.S. Patent and Trademark Office.
Vogel, A. I. ; Furniss, B. S. (1989). Chapter 5.11.2: Hydrolysis of alkyl cyanides. In Vogel's textbook of Pratical Organic Chemistry (5th ed., pp. 671-673). Harlow: Pearson Education.
Bosi, S., Da Ros, T., Spalluto, G., Balzarini, J., & Prato, M. (2003). Synthesis and Anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic & Medicinal Chemistry Letters, 13(24), 4437–4440. doi:10.1016/j.bmcl.2003.09.016
Smith, C. (2009). Activated Zinc Dust. Synlett, 2009(09), 1522–1523. doi:10.1055/s-0029-1217181
Kumar, P., & Lokanatha Rai, K. (2012). Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation. Chemical Papers, 66(8). doi:10.2478/s11696-012-0195-6
Hidalgo, T., Cooper, L., Gorman, M., Lozano-Fernández, T., Simón-Vázquez, R., Mouchaham, G, Horcajada, P. (2017). Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. Journal of Materials Chemistry B, 5(15), 2813–2822. doi:10.1039/c6tb03101c
Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in aqueous solutions. Houston, TX: National Association of Corrosion Engineers.
Campbell, J. A., & Whiteker, R. A. (1969). A periodic table based on potential-pH diagrams. Journal of Chemical Education, 46(2), 90. doi:10.1021/ed046p90
Workman, J., Weyer, L. (2008). Practical guide to interpretive near-infrared spectroscopy (1st ed.). Boca Raton: CRC Press. doi:10.1201/9781420018318
Jacobsen, N. E. (2017). NMR Data Interpretation explained: Understanding 1D and 2D NMR spectra of organic compounds and natural products. Hoboken, NJ: John Wiley & Sons. ISBN: 978-1-118-37022-3
Abu Hassan, Noor & Mohtar, Norlia & Mohamad Fauzi, Siti & Yeong, Shoot & Hassan, Hazimah & Idris, Zainab. (2017). Synthesis of dimerate ésters by solvent-free method. Journal of oil palm research. 29. 110-119. doi: 10.21894/jopr.2017.2901.12.
Jason L. Moore, Stephen M. Taylor, and Vadim A. (2005). An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Huenig’s base. Soloshonok Arkivoc (EJ-1549C) pp 287-292 2005. doi: 10.3998/ark.5550190.0006.624
Aleksandrov, A. L. (1980). Oxidation of amines by molecular oxygen. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 29(11), 1740–1744. doi:10.1007/bf00949211
Kostamovaara, J., Tenhunen, J., Kögler, M., Nissinen, I., Nissinen, J., & Keränen, P. (2013). Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD. Optics Express, 21(25), 31632. doi:10.1364/oe.21.031632
Varghese, R. S., Zhou, B., Ranjbar, M., Zhao, Y., & Ressom, H. W. (2012). Ion annotation-assisted analysis of LC-MS based metabolomic experiment. Proteome Science, 10(Suppl 1), S8. doi:10.1186/1477-5956-10-s1-s8
Marina Konon, Tatiana Antropova, Nikita Zolotov, Tatiana Simonenko, Nikolay Simonenko, Elena Brazovskaya, Valery Kreisberg, Irina Polyakova. (2022). Chemical durability of the iron-containing sodium borosilicate glasses. Journal of Non-Crystalline Solids, Volume 584, 121519. doi:10.1016/j.jnoncrysol.2022.121519
Hicham Jabraoui, Stéphane Gin, Thibault Charpentier, Rodolphe Pollet, and Jean-Marc Delaye (2021). Leaching and Reactivity at the Sodium Aluminosilicate Glass–Water Interface: Insights from a ReaxFF Molecular Dynamics Study. The Journal of Physical Chemistry C, 125 (49), 27170-27184. doi: 10.1021/acs.jpcc.1c07266
Birdsall, R. E., Gilar, M., Shion, H., Yu, Y. Q., & Chen, W. (2016). Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 30(14), 1667–1679. doi:10.1002/rcm.7596
Murray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609. doi:10.1351/pac-rec-06-04-06
Ashcroft, A. E. (1997). Electrospray Ionization. In Ionization methods in organic mass spectrometry (pp. 38-40). Cambridge: Royal Society of Chemistry.
Long, J., Gong, H., Zhang, D., Liu, M., & Li, H. (2018). Determination of carboxyl groups in pulp via ultraviolet spectrophotometry. Bioresources, 13(2), 2670-2677.
Akash, M. S. H., Rehman, K., Akash, M. S. H., & Rehman, K. (2020). Ultraviolet-visible (UV-VIS) spectroscopy. Essentials of pharmaceutical analysis, pp. 29-56. doi: 10.1007/978-981-15-1547-7_3
Mocanu, M. N., & Yan, F. (2018). Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 208–214. doi:10.1016/j.saa.2017.09.017
Wang, Q., Byrnes, L. J., Shui, B., Röhrig, U. F., Singh, A., Chudakov, D. M., Sondermann, H. (2011). Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant. PLoS ONE, 6(8), e23513. doi:10.1371/journal.pone.002351
Khalil, G. E., Daddario, P., Lau, K. S. F., Imtiaz, S., King, M., Gouterman, M., Brückner, C. (2010). meso-Tetraarylporpholactones as high pH sensors. The Analyst, 135(8), 2125. doi:10.1039/c0an00018c
Beaven, G. H., & Holiday, E. R. (1952). Ultraviolet Absorption Spectra of Proteins and Amino Acids. Advances in Protein Chemistry Volume 7, 319–386. doi:10.1016/s0065-3233(08)60022-4
Shimono, K., Kitami, M., Iwamoto, M., & Kamo, N. (2000). Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophysical Chemistry, 87(2-3), 225–230. doi:10.1016/s0301-4622(00)00195-2
Tan, L., Du, W., Zhang, Y., Tang, L. J., Jiang, J. H., & Yu, R. Q. (2020). Rayleigh scattering correction for fluorescence spectroscopy analysis. Chemometrics and Intelligent Laboratory Systems, 203, 104028. doi:10.1016/j.chemolab.2020.104028
Lakowicz, J.R (2006). Introduction to Fluorescence. Principles of Fluorescence Spectroscopy. Springer, Boston, MA. doi:10.1007/978-0-387-46312-4_1
Babić, S., Horvat, A. J., Pavlović, D. M., & Kaštelan-Macan, M. (2007). Determination of pKa values of active pharmaceutical ingredients. TrAC Trends in Analytical Chemistry, 26(11), 1043-1061. doi:10.1016/j.trac.2007.09.004
Kordatos, K., Bosi, S., Da Ros, T., Zambon, A., Lucchini, V., & Prato, M. (2001). Isolation and characterization of all eight bisadducts of fulleropyrrolidine derivatives. The Journal of organic chemistry, 66(8), 2802-2808. doi:10.1021/jo001708z
Tsuge, O., & Kanemasa, S. (1989). Recent advances in azomethine ylide chemistry. Advances in heterocyclic chemistry, 45, 231-349. doi:10.1016/S0065-2725(08)60332-3
Tanimura, M., Watanabe, N., Ijuin, H. K., & Matsumoto, M. (2011). Intramolecular charge-transfer-induced decomposition promoted by an aprotic polar solvent for bicyclic dioxetanes bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. The Journal of Organic Chemistry, 76(3), 902-908. doi:10.1021/jo1021822
Matsumoto, M., Tanimura, M., Akimoto, T., Watanabe, N., & Ijuin, H. K. (2008). Solvent-promoted chemiluminescent decomposition of a bicyclic dioxetane bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. Tetrahedron Letters, 49(26), 4170-4173. doi:10.1016/j.tetlet.2008.04.110
Petersen, R. C., Markgraf, J. H., & Ross, S. D. (1961). Solvent Effects in the Decomposition of 1, 1'-Diphenylazoethane and 2, 2'-Azobis-(2-methylpropionitrile). Journal of the American Chemical Society, 83(18), 3819-3823. doi:10.1021/ja01479a021
Nikolay O. Mchedlov-Petrossyan, Mykyta O. Marfunin, Vladislav A. Tikhonov, and Sergey V. Shekhovtsov (2022). Unexpected Colloidal Stability of Fullerenes in Dimethyl Sulfoxide and Related Systems. Langmuir. 38 (32), 10000-10009 doi: 10.1021/acs.langmuir.2c01408
Stumm, W. (1993). Aquatic colloids as chemical reactants: surface structure and reactivity. Colloids in the Aquatic Environment, 1–18. doi:10.1016/b978-1-85861-038-2.50004-8
Saadatkhah, N., Garcia, A. C., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Chaouki, J. (2019). Experimental Methods in Chemical Engineering: Thermogravimetric Analysis—TGA. The Canadian Journal of Chemical Engineering. doi:10.1002/cjce.23673
C. Tsioptsias. (2022). On the latent limit of detection of thermogravimetric análisis. Measurement. Volume 204, 112136. doi:10.1016/j.measurement.2022.112136.
Blaine, R. L., & Rose, J. E. (2009). Validation of Thermogravimetric analysis performance using mass loss reference materials. TA Instruments, 1-10.
R.L. Danley, J.W. Schaefer. (2008). U.S. Patent No. US20060140246A1 System and method for a thermogravimetric analyzer having improved dynamic weight baseline. Washington, DC: U.S. Patent and Trademark Office.
Ceylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. doi:10.1007/s10570-013-9936-0
Machatha, S. G., Sanghvi, T., & Yalkowsky, S. H. (2005). Structure determination and characterization of carbendazim hydrochloride dihydrate. AAPS PharmSciTech, 6(1), E115–E119. doi:10.1208/pt060118
Gibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.
