Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa

Son varias las especies radicales involucradas en el estrés oxidativo, un fenómeno que se ha relacionado con varias enfermedades que representan un gran riesgo a la salud como el cáncer, diabetes, enfermedades neurodegenerativas, entre otras. Una de ellas es el anión superóxido, que se produce conti...

Full description

Autores:
Montoya Moreno, Nicolas
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86253
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86253
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
540 - Química y ciencias afines::547 - Química orgánica
Radicales (Química)
Enzimas de cobre
Densidad electrónica
superóxido dismutasa
mimetizadores SOD
radical superóxido
estrés oxidativo
antioxidante
estrategias computacionales
análisis topológicos
superoxide dismutase
SOD mimics
superoxide radical
oxidative stress
antioxidant
computational strategies
topological analysis
Superóxido dismutasa
Catalasa
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_9447eef52704da55f8d17c1dee3e05b7
oai_identifier_str oai:repositorio.unal.edu.co:unal/86253
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
dc.title.translated.eng.fl_str_mv Computational study of the reactivity of copper complexes as superoxide dismutase and catalase enzyme mimics
title Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
spellingShingle Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
540 - Química y ciencias afines
540 - Química y ciencias afines::547 - Química orgánica
Radicales (Química)
Enzimas de cobre
Densidad electrónica
superóxido dismutasa
mimetizadores SOD
radical superóxido
estrés oxidativo
antioxidante
estrategias computacionales
análisis topológicos
superoxide dismutase
SOD mimics
superoxide radical
oxidative stress
antioxidant
computational strategies
topological analysis
Superóxido dismutasa
Catalasa
title_