Attia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025
Cervini, P., Machado, L. C. M., Ferreira, A. P. G., Ambrozini, B., & Cavalheiro, ÿder T. G. (2016). Thermal decomposition of tetracycline and chlortetracycline. Journal of Analytical and Applied Pyrolysis, 118, 317–324. doi:10.1016/j.jaap.2016.02.015
Pisharath, S., & Ang, H. G. (2007). Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer. Polymer Degradation and Stability, 92(7), 1365–1377. doi:10.1016/j.polymdegradstab.200
Khan, N., Dollimore, D., Alexander, K., & Wilburn, F. . (2001). The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367-368, 321–333. doi:10.1016/s0040-6031(00)00669-9
Gan, L., Zhou, D., Luo, C., Tan, H., Huang, C., Lü, M., … Wu, Y. (1996). Synthesis of Fullerene Amino Acid Derivatives by Direct Interaction of Amino Acid Éster with C60. The Journal of Organic Chemistry, 61(6), 1954–1961. doi:10.1021/jo951933u
Cheng, J., Lu, T., Wu, X., Zhang, H., Zhang, C., Peng, C.-A., & Huang, S. (2019). Extraction of cobalt(ii) by methyltrioctylammonium chloride in nickel(ii)-containing chloride solution from spent lithium ion batteries. RSC Advances, 9(39), 22729–22739. doi:10.1039/c9ra02719j
Pandey, B. K., Sukla, A., Sinha, A. K., & Gopal, R. (2015). Synthesis and Characterization of Cobalt Oxalate Nanomaterial for Li-Ion Battery. Materials Focus, 4(5), 333–337. doi:10.1166/mat.2015.1267
Raveendra, R. S., Prashanth, P. A., & Nagabhushana, B. M. (2016). Synthesis and spectral characterization studies of bio-active cobalt (II) complexes with clomipramine ligand. Journal of Advanced Chemical Sciences, 334-336.
F. R. Dollish, W. G. Fateley, and F. F. Bentley, (1974). Characteristic Raman Frequencies of Organic Compounds, John Wiley & Sons Inc., New York.
Liu, Y., Wang, C., Ju, S., Li, M., Yuan, A., & Zhu, G. (2020). FeCo-based hybrid MOF derived active species for effective oxygen evolution. Progress in Natural Science: Materials International. doi:10.1016/j.pnsc.2020.02.006
Yoon, H., Xu, A., Sterbinsky, G. E., Arena, D. A., Wang, Z., Stephens, P. W., Carroll, K. J. (2015). In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Physical Chemistry Chemical Physics, 17(2), 1070–1076. doi:10.1039/c4cp04451g
Kaur, R., Chhibber, M., Mahata, P., & Mittal, S. K. (2018). Induction of Catalytic Activity in ZnO Loaded Cobalt Based MOF for the Reduction of Nitroarenes. ChemistrySelect, 3(12), 3417–3425. doi:10.1002/slct.201702703
Milekhin, A. G., Cherkasova, O., Kuznetsov, S. A., Milekhin, I. A., Rodyakina, E. E., Latyshev, A. V., Zahn, D. R. T. (2017). Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules. Beilstein Journal of Nanotechnology, 8, 975–981. doi:10.3762/bjnano.8.99
Basile, L. J. (1971). Metal-Nitrogen Vibrations. Low-Frequency Vibrations of Inorganic and Coordination Compounds, 191–246. doi:10.1007/978-1-4684-1809-5_7
Núñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742a
Goyal, N., Mangunuru, H. P. R., Parikh, B., Shrestha, S., & Wang, G. (2014). Synthesis and characterization of pH responsive D-glucosamine based molecular gelators. Beilstein Journal of Organic Chemistry, 10, 3111–3121. doi:10.3762/bjoc.10.328
Li, Y., Young, D. J., & Loh, X. J. (2019). Fluorescent gels: a review of synthesis, properties, applications and challenges. Materials Chemistry Frontiers, 3(8), 1489-1502. doi: 10.1039/C9QM00127A
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84635/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84635/2/1.032.506.172.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84635/3/1.032.506.172.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
16986eb1f9b26ef309c802eebceb60f8
722dddcb34fc65c4fb543b17dbdfe356
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089987531997184
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duarte Ruíz, Álvaro613d0b850f564ad256a5f499dd186186Martínez Bustos, Anthony Jesúsdf02ce0c25ad81477b4dfc1fe01a8c52600Nuevos Materiales Nano y Supramoleculares2023-09-04T16:31:39Z2023-09-04T16:31:39Z2023-09-04https://repositorio.unal.edu.co/handle/unal/84635Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorDesde el descubrimiento del fullereno C60, se han sintetizado diferentes derivados como las fulleropirrolidinas. Estos derivados han tenido aplicación en áreas como fotovoltaica, celdas solares, supramolecular, y sensores. En este trabajo se desarrolló una ruta de síntesis para un nuevo derivado de fullereno a partir del ácido 5-aminoisoftálico (1). Por medio de la esterificación, cianometilación e hidrólisis fue posible obtener el 5-aminoisoftalato de dimetilo (2), el 5-(cianometilamino)isoftalato de dimetilo (3) y el ácido 5-(carboximetilamino)isoftalico (4). Los compuestos 3 y 4 no han sido reportados anteriormente en la literatura. La caracterización de estos compuestos se hizo por medio de RMN 1H y 13C, IR, DRX, Raman, UV-Vis, Fluorescencia, MS/ESI, análisis elemental. Se llevaron a cabo ensayos preliminares de la reacción Prato entre C60, 4 y formaldehído. Luego de evaluar variables como tiempo y temperatura, se formularon dos hipótesis relacionadas con la miscibilidad de las fases en la reacción y con el estado de 4 en forma de clorhidrato. El análisis elemental y termogravimétrico permitieron sustentar la última hipótesis. También se evaluó el potencial de 4 en la química supramolecular para la formación de un compuesto de coordinación con cobalto y en su capacidad gelificante, no prevista hasta el desarrollo de este trabajo. Así, el trabajo es un punto de partida para la investigación de la ruta de una nueva fulleropirrolidina. Este tema es de gran interés por las características de los compuestos nuevos que fueron sintetizados y las variables en torno al desarrollo de la reacción Prato. (Texto tomado de la fuente)Since the discovery of C60, different derivatives have been synthesized, such as fulleropyrrolidines that are generated through an addition reaction of an azomethine ylide on C60, using an α-amino acid and formaldehyde for the formation of the ylide. These derivatives have applications in areas such as photovoltaics, solar cells, supramolecular, and sensors. In this work, a synthetic route was developed for a new fullerene derivative from 5-aminoisophthalic acid (1). It consisted on ésterification, cyanomethylation and hydrolysis to obtain dimethyl 5-aminoisophthalate (2), dimethyl 5-(cyanomethylamino)isophthalate (3) and 5-(carboxymethylamino)isophthalic acid (4). Compounds 3 and 4 have not been previously reported in the literature. The characterization of these compounds was done by means of 1H and 13C NMR, IR, XRD, Raman, UV-Vis, Fluorescence, MS/ESI, and elemental analysis. Experiments were carried out with 4 for the synthesis of 5, but it was not possible to observe a reaction product. After evaluating variables such as time and temperature, two hypotheses related to the miscibility of the phases in the reaction and to the state of 4 in the hydrochloride form were formulated. The elemental and thermogravimetric analysis allowed to support the last hypothesis. The potential of 4 in supramolecular chemistry for the formation of a coordination compound with cobalt and its gelling capacity, not foreseen until the development of this work, was also evaluated. Thus, the work is a starting point for the investigation of the synthesis route of 5, a broad subject of great interest due to the characteristics of the new compounds that were synthesized and the variables around the development of the Prato reaction.Desde a descoberta do fulereno C60, diferentes derivados, como as fuleropirrolidinas, foram sintetizados. Esses derivados tiveram aplicações em áreas como energia fotovoltaica, células solares, supramoleculares e sensores. Neste trabalho foi desenvolvida uma rota de síntese para um novo derivado de fulereno do ácido 5-aminoisoftálico (1). Por meio de esterificação, cianometilação e hidrólise foi possível obter 5-aminoisoftalato de dimetila (2), 5-(cianometilamino)isoftalato de dimetila (3) e ácido 5-(carboximetilamino)isoftálico (4). Os compostos 3 e 4 não foram relatados anteriormente na literatura. A caracterização destes compostos foi feita por meio de RMN de 1H e 13C, IR, DRX, Raman, UV-Vis, Fluorescência, MS/ESI, análise elementar. Foram realizados testes preliminares da reação de Prato entre C60,4 e formaldeído. Após avaliação de variáveis ​​como tempo e temperatura, foram formuladas duas hipóteses relacionadas à miscibilidade das fases da reação e ao estado 4 na forma cloridrato. A análise elementar e termogravimétrica permitiu apoiar a última hipótese. Também foi avaliado o potencial do 4 em química supramolecular para a formação de um composto de coordenação com cobalto e sua capacidade gelificante, não prevista até o desenvolvimento deste trabalho. Assim, o trabalho é um ponto de partida para a investigação da rota de uma nova fuleropirrolidina. Este assunto é de grande interesse devido às características dos novos compostos que foram sintetizados e às variáveis ​​que envolvem o desenvolvimento da reação de Prato.Facultad de Ciencias, Universidad Nacional de Colombia (proyecto No. 45627)Ministerio de Ciencia, Tecnología e Innovación-MINCIENCIAS (proyecto No. 110171249591 )Maestría147 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánica540 - Química y ciencias afines::546 - Química inorgánicaAminoácidosAmino AcidsFulleropirrolidinaIluro de azometinoSintesis de α-aminoacidosFulleropyrrolidineAzomethine ylideSynthesis of α-amino acidsIleto de azometinaSíntese de α-aminoácidosFuleropirrolidinaSíntesis del ácido 5-(carboximetilamino)isoftálico para la síntesis de un nuevo monoaducto de fullereno C60Synthesis of 5-(carboxymethylamino)isopthalic acid for the synthesis of a new fullerene C60 monoadductSíntese do ácido 5-(carboximetilamino)isoftálico para a síntese de um novo monoaduto de fulereno C60Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLu, X., Akasaka, T. and Slanina, Z. (2021). Handbook of fullerene science and technology. 1st ed. Singapore: Springer Singapore, pp.1-32. doi:10.1007/978-981-13-3242-5Yamada, M., Nagase, S., Akasaka, T. (2021). Functionalization of Fullerenes: Addition Reactions. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. doi:1007/978-981-13-3242-5_33-1Li, C., Yip, H. and Jen, A. (2012). Functional fullerenes for organic photovoltaics. Journal of Materials Chemistry, 22(10), p.4161. doi:10.1039/C2JM15126JKarakawa, M., Nagai, T., Adachi, K., Ie, Y. and Aso, Y. (2014). N-phenyl[60]fulleropyrrolidines: alternative acceptor materials to PC61BM for high performance organic photovoltaic cells. J. Mater. Chem. A, 2(48), pp.20889-20895. doi:10.1039/c4ta04857aYang, Z., Zhong, M., Liang, Y., Yang, L., Liu, X., Li, Q., Xu, D. (2019). SnO 2 ‐C60 Pyrrolidine Tris‐Acid (CPTA) as the Electron Transport Layer for Highly Efficient and Stable Planar Sn‐Based Perovskite Solar Cells. Advanced Functional Materials, 1903621. doi:10.1002/adfm.201903621Peng, P., Li, F.-F., Neti, V. S. P. K., Metta-Magana, A. J., & Echegoyen, L. (2013). Design, Synthesis, and X-Ray Crystal Structure of a Fullerene-Linked Metal-Organic Framework. Angewandte Chemie International Edition, 53(1), 160–163. doi:10.1002/anie.201306761Sondheimer, F., Wolovsky, R., & Amiel, Y. (1962). Unsaturated Macrocyclic Compounds. XXIII.1The Synthesis of the Fully Conjugated Macrocyclic Polyenes Cycloöctadecanonaene ([18]Annulene),2Cyclotetracosadodecaene ([24]Annulene), and Cyclotriacontapentadecaene ([30]Annulene). Journal of the American Chemical Society, 84(2), 274–284. doi:10.1021/ja00861a030Ōsawa, E., Kroto, H. W., Fowler, P. W., Wasserman, E., Lindsay Mackay, A., Turner, G., & Walton, D. R. M. (1993). The evolution of the football structure for the C60 molecule: a retrospective. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 343, 1–8. doi:10.1017/cbo9780511622946.001Barth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi,mno]fluoranthene. Journal of the American Chemical Society, 88(2), 380–381. doi:10.1021/ja00954a049Kanagaraj, K., Lin, K., Wu, W., Gao, G., Zhong, Z., Su, D., & Yang, C. (2017). Chiral Buckybowl Molecules. Symmetry, 9(9), 174. doi:10.3390/sym9090174Rohlfing, E. A., Cox, D. M., & Kaldor, A. (1984). Production and characterization of supersonic carbon cluster beams. The Journal of Chemical Physics, 81(7), 3322–3330. doi:10.1063/1.447994Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. doi:10.1038/318162a0Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: a new form of carbon. Nature, 347(6291), 354–358. doi:10.1038/347354a0Murayama, H., Tomonoh, S., Alford, J. M., & Karpuk, M. E. (2005). Fullerene Production in Tons and More: From Science to Industry. Fullerenes, Nanotubes and Carbon Nanostructures, 12(1-2), 1–9. doi:10.1081/fst-120027125Stalling, D. L., Kuo, K. C., Guo, C. Y., & Saim, S. (1993). Separation of Fullerenes C60, C70, and C76-84 on Polystyrene Divinylbenzene Columns. Journal of Liquid Chromatography, 16(3), 699–722. doi:10.1080/10826079308019558Yan, Q.-L., Gozin, M., Zhao, F.-Q., Cohen, A., & Pang, S.-P. (2016). Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799–4851. doi:10.1039/c5nr07855eKatz, E. A. (2006). Fullerene Thin Films as Photovoltaic Material. Nanostructured Materials for Solar Energy Conversion, 361–443. doi:10.1016/b978-044452844-5/50014-7Speranza, G. (2021). Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 11(4), 967. doi:10.3390/nano11040967Hirsch, A., Lamparth, I., & Karfunkel, H. R. (1994). Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene. Angewandte Chemie International Edition in English, 33(4), 437–438. doi:10.1002/anie.199404371Cerón, M. R., & Echegoyen, L. (2016). Recent progress in the synthesis of regio-isomerically pure bis-adducts of empty and endohedral fullerenes. Journal of Physical Organic Chemistry, 29(11), 613–619. doi:10.1002/poc.3563Rašović, I. (2016). Water-soluble fullerenes for medical applications. Materials Science and Technology, 33(7), 777–794. doi:10.1080/02670836.2016.1198114Cataldo, F., & Da Ros, T. (Eds.). (2008). Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes (Vol. 1). Springer Science & Business Media.Semenov, K. N., Charykov, N. A., Keskinov, V. A., Piartman, A. K., Blokhin, A. A., & Kopyrin, A. A. (2010). Solubility of Light Fullerenes in Organic Solvents. Journal of Chemical & Engineering Data, 55(1), 13–36. doi:10.1021/je900296sThilgen, C., Herrmann, A., & Diederich, F. (1997). The Covalent Chemistry of Higher Fullerenes: C70 and Beyond. Angewandte Chemie International Edition in English, 36(21), 2268–2280. doi:10.1002/anie.199722681Rao, C. N. R., Seshadri, R., Govindaraj, A., & Sen, R. (1995). Fullerenes, nanotubes, onions and related carbon structures. Materials Science and Engineering: R: Reports, 15(6), 209–262, PP.69.. doi:10.1016/s0927-796x(95)00181-6Umeyama, T., Takahara, S., Shibata, S., Igarashi, K., Higashino, T., Mishima, K., Yamashita, K., & Imahori, H. (2018). Cis -1 Isomers of tethered bismethano[70]fullerene as electron acceptors in organic photovoltaics. RSC Advances, 8(33), 18316–18326. doi:10.1039/c8ra02896fHaddon, R. C., Palmer, R. E., Kroto, H. W., & Sermon, P. A. (1993). The Fullerenes: Powerful Carbon-Based Electron Acceptors [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 343(1667), 53–62. doi:10.1098/rsta.1993.0040Cho, H. Y., Ansems, R. B. M., & Scott, L. T. (2014). Site-selective covalent functionalization at interior carbon atoms and on the rim of circumtrindene, a C36H12 open geodesic polyarene. Beilstein Journal of Organic Chemistry, 10, 956–968. doi:10.3762/bjoc.10.94Fleming, I. (2011). “Molecular Orbitals and the Structures of Organic Molecules,” in Molecular orbitals and organic chemical reactions. Chichéster, West Sussex, U.K.: Wiley, pp. 69–125. doi:10.1002/9780470689493Hirsch, A. (2006). Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (b), 243(13), 3209–3212. doi:10.1002/pssb.200669191Yan, W., Seifermann, S. M., Pierrat, P., & Bräse, S. (2015). Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Organic & Biomolecular Chemistry, 13(1), 25–54. doi:10.1039/c4ob01663gSamal, S., & Sahoo, S. K. (1997). An overview of fullerene chemistry. Bulletin of Materials Science, 20(2), 141–230. doi:10.1007/bf02744892Jensen, A. W., Wilson, S. R., & Schuster, D. I. (1996). Biological applications of fullerenes. Bioorganic & Medicinal Chemistry, 4(6), 767–779. doi:10.1016/0968-0896(96)00081-8Ikeda, A., Iizuka, T., Maekubo, N., Aono, R., Kikuchi, J., Akiyama, M. Shiozaki, K. (2013). Cyclodextrin Complexed [60]Fullerene Derivatives with High Levels of Photodynamic Activity by Long Wavelength Excitation. ACS Medicinal Chemistry Letters, 4(8), 752–756. doi:10.1021/ml4001535Li, J., Takeuchi, A., Ozawa, M., Li, X., Saigo, K., & Kitazawa, K. (1993). C60 fullerol formation catalysed by quaternary ammonium hydroxides. Journal of the Chemical Society, Chemical Communications, (23), 1784. doi:10.1039/c39930001784Chiang, L. Y., Wang, L.-Y., Swirczewski, J. W., Soled, S., & Cameron, S. (1994). Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. The Journal of Organic Chemistry, 59(14), 3960–3968. doi:10.1021/jo00093a030Maggini, M., Scorrano, G., & Prato, M. (1993). Addition of Azomethine Ylides to C60: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines. Journal of the American Chemical Society, 115(21), 9798–9799. doi:10.1021/ja00074a056Hirsch, A., Li, Q., & Wudl, F. (1991). Globe-trotting Hydrogens on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6. Angewandte Chemie International Edition in English, 30(10), 1309–1310. doi:10.1002/anie.199113091Li, Y., & Gan, L. (2014). Selective Addition of Secondary Amines to C60: Formation of Penta- and Hexaamino[60]fullerenes. The Journal of Organic Chemistry, 79(18), 8912–8916. doi:10.1021/jo5015867Bingel, C. (1993). Cyclopropanierung von Fullerenen. Chemische Berichte, 126(8), 1957–1959. doi:10.1002/cber.19931260829Wudl, F. (1992). The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Accounts of Chemical Research, 25(3), 157–161. doi:10.1021/ar00015a009Hirsch, A. and Brettreich, M. (2005) “4. Cicloadition” in Fullerenes Chemistry and reactions. Weinheim: Wiley-VCH, pp. 101–184. doi:10.1002/3527603492Camps, X., & Hirsch, A. (1997). Efficient cyclopropanation of C60 starting from malonates. Journal of the Chemical Society, Perkin Transactions 1, (11), 1595–1596. doi:10.1039/a702055dMartínez, J. P., Garcia-Borràs, M., Osuna, S., Poater, J., Bickelhaupt, F. M., & Solà, M. (2016). Reaction Mechanism and Regioselectivity of the Bingel-Hirsch Addition of Dimethyl Bromomalonate to La@C2v-C82. Chemistry - A European Journal, 22(17), 5953–5962. doi:10.1002/chem.201504668Biglova, Y. N., & Mustafin, A. G. (2019). Nucleophilic cyclopropanation of [60]fullerene by the addition–elimination mechanism. RSC Advances, 9(39), 22428–22498. doi:10.1039/c9ra04036fSattarova, A. F., Biglova, Y. N., & Mustafin, A. G. (2022). Quantum‐chemical approaches in the study of fullerene and its derivatives by the example of the most typical cycloaddition reactions: A review. International Journal of Quantum Chemistry, 122(7), e26863. doi: 10.1002/qua.26863Li, H., Haque, S. A., Kitaygorodskiy, A., Meziani, M. J., Torres-Castillo, M., & Sun, Y.-P. (2006). Alternatively Modified Bingel Reaction for Efficient Syntheses of C60 Hexakis- Adducts. Organic Letters, 8(24), 5641–5643. doi:10.1021/ol062391dPereira, G. R., Santos, L. J., Luduvico, I., Alves, R. B., & de Freitas, R. P. (2010). “Click” chemistry as a tool for the facile synthesis of fullerene glycoconjugate derivatives. Tetrahedron Letters, 51(7), 1022–1025. doi:10.1016/j.tetlet.2009.12.050Riala, M., & Chronakis, N. (2011). A Facile Access to Enantiomerically Pure [60]Fullerene Bisadducts with the Inherently ChiralTrans-3 Addition Pattern. Organic Letters, 13(11), 2844–2847. doi:10.1021/ol200816zJin, B., Shen, J., Peng, R., Zheng, R., & Chu, S. (2014). Efficient cyclopropanation of [60]fullerene starting from bromo-substituted active methylene compounds without using a basic catalyst. Tetrahedron Letters, 55(36), 5007–5010. doi:10.1016/j.tetlet.2014.07.048Prato, M. (1997). [60]Fullerene chemistry for materials science applications. Journal of Materials Chemistry, 7(7), 1097–1109. doi:10.1039/a700080dLanga, F., De La Cruz, P., Espíldora, E., García, J. J., Pérez, M. C., & De La Hoz, A. (2000). Fullerene chemistry under microwave irradiation. Carbon, 38(11), 1641–1646. doi:10.1016/S0008-6223(99)00284-5Safaei-Ghomi, J., & Masoomi, R. (2015). Rapid microwave-assisted synthesis of N-benzyl fulleropyrrolidines under solvent free conditions. RSC Advances, 5(20), 15591–15596. doi:10.1039/c4ra16020gGuryanov, I., Montellano López, A., Carraro, M., Da Ros, T., Scorrano, G., Maggini, M., Prato, M., & Bonchio, M. (2009). Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chemical Communications, 26, 3940–3942. doi:10.1039/b906813aP. Economopoulos, S., Karousis, N., Rotas, G., Pagona, G., & Tagmatarchis, N. (2011). Microwave-assisted Functionalization of Carbon Nanostructured Materials. Current Organic Chemistry, 15(8), 1121–1132. doi:10.2174/138527211795203031Zhang, J., Yang, W., He, P., Zhu, S., & Wang, S. (2005). Microwave‐promoted One‐Pot Three‐Component Reaction to [60]Fulleropyrrolidine Derivatives. Synthetic Communications, 35(1), 89–96. doi:10.1081/scc-200046505Martinis, E. M., Montellano, A., Sartorel, A., Carraro, M., Prato, M., & Bonchio, M. (2021). Microwave‐Assisted 1,3‐Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bis‐Addition with Ionic Liquids Additives. European Journal of Organic Chemistry, 2021(25), 3545–3551. doi:10.1002/ejoc.202100546BinSabt, M. H., Al-Matar, H. M., Balch, A. L., & Shalaby, M. A. (2021). Synthesis and Electrochemistry of Novel Dumbbell-Shaped Bis-pyrazolino[60]fullerene Derivatives Formed Using Microwave Radiation. ACS Omega, 6(31), 20321–20330. doi:10.1021/acsomega.1c02245Rudolf, M., Kirner, S. V., & Guldi, D. M. (2016). A multicomponent molecular approach to artificial photosynthesis – the role of fullerenes and endohedral metallofullerenes. Chemical Society Reviews, 45(3), 612–630. doi:10.1039/c5cs00774gMatsuo, Y., Kanaizuka, K., Matsuo, K., Zhong, Y.-W., Nakae, T., & Nakamura, E. (2008). Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society, 130(15), 5016–5017. doi:10.1021/ja800481dPérez, L., García-Martínez, J. C., Díez-Barra, E., Atienzar, P., García, H., Rodríguez-López, J., & Langa, F. (2006). Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 12(19), 5149–5157. doi:10.1002/chem.200600207Foote, C. S. (1994). Photophysical and photochemical properties of fullerenes. Topics in Current Chemistry, 347–363. doi:10.1007/3-540-57565-0_80Leach, S., Vervloet, M., Desprès, A., Bréheret, E., Hare, J. P., John Dennis, T. Walton, D. R. M. (1992). Electronic spectra and transitions of the fullerene C60. Chemical Physics, 160(3), 451–466. doi:10.1016/0301-0104(92)80012-kPrato, M., & Maggini, M. (1998). Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives. Accounts of Chemical Research, 31(9), 519–526. doi:10.1021/ar970210pIsaacs, L., Haldimann, R. F., & Diederich, F. (1994). Tether‐Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation. Angewandte Chemie International Edition in English, 33(22), 2339–2342. doi:10.1002/anie.199423391Schwenninger, R., Muller, T., & Kräutler, B. (1997). Concise Route to Symmetric Multiadducts of [60] Fullerene : Preparation of an Equatorial Tetraadduct by Orthogonal Transposition and the development of a preparative method for their synthesis by Kra regioselectively multifunctionalized derivatives of t. Journal of American Chemical Society, 2(9 mL), 9317–9318. doi:10.1021/ja971875pZhang, S., Lukoyanova, O., & Echegoyen, L. (2006). Synthesis of fullerene adducts with terpyridyl- or pyridylpyrrolidine groups in trans-1 positions. Chemistry - A European Journal, 12(10), 2846–2853. doi:10.1002/chem.200501333Duarte-Ruiz, A., Wurst, K., & Kräutler, B. (2001). Regioselective “one-pot” synthesis of antipodal bis-adducts by heating of solid [5,6]fullerene-C60-Ih and anthracenes. Helvetica Chimica Acta, 84(8), 2167–2177. doi:10.1002/1522-2675(20010815)84:8<2167::AID-HLCA2167>3.0.CO;2-VDuarte-Ruiz, A., Müller, T., Wurst, K., & Kräutler, B. (2001). The bis-adducts of the [5,6]-fullerene C60 and anthracene. Tetrahedron, 57(17), 3709–3714. doi:10.1016/S0040-4020(01)00237-XDuarte-Ruiz, A., Neti, V. S. P. K., Cerón, M. R., Olmstead, M. M., Balch, A. L., & Echegoyen, L. (2014). High-yield, regiospecific bis-functionalization of C70 using a Diels-Alder reaction in molten anthracene. Chemical Communications, 50(73), 10584–10587. doi:10.1039/c4cc02472aOrtiz, A. L., Rivera, D. M., Athans, A. J., & Echegoyen, L. (2009). Regioselective addition of N-(4-Thiocyanatophenyl)pyrrolidine addends to fullerenes. European Journal of Organic Chemistry, 20, 3396–3403. doi:10.1002/ejoc.200900228Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, (20), 1423. doi:10.1039/c39900001423Tian, C., Castro, E., Betancourt-Solis, G., Nan, Z., Fernandez-Delgado, O., Jankuru, S., & Echegoyen, L. (2018). Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 42(4), 2896–2902. doi:10.1039/c7nj04978aFernandez-Delgado, O., Castro, E., Ganivet, C. R., Fosnacht, K., Liu, F., Mates, T., Liu, Y., Wu, X., & Echegoyen, L. (2019). Variation of Interfacial Interactions in PC61BM-like Electron-Transporting Compounds for Perovskite Solar Cells [Research-article]. ACS Applied Materials and Interfaces, 11(37), 34408–34415. doi.org:10.1021/acsami.9b09018Tian, C., Kochiss, K., Castro, E., Betancourt-Solis, G., Han, H., & Echegoyen, L. (2017). A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 5(16), 7326–7332. doi:10.1039/c7ta00362eCastro, E., Murillo, J., Fernandez-Delgado, O., & Echegoyen, L. (2018). Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 6(11), 2635–2651. doi:10.1039/c7tc04302cTian, C., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., & Echegoyen, L. (2016). Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers. ACS Applied Materials and Interfaces, 8(45), 31426–31432. doi:10.1021/acsami.6b10668Hassanzadeh, Z., Ghavami, R., & Kompany-Zareh, M. (2016). Radial basis function neural networks based on the projection pursuit and principal component analysis approaches: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors. Medicinal Chemistry Research, 25(1), 19–29. https://doi.org/10.1007/s00044-015-1466-xPan, Y., Liu, X., Zhang, W., Liu, Z., Zeng, G., Shao, B., Liang, Q., He, Q., Yuan, X., Huang, D., & Chen, M. (2020). Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Applied Catalysis B: Environmental, 265, 118579. doi:10.1016/j.apcatb.2019.118579Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., & Zhou, H. C. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1–35. doi:10.1002/adma.201704303Babu, S. S., Möhwald, H., & Nakanishi, T. (2010). Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chemical Society Reviews, 39(11), 4021–4035. doi:10.1039/c000680gKamat, P. V. (2007). Meeting clean energy demand with nanostructure architectures. ACS National Meeting Book of Abstracts, 2834–2860.NREL. (2020). Best Research-Cell Efficiencies: Rev. 04-06-2020. In Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL (p. https://www.nrel.gov/pv/cell-efficiency.html). https://www.nrel.gov/pv/cell-efficiency.htmlThomas, T., Mellor, A., Hylton, N. P., Fuhrer, M., Alonso-Àlvarez, D., Braun, A., Ekins-Daukes, N. J., David, J. P. R., & Sweeney, S. J. (2015). Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semiconductor Science and Technology, 30(9). doi:10.1088/0268-1242/30/9/094010Araki, K., Yamaguchi, M., Kondo, M., & Uozumi, H. (2003, May). Which is the best number of junctions for solar cells under ever-changing terrestrial spectrum?. In 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of (Vol. 1, pp. 307-310). IEEE.Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S. N., Glatthaar, M., Meyer, T., & Meyer, A. (2007). Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells, 91(5), 379–384. doi:10.1016/j.solmat.2006.10.013Kim, T., Kim, J. H., Kang, T. E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T. S., & Kim, B. J. (2015). Flexible, highly efficient all-polymer solar cells. Nature Communications, 6(May), 1–7. doi:10.1038/ncomms9547Song, S., Hill, R., Choi, K., Wojciechowski, K., Barlow, S., Leisen, J., Snaith, H. J., Marder, S. R., & Park, T. (2018). Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 49, 324–332. doi:10.1016/j.nanoen.2018.04.068Li, C., Fuxhi, W., Xu, J., Yao, J., Zhang, B., Xhang, C., Min, X., Songyuan, D., Li, Y., & Z, T. (2015). Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 21(7), 9771–9778. doi:10.1039/c4nr06240jBrédas, J.-L., Norton, J. E., Cornil, J., & Coropceanu, V. (2009). Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42(11), 1691–1699. doi:10.1021/ar900099hMazzio, K. A., & Luscombe, C. K. (2015). The future of organic photovoltaics. Chemical Society Reviews, 44(1), 78–90. doi:10.1039/c4cs00227jMarinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. doi:10.1016/j.jcis.2016.11.021Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J. T.-W., Stranks, S. D., Nicholas, R. J. (2015). Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 11(7), 582–587. doi:10.1038/nphys3357Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., & Cahen, D. (2014). Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nature Communications, 5(1). doi:10.1038/ncomms4461Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L., & Meredith, P. (2014). Electro-optics of perovskite solar cells. Nature Photonics, 9(2), 106–112. doi:10.1038/nphoton.2014.284Collavini, S., Völker, S. F., & Delgado, J. L. (2015). Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie International Edition, 54(34), 9757–9759. doi:10.1002/anie.201505321Völker, S. F., Collavini, S., & Delgado, J. L. (2015). Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 8(18), 3012–3028. doi:10.1002/cssc.201500742Cook, S., Katoh, R., & Furube, A. (2009). Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM. The Journal of Physical Chemistry C, 113(6), 2547–2552. doi:10.1021/jp8050774Sheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., & Green, M. A. (2015). Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. The Journal of Physical Chemistry C, 119(7), 3545–3549. doi:10.1021/jp512936zNoh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764–1769. doi:10.1021/nl400349bKnop, O., Wasylishen, R. E., White, M. A., Cameron, T. S., & Oort, M. J. M. V. (1990). Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Canadian Journal of Chemistry, 68(3), 412–422. doi:10.1139/v90-063Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982. doi:10.1039/c3ee43822hPellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J., & Grätzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition, 53(12), 3151–3157. doi:10.1002/anie.201309361Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1), e1501170–e1501170. doi:10.1126/sciadv.1501170McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Horantner, M. T., Snaith, H. J. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351(6269), 151–155. doi:10.1126/science.aad5845Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S. M., Gratzel, M. (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206–209. doi:10.1126/science.aah5557Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476–480. doi:10.1038/nature14133Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). doi:10.1038/srep00591O’Mahony, F. T. F., Lee, Y. H., Jellett, C., Dmitrov, S., Bryant, D. T. J., Durrant, J. R., Haque, S. A. (2015). Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. Journal of Materials Chemistry A, 3(14), 7219–7223. doi:10.1039/c5ta01221jTress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. (2015). Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3), 995–1004. doi:10.1039/c4ee03664fSnaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., Zhang, W. (2014). Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(9), 1511–1515. doi:10.1021/jz500113xWei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Yu, D. (2014). Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(21), 3937–3945. doi:10.1021/jz502111uFrost, J. M., Butler, K. T., & Walsh, A. (2014). Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Materials, 2(8), 081506. doi:10.1063/1.4890246Richardson, G., O’Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J., & Walker, A. B. (2016). Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy & Environmental Science, 9(4), 1476–1485. doi:10.1039/c5ee02740cWojciechowski, K., Stranks, S. D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Snaith, H. J. (2014). Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 8(12), 12701–12709. doi:10.1021/nn505723hHu, C., Xiao, J.-D., Mao, X.-D., Song, L.-L., Yang, X.-Y., & Liu, S.-J. (2019). Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive. Materials Letters. doi:10.1016/j.matlet.2018.12.123.Xing, X.-S., Fu, Z., Zhang, N.-N., Yu, X.-Q., Wang, M.-S., & Guo, G.-C. (2019). High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chemical Communications. doi:10.1039/c8cc08700hMirkovic, I., Lei, L., Ljubic, D., & Zhu, S. (2019). Crystal Growth of Metal–Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega, 4(1), 169–175. doi:10.1021/acsomega.8b02332Yang, H., Bright, J., Kasani, S., Zheng, P., Musho, T., Chen, B, Wu, N. (2018). Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Research. doi:10.1007/s12274-019-2272-4Huan, W., Xing, M., Cheng, C., & Li, J. (2018). Facile Fabrication of Magnetic Metal-Organic Framework Nanofibers for Specific Capture of Phosphorylated peptides. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.8b04928Mohaghegh, N., Faraji, M., & Abedini, A. (2018). Highly efficient multifunctional Ag/TiO2 nanotubes/Ti plate coated with MIL-88B(Fe) as a photocatalyst, adsorbent, and disinfectant in water treatment. Applied Physics A, 125(1). doi:10.1007/s00339-018-2324-8Kim, M.-K., Kim, S. H., Park, M., Ryu, S. G., & Jung, H. (2018). Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH2. RSC Advances, 8(72), 41633–41638. doi:10.1039/c8ra06805dShen, J., Wang, N., Wang, Y., Yu, D., & Ouyang, X. (2018). Efficient Adsorption of Pb(II) from Aqueous Solutions by Metal Organic Framework (Zn-BDC) Coated Magnetic Montmorillonite. Polymers, 10(12), 1383. doi:10.3390/polym10121383Esmaeilzadeh, M. (2018). A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchimica Acta, 186(1). doi:10.1007/s00604-018-3093-yZhang, L., Li, S., Xin, J., Ma, H., Pang, H., Tan, L., & Wang, X. (2018). A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchimica Acta, 186(1). doi:10.1007/s00604-018-3128-4Henrique, A., Rodrigues, A. E., & Correia Silva, J. A. (2018). Separation of Hexane Isomers in ZIF-8 by Fixed Bed Adsorption. Industrial & Engineering Chemistry Research. doi:10.1021/acs.iecr.8b05126Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and Applications. TrAC Trends in Analytical Chemistry. doi:10.1016/j.trac.2019.06.007.Chen, X.-Y., Zhao, B., Shi, W., Xia, J., Cheng, P., Liao, D.-Z., Jiang, Z.-H. (2005). Microporous Metal−Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. Chemistry of Materials, 17(11), 2866–2874. doi:10.1021/cm050526oWang, D., He, H., Chen, X., Feng, S., Niu, Y., & Sun, D. (2010). A 3D porous metal–organic framework constructed of 1D zigzag and helical chains exhibiting selective anion exchange. CrystEngComm, 12(4), 1041–1043. doi:10.1039/b910988aWu, J.-Y., Chao, T.-C., & Zhong, M.-S. (2013). Influence of Counteranions on the Structural Modulation of Silver–Di(3-pyridylmethyl)amine Coordination Polymers. Crystal Growth & Design, 13(7), 2953–2964. doi:10.1021/cg400363eLi, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3•6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186–2187. doi:10.1021/ja974172gPiñeiro-López, L., Arcís-Castillo, Z., Muñoz, M. C., & Real, J. A. (2014). Clathration of Five-Membered Aromatic Rings in the Bimetallic Spin Crossover Metal–Organic Framework [Fe (TPT)2/3{MI (CN)2}2]•G (MI = Ag, Au). Crystal Growth & Design, 14(12), 6311–6319. doi:10.1021/cg5010616Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23-24), 2891–2911. doi:10.1016/j.ccr.2009.07.020Shen, L., Wu, W., Liang, R., Lin, R., & Wu, L. (2013). Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 5(19), 9374. doi:10.1039/c3nr03153eSerre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)- Based solids: MIL-53 or CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x.H2Oy. Journal of the American Chemical Society, 124(45), 13519–13526. doi:10.1021/ja0276974Zhang, Y., Bo, X., Nsabimana, A., Han, C., Li, M., & Guo, L. (2015). Electrocatalytically active cobalt-based metal–organic framework with incorporated macroporous carbon composite for electrochemical applications. Journal of Materials Chemistry A, 3(2), 732–738. doi:10.1039/c4ta04411hMueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626–636. doi:10.1039/b511962fVan Assche, T. R. C., Desmet, G., Ameloot, R., De Vos, D. E., Terryn, H., & Denayer, J. F. M. (2012). Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous and Mesoporous Materials, 158, 209–213. doi:10.1016/j.micromeso.2012.03.029Campagnol, N., Souza, E. R., De Vos, D. E., Binnemans, K., & Fransaer, J. (2014). Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun., 50(83), 12545–12547. doi:10.1039/c4cc05742bMacGillivray, L.R. (2010) Metal-organic frameworks: Design and application. Hoboken, NJ: Wiley.Pichon, A., Lazuen-Garay, A., & James, S. L. (2006). Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 8(3), 211. doi:10.1039/b513750kJames, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 41(1), 413–447. doi:10.1039/c1cs15171aMasoomi, M. Y., Morsali, A., & Junk, P. C. (2015). Rapid mechanochemical synthesis of two new Cd(ii)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm, 17(3), 686–692. doi:10.1039/c4ce01783hPhang, W. J., Lee, W. R., Yoo, K., Ryu, D. W., Kim, B., & Hong, C. S. (2014). pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material. Angewandte Chemie International Edition, 53(32), 8383–8387. doi:10.1002/anie.201404164Jhung, S. H., Yoon, J. W., Hwang, J.-S., Cheetham, A. K., & Chang, J.-S. (2005). Facile Synthesis of Nanoporous Nickel Phosphates without Organic Templates under Microwave Irradiation. Chemistry of Materials, 17(17), 4455–4460. doi:10.1021/cm047708nJhung, S. H., Chang, J.-S., Hwang, J. S., & Park, S.-E. (2003). Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials, 64(1-3), 33–39. doi:10.1016/s1387-1811(03)00501-8Hwang, Y. K., Chang, J.-S., Park, S.-E., Kim, D. S., Kwon, Y.-U., Jhung, S. H., Park, M. S. (2005). Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications. Angewandte Chemie International Edition, 44(4), 556–560. doi:10.1002/anie.200461403Ni, Z., & Masel, R. I. (2006). Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. doi:10.1021/ja0635231Sabouni, R., Kazemian, H., & Rohani, S. (2012). Microwave Synthesis of the CPM-5 Metal Organic Framework. Chemical Engineering & Technology, 35(6), 1085–1092. doi:10.1002/ceat.201100626Morsali, A., Monfared, H. H., Morsali, A., & Janiak, C. (2015). Ultrasonic irradiation assisted syntheses of one-dimensional di(azido)-dipyridylamine Cu(II) coordination polymer nanoparticles. Ultrasonics Sonochemistry, 23, 208–211. doi:10.1016/j.ultsonch.2014.06.005Jung, D.-W., Yang, D.-A., Kim, J., Kim, J., & Ahn, W.-S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39(11), 2883. doi:10.1039/b925088cSon, W.-J., Kim, J., Kim, J., & Ahn, W.-S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, (47), 6336. doi:10.1039/b814740jHaque, E., Khan, N. A., Park, J. H., & Jhung, S. H. (2009). Synthesis of a Metal-Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 16(3), 1046–1052. doi:10.1002/chem.200902382Jin, L.-N., Liu, Q., & Sun, W.-Y. (2014). An introduction to synthesis and application of nanoscale metal–carboxylate coordination polymers. CrystEngComm, 16(19), 3816. doi:10.1039/c3ce41962bKraft, A., Roth, P., Schmidt, D., Stangl, J., Müller-Buschbaum, K., & Beuerle, F. (2016). Three-Dimensional Metal-Fullerene Frameworks. Chemistry - A European Journal, 22(17), 5982–5987. doi:10.1002/chem.201505137Kraft, A., Stangl, J., Krause, A.-M., Müller-Buschbaum, K., & Beuerle, F. (2017). Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic Chemistry, 13, 1–9. doi:10.3762/bjoc.13.1Lerma‐Berlanga, B., Ganivet, C. R., Almora‐Barrios, N., Vismara, R., Navarro, J. A., Tatay, S., Martí‐Gastaldo, C. (2022). Tetrazine linkers as Plug‐and‐play tags for general metal‐organic framework functionalization and C60 conjugation. Angewandte Chemie International Edition, 61(41). doi:10.1002/anie.202208139Moosavi, S. M., Nandy, A., Jablonka, K. M., Ongari, D., Janet, J. P., Boyd, P. G., Kulik, H. J. (2020). Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 11(1). doi:10.1038/s41467-020-17755-8Habicher, T., Nierengarten, J. F., Gramlich, V., & Diederich, F. (1998). PtII‐Directed Self‐Assembly of a Dinuclear Cyclophane Containing Two Fullerenes. Angewandte Chemie International Edition, 37(13‐14), 1916-1919.Fan, J., Wang, Y., Blake, A. J., Wilson, C., Davies, E. S., Khlobystov, A. N., & Schröder, M. (2007). Controlled Assembly of Silver(I)-Pyridylfullerene Networks. Angewandte Chemie International Edition, 46(42), 8013–8016. doi:10.1002/anie.200700769Muller, T., Bräse, S., Pierrat, P., & Réthoré, C. (2008). Design and Efficient Synthesis of Fullerene Bismalonates as Building Blocks for Metal Organic Frameworks and Organic Nanostructures. Synlett, 2008(11), 1706–1710. doi:10.1055/s-2008-1077880Peng, P., Li, F.-F., Bowles, F. L., Neti, V. S. P. K., J. Metta-Magana, A., Olmstead, M. M., Echegoyen, L. (2013). High yield synthesis of a new fullerene linker and its use in the formation of a linear coordination polymer by silver complexation. Chemical Communications, 49(31), 3209. doi:10.1039/c3cc40697kSun, D., Tham, F. S., Reed, C. A., & Boyd, P. D. W. (2002). Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks. Proceedings of the National Academy of Sciences, 99(8), 5088–5092. doi:10.1073/pnas.072602399Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523–527. doi:10.1038/nature02311Constable, E. C., Zhang, G., Housecroft, C. E., & Zampese, J. A. (2012). Bucky-blocks: templating a coordination network with C60. CrystEngComm, 14(5), 1770–1774. doi:10.1039/c2ce06156bHolm, R., & Elder, D. P. (2016). Analytical advances in pharmaceutical impurity profiling. European Journal of Pharmaceutical Sciences, 87, 118–135. doi:10.1016/j.ejps.2015.12.007Gupta, D., Bhatia, D., Dave, V., Sutariya, V., & Varghese Gupta, S. (2018). Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules, 23(7), 1719. doi:10.3390/molecules2307171Tilborg, A., Norberg, B., & Wouters, J. (2014). Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art. European Journal of Medicinal Chemistry, 74, 411–426. doi:10.1016/j.ejmech.2013.11.045Albert, A. (1984). Determination of ionization constants by Potentiometric titration using a glass electrode. In The determination of ionization constants (3rd ed., pp. 14–68). essay, Chapman and Hall. doi:10.1007/978-94-009-5548-6Garrett, R. H., &amp; Grisham, C. M. (2017). Amino Acids and the Peptide Bond. In Biochemistry (5th ed., p. 77-100). Australia: Cengage Learning. ISBN-13: 9781305636231Reijenga, J., van Hoof, A., van Loon, A., & Teunissen, B. (2013). Development of Methods for the Determination of pKa Values. Analytical Chemistry Insights, 8, ACI.S12304. doi:10.4137/aci.s12304Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno E., B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences, 108(13), 5260–5265. doi:10.1073/pnas.1010750108Allen, R. I., Box, K. J., Comer, J. E. A., Peake, C., & Tam, K. Y. (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17(4-5), 699–712. doi:10.1016/s0731-7085(98)00010-7Martínez, C. H. R., & Dardonville, C. (2012). Rapid Determination of Ionization Constants (pKa) by UV Spectroscopy Using 96-Well Microtiter Plates. ACS Medicinal Chemistry Letters, 4(1), 142–145. doi:10.1021/ml300326vMansouri, K., Cariello, N. F., Korotcov, A., Tkachenko, V., Grulke, C. M., Sprankle, C. S., Williams, A. J. (2019). Open-source QSAR models for pKa prediction using multiple machine learning approaches. Journal of Cheminformatics, 11(1). doi:10.1186/s13321-019-0384-1Pliego, J. R., & Riveros, J. M. (2002). Theoretical Calculation of pKaUsing the Cluster−Continuum Model. The Journal of Physical Chemistry A, 106(32), 7434–7439. doi:10.1021/jp025928nGibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.Lara, J. C. O., & López, A. B. (2017). Importancia de las sales orgánicas en la industria farmacéutica. Revista Mexicana de Ciencias Farmacéuticas, 48(1), 18-42.Stahl, P.H. and Wermuth, C.G. (2011) Handbook of Pharmaceutical Salts: Properties, selection, and use. Zürich: Verlag Helvetica Chimica Acta. ISBN 3-906390-26-8Giron, D. (2003). Characterisation of salts of drug substances. Journal of thermal analysis and calorimetry, 73(2), 441-457. doi:10.1023/a:1025461625782Attia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025Gabbott, P. (Ed.). (2008). Principles and applications of thermal analysis. John Wiley & Sons. ISBN 9780470698129Haines, J.P. (1995) Thermal methods of analysis: Principles, applications and Problems. Dordrecht: Springer-Science+Business Media, B.V. ISBN 9780470698129Giron, D. (1995). Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochimica Acta, 248, 1–59. doi:10.1016/0040-6031(94)01953-eBartolomei, M., Bertocchi, P., Cotta Ramusino, M., & Ciranni Signoretti, E. (1998). Thermal studies on the polymorphic modifications of (R,S) propranolol hydrochloride. Thermochimica Acta, 321(1-2), 43–52. doi:10.1016/s0040-6031(98)00438-9White, J. D., Kranemann, C. L., &amp; Kuntiyong, P. (2002). [4-Oxazolecarboxylic acid, 2-methyl-, methyl éster]. Organic Syntheses, 10(799), 244. doi:10.15227/orgsyn.Ananda, K., & Suresh Babu, V. V. (2001). Deprotonation of hydrochloride salts of amino acid ésters and peptide ésters using commercial zinc dust. Journal of Peptide Research, 57(3), 223–226. doi:10.1111/j.1399-3011.2001.00790.xPhillips, R. E., & Soulen, R. L. (1995). Propylene Oxide Addition to Hydrochloric Acid: A Textbook Error. Journal of Chemical Education, 72(7), 624. doi:10.1021/ed072p624D, F. (1973). U.S. Patent No. US5227483A. Washington, DC: U.S. Patent and Trademark Office.Fleck, M., Petrosyan, A. M. (2014). Chapter 2 Amino Acid Structures. In Salts of amino acids crystallization, structure and properties (1st ed., pp. 21-72). Cham: Springer International Publishing. doi:10.1007/978-3-319-06299-0Boeyens, J. C. A., & Ogilvie, J. F. (Eds.). (2008). Models, Mysteries and Magic of Molecules. doi:10.1007/978-1-4020-5941-4Langan, P., Mason, S. A., Myles, D., & Schoenborn, B. P. (2002). Structural characterization of crystals of α-glycine during anomalous electrical behaviour. Acta Crystallographica Section B Structural Science, 58(4), 728–733. doi:10.1107/s0108768102004263Drebushchak, T. N., Boldyreva, E. V., & Shutova, E. S. (2002). β-Glycine. Acta Crystallographica Section E Structure Reports Online, 58(6), o634–o636. doi:10.1107/s160053680200836xMatei, A., Drichko, N., Gompf, B., & Dressel, M. (2005). Far-infrared spectra of amino acids. Chemical Physics, 316(1-3), 61–71. doi:10.1016/j.chemphys.2005.04.03Schieber, M. (1971). The growth of single crystals. Journal of Crystal Growth, 11(3), 358–359. doi:10.1016/0022-0248(71)90111-4Anbu Chudar Azhagan, S., & Ganesan, S. (2017). Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals. Arabian Journal of Chemistry, 10, S2615–S2624. doi:10.1016/j.arabjc.2013.09.041Rodríguez, J. S., Costa, G., da Silva, M. B., Silva, B. P., Honório, L. J., de Lima-Neto, P., Freire, V. N. (2019). Structural and Optoelectronic Properties of the α-, β-, and γ-Glycine Polymorphs and the Glycine Dihydrate Crystal: A DFT Study. Crystal Growth & Design, 19(9), 5204–5217. doi:10.1021/acs.cgd.9b00593Bastiat, G., & Leroux, J.-C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry, 19(23), 3867. doi:10.1039/b822657aTriboni, E.R.; Moraes, T.B.F.; Politi, M.J. Supramolecular Gels. In: Nano Design for Smart Gels; Elsevier, 2019; pp. 35–69. ISBN 9780128148266Sangeetha, N. M., & Maitra, U. (2005). Supramolecular gels: Functions and uses. Chemical Society Reviews, 34(10), 821. doi:10.1039/b417081bNaota, T., & Koori, H. (2005). Molecules That Assemble by Sound: An Application to the Instant Gelation of Stable Organic Fluids. Journal of the American Chemical Society, 127(26), 9324–9325. doi:10.1021/ja050809hNúñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742aLiao, L., Liu, R., Hu, S., Jiang, W., Chen, Y., Zhong, J., ... & Luo, X. (2022). Self-assembled sonogels formed from 1, 4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC advances, 12(31), 20218-20226. doi: 10.1039/D2RA01391FIchihara, K., Sugahara, T., Akamatsu, M., Sakai, K., & Sakai, H. (2021). Rheology of α-Gel Formed by Amino Acid-Based Surfactant with Long-Chain Alcohol: Effects of Inorganic Salt Concentration. Langmuir, 37(23), 7032–7038. doi:10.1021/acs.langmuir.1c00626Yu, G., Yan, X., Han, C., & Huang, F. (2013). Characterization of supramolecular gels. Chemical Society Reviews, 42(16), 6697. doi:10.1039/c3cs60080gChivers, P. R. A., & Smith, D. K. (2019). Shaping and structuring supramolecular gels. Nature Reviews Materials. doi:10.1038/s41578-019-0111-6Stenzel, K., & Fleck, M. (2004). Poly[[[diaquacobalt(II)]-di-μ-glycine] dichloride]. Acta Crystallographica Section E Structure Reports Online, 60(10), m1470–m1472. doi:10.1107/s1600536804022573Yang, W., Greenaway, A., Lin, X., Matsuda, R., Blake, A. J., Wilson, C., Schröder, M. (2010). Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 132(41), 14457–14469. doi:10.1021/ja1042935Wang, B., Lin, R.-B., Zhang, Z., Xiang, S., & Chen, B. (2020). Hydrogen-Bonded Organic Frameworks as A Tunable Platform for Functional Materials. Journal of the American Chemical Society. doi:10.1021/jacs.0c06473Armer, R., Belfield, A., Binghman, M., Johnson, A., Margathe, J., Avery, C., Hughes, S., &amp; Morrison, A. (2016). U.S. Patent No. WO2016051193A1. Washington, DC: U.S. Patent and Trademark Office.Vogel, A. I. ; Furniss, B. S. (1989). Chapter 5.11.2: Hydrolysis of alkyl cyanides. In Vogel's textbook of Pratical Organic Chemistry (5th ed., pp. 671-673). Harlow: Pearson Education.Bosi, S., Da Ros, T., Spalluto, G., Balzarini, J., & Prato, M. (2003). Synthesis and Anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic & Medicinal Chemistry Letters, 13(24), 4437–4440. doi:10.1016/j.bmcl.2003.09.016Smith, C. (2009). Activated Zinc Dust. Synlett, 2009(09), 1522–1523. doi:10.1055/s-0029-1217181Kumar, P., & Lokanatha Rai, K. (2012). Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation. Chemical Papers, 66(8). doi:10.2478/s11696-012-0195-6Hidalgo, T., Cooper, L., Gorman, M., Lozano-Fernández, T., Simón-Vázquez, R., Mouchaham, G, Horcajada, P. (2017). Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. Journal of Materials Chemistry B, 5(15), 2813–2822. doi:10.1039/c6tb03101cPourbaix, M. (1974). Atlas of Electrochemical Equilibria in aqueous solutions. Houston, TX: National Association of Corrosion Engineers.Campbell, J. A., & Whiteker, R. A. (1969). A periodic table based on potential-pH diagrams. Journal of Chemical Education, 46(2), 90. doi:10.1021/ed046p90Workman, J., Weyer, L. (2008). Practical guide to interpretive near-infrared spectroscopy (1st ed.). Boca Raton: CRC Press. doi:10.1201/9781420018318Jacobsen, N. E. (2017). NMR Data Interpretation explained: Understanding 1D and 2D NMR spectra of organic compounds and natural products. Hoboken, NJ: John Wiley & Sons. ISBN: 978-1-118-37022-3Abu Hassan, Noor & Mohtar, Norlia & Mohamad Fauzi, Siti & Yeong, Shoot & Hassan, Hazimah & Idris, Zainab. (2017). Synthesis of dimerate ésters by solvent-free method. Journal of oil palm research. 29. 110-119. doi: 10.21894/jopr.2017.2901.12.Jason L. Moore, Stephen M. Taylor, and Vadim A. (2005). An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Huenig’s base. Soloshonok Arkivoc (EJ-1549C) pp 287-292 2005. doi: 10.3998/ark.5550190.0006.624Aleksandrov, A. L. (1980). Oxidation of amines by molecular oxygen. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 29(11), 1740–1744. doi:10.1007/bf00949211Kostamovaara, J., Tenhunen, J., Kögler, M., Nissinen, I., Nissinen, J., & Keränen, P. (2013). Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD. Optics Express, 21(25), 31632. doi:10.1364/oe.21.031632Varghese, R. S., Zhou, B., Ranjbar, M., Zhao, Y., & Ressom, H. W. (2012). Ion annotation-assisted analysis of LC-MS based metabolomic experiment. Proteome Science, 10(Suppl 1), S8. doi:10.1186/1477-5956-10-s1-s8Marina Konon, Tatiana Antropova, Nikita Zolotov, Tatiana Simonenko, Nikolay Simonenko, Elena Brazovskaya, Valery Kreisberg, Irina Polyakova. (2022). Chemical durability of the iron-containing sodium borosilicate glasses. Journal of Non-Crystalline Solids, Volume 584, 121519. doi:10.1016/j.jnoncrysol.2022.121519Hicham Jabraoui, Stéphane Gin, Thibault Charpentier, Rodolphe Pollet, and Jean-Marc Delaye (2021). Leaching and Reactivity at the Sodium Aluminosilicate Glass–Water Interface: Insights from a ReaxFF Molecular Dynamics Study. The Journal of Physical Chemistry C, 125 (49), 27170-27184. doi: 10.1021/acs.jpcc.1c07266Birdsall, R. E., Gilar, M., Shion, H., Yu, Y. Q., & Chen, W. (2016). Reduction of metal adducts in oligonucleotide mass spectra in ion-pair reversed-phase chromatography/mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 30(14), 1667–1679. doi:10.1002/rcm.7596Murray, K. K., Boyd, R. K., Eberlin, M. N., Langley, G. J., Li, L., & Naito, Y. (2013). Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85(7), 1515–1609. doi:10.1351/pac-rec-06-04-06Ashcroft, A. E. (1997). Electrospray Ionization. In Ionization methods in organic mass spectrometry (pp. 38-40). Cambridge: Royal Society of Chemistry.Long, J., Gong, H., Zhang, D., Liu, M., & Li, H. (2018). Determination of carboxyl groups in pulp via ultraviolet spectrophotometry. Bioresources, 13(2), 2670-2677.Akash, M. S. H., Rehman, K., Akash, M. S. H., & Rehman, K. (2020). Ultraviolet-visible (UV-VIS) spectroscopy. Essentials of pharmaceutical analysis, pp. 29-56. doi: 10.1007/978-981-15-1547-7_3Mocanu, M. N., & Yan, F. (2018). Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 208–214. doi:10.1016/j.saa.2017.09.017Wang, Q., Byrnes, L. J., Shui, B., Röhrig, U. F., Singh, A., Chudakov, D. M., Sondermann, H. (2011). Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant. PLoS ONE, 6(8), e23513. doi:10.1371/journal.pone.002351Khalil, G. E., Daddario, P., Lau, K. S. F., Imtiaz, S., King, M., Gouterman, M., Brückner, C. (2010). meso-Tetraarylporpholactones as high pH sensors. The Analyst, 135(8), 2125. doi:10.1039/c0an00018cBeaven, G. H., & Holiday, E. R. (1952). Ultraviolet Absorption Spectra of Proteins and Amino Acids. Advances in Protein Chemistry Volume 7, 319–386. doi:10.1016/s0065-3233(08)60022-4Shimono, K., Kitami, M., Iwamoto, M., & Kamo, N. (2000). Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophysical Chemistry, 87(2-3), 225–230. doi:10.1016/s0301-4622(00)00195-2Tan, L., Du, W., Zhang, Y., Tang, L. J., Jiang, J. H., & Yu, R. Q. (2020). Rayleigh scattering correction for fluorescence spectroscopy analysis. Chemometrics and Intelligent Laboratory Systems, 203, 104028. doi:10.1016/j.chemolab.2020.104028Lakowicz, J.R (2006). Introduction to Fluorescence. Principles of Fluorescence Spectroscopy. Springer, Boston, MA. doi:10.1007/978-0-387-46312-4_1Babić, S., Horvat, A. J., Pavlović, D. M., & Kaštelan-Macan, M. (2007). Determination of pKa values of active pharmaceutical ingredients. TrAC Trends in Analytical Chemistry, 26(11), 1043-1061. doi:10.1016/j.trac.2007.09.004Kordatos, K., Bosi, S., Da Ros, T., Zambon, A., Lucchini, V., & Prato, M. (2001). Isolation and characterization of all eight bisadducts of fulleropyrrolidine derivatives. The Journal of organic chemistry, 66(8), 2802-2808. doi:10.1021/jo001708zTsuge, O., & Kanemasa, S. (1989). Recent advances in azomethine ylide chemistry. Advances in heterocyclic chemistry, 45, 231-349. doi:10.1016/S0065-2725(08)60332-3Tanimura, M., Watanabe, N., Ijuin, H. K., & Matsumoto, M. (2011). Intramolecular charge-transfer-induced decomposition promoted by an aprotic polar solvent for bicyclic dioxetanes bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. The Journal of Organic Chemistry, 76(3), 902-908. doi:10.1021/jo1021822Matsumoto, M., Tanimura, M., Akimoto, T., Watanabe, N., & Ijuin, H. K. (2008). Solvent-promoted chemiluminescent decomposition of a bicyclic dioxetane bearing a 4-(benzothiazol-2-yl)-3-hydroxyphenyl moiety. Tetrahedron Letters, 49(26), 4170-4173. doi:10.1016/j.tetlet.2008.04.110Petersen, R. C., Markgraf, J. H., & Ross, S. D. (1961). Solvent Effects in the Decomposition of 1, 1'-Diphenylazoethane and 2, 2'-Azobis-(2-methylpropionitrile). Journal of the American Chemical Society, 83(18), 3819-3823. doi:10.1021/ja01479a021Nikolay O. Mchedlov-Petrossyan, Mykyta O. Marfunin, Vladislav A. Tikhonov, and Sergey V. Shekhovtsov (2022). Unexpected Colloidal Stability of Fullerenes in Dimethyl Sulfoxide and Related Systems. Langmuir. 38 (32), 10000-10009 doi: 10.1021/acs.langmuir.2c01408Stumm, W. (1993). Aquatic colloids as chemical reactants: surface structure and reactivity. Colloids in the Aquatic Environment, 1–18. doi:10.1016/b978-1-85861-038-2.50004-8Saadatkhah, N., Garcia, A. C., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Chaouki, J. (2019). Experimental Methods in Chemical Engineering: Thermogravimetric Analysis—TGA. The Canadian Journal of Chemical Engineering. doi:10.1002/cjce.23673C. Tsioptsias. (2022). On the latent limit of detection of thermogravimetric análisis. Measurement. Volume 204, 112136. doi:10.1016/j.measurement.2022.112136.Blaine, R. L., & Rose, J. E. (2009). Validation of Thermogravimetric analysis performance using mass loss reference materials. TA Instruments, 1-10.R.L. Danley, J.W. Schaefer. (2008). U.S. Patent No. US20060140246A1 System and method for a thermogravimetric analyzer having improved dynamic weight baseline. Washington, DC: U.S. Patent and Trademark Office.Ceylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. doi:10.1007/s10570-013-9936-0Machatha, S. G., Sanghvi, T., & Yalkowsky, S. H. (2005). Structure determination and characterization of carbendazim hydrochloride dihydrate. AAPS PharmSciTech, 6(1), E115–E119. doi:10.1208/pt060118Gibson, Emma K. (2007) Amine hydrochloride salts: a problem in polyurethane synthesis. PhD thesis. Chapter 3, pp. 110-117.Attia, A. K., & Mohamed Abdel-Moety, M. (2013). Thermoanalytical investigation of terazosin hydrochloride. Advanced pharmaceutical bulletin, 3(1), 147–152. doi:10.5681/apb.2013.025Cervini, P., Machado, L. C. M., Ferreira, A. P. G., Ambrozini, B., & Cavalheiro, ÿder T. G. (2016). Thermal decomposition of tetracycline and chlortetracycline. Journal of Analytical and Applied Pyrolysis, 118, 317–324. doi:10.1016/j.jaap.2016.02.015Pisharath, S., & Ang, H. G. (2007). Synthesis and thermal decomposition of GAP–Poly(BAMO) copolymer. Polymer Degradation and Stability, 92(7), 1365–1377. doi:10.1016/j.polymdegradstab.200Khan, N., Dollimore, D., Alexander, K., & Wilburn, F. . (2001). The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367-368, 321–333. doi:10.1016/s0040-6031(00)00669-9Gan, L., Zhou, D., Luo, C., Tan, H., Huang, C., Lü, M., … Wu, Y. (1996). Synthesis of Fullerene Amino Acid Derivatives by Direct Interaction of Amino Acid Éster with C60. The Journal of Organic Chemistry, 61(6), 1954–1961. doi:10.1021/jo951933uCheng, J., Lu, T., Wu, X., Zhang, H., Zhang, C., Peng, C.-A., & Huang, S. (2019). Extraction of cobalt(ii) by methyltrioctylammonium chloride in nickel(ii)-containing chloride solution from spent lithium ion batteries. RSC Advances, 9(39), 22729–22739. doi:10.1039/c9ra02719jPandey, B. K., Sukla, A., Sinha, A. K., & Gopal, R. (2015). Synthesis and Characterization of Cobalt Oxalate Nanomaterial for Li-Ion Battery. Materials Focus, 4(5), 333–337. doi:10.1166/mat.2015.1267Raveendra, R. S., Prashanth, P. A., & Nagabhushana, B. M. (2016). Synthesis and spectral characterization studies of bio-active cobalt (II) complexes with clomipramine ligand. Journal of Advanced Chemical Sciences, 334-336.F. R. Dollish, W. G. Fateley, and F. F. Bentley, (1974). Characteristic Raman Frequencies of Organic Compounds, John Wiley & Sons Inc., New York.Liu, Y., Wang, C., Ju, S., Li, M., Yuan, A., & Zhu, G. (2020). FeCo-based hybrid MOF derived active species for effective oxygen evolution. Progress in Natural Science: Materials International. doi:10.1016/j.pnsc.2020.02.006Yoon, H., Xu, A., Sterbinsky, G. E., Arena, D. A., Wang, Z., Stephens, P. W., Carroll, K. J. (2015). In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Physical Chemistry Chemical Physics, 17(2), 1070–1076. doi:10.1039/c4cp04451gKaur, R., Chhibber, M., Mahata, P., & Mittal, S. K. (2018). Induction of Catalytic Activity in ZnO Loaded Cobalt Based MOF for the Reduction of Nitroarenes. ChemistrySelect, 3(12), 3417–3425. doi:10.1002/slct.201702703Milekhin, A. G., Cherkasova, O., Kuznetsov, S. A., Milekhin, I. A., Rodyakina, E. E., Latyshev, A. V., Zahn, D. R. T. (2017). Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules. Beilstein Journal of Nanotechnology, 8, 975–981. doi:10.3762/bjnano.8.99Basile, L. J. (1971). Metal-Nitrogen Vibrations. Low-Frequency Vibrations of Inorganic and Coordination Compounds, 191–246. doi:10.1007/978-1-4684-1809-5_7Núñez-Villanueva, D., Jinks, M. A., Gómez Magenti, J., & Hunter, C. A. (2018). Ultrasound-induced gelation of a giant macrocycle. Chemical Communications. doi:10.1039/c8cc04742aGoyal, N., Mangunuru, H. P. R., Parikh, B., Shrestha, S., & Wang, G. (2014). Synthesis and characterization of pH responsive D-glucosamine based molecular gelators. Beilstein Journal of Organic Chemistry, 10, 3111–3121. doi:10.3762/bjoc.10.328Li, Y., Young, D. J., & Loh, X. J. (2019). Fluorescent gels: a review of synthesis, properties, applications and challenges. Materials Chemistry Frontiers, 3(8), 1489-1502. doi: 10.1039/C9QM00127ASÍNTESIS DE DERIVADOS DE FULLERENO C60 PARA SU EVALUACIÓN EN PROCESOS DE AUTOENSAMBLAJE Y CELDAS SOLARESFacultad de Ciencias, Universidad Nacional de ColombiaMinisterio de Ciencia, Tecnología e Innovación-MINCIENCIASLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84635/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1.032.506.172.2023.pdf1.032.506.172.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf7364150https://repositorio.unal.edu.co/bitstream/unal/84635/2/1.032.506.172.2023.pdf16986eb1f9b26ef309c802eebceb60f8MD52THUMBNAIL1.032.506.172.2023.pdf.jpg1.032.506.172.2023.pdf.jpgGenerated Thumbnailimage/jpeg4932https://repositorio.unal.edu.co/bitstream/unal/84635/3/1.032.506.172.2023.pdf.jpg722dddcb34fc65c4fb543b17dbdfe356MD53unal/84635oai:repositorio.unal.edu.co:unal/846352023-09-04 23:03:40.951Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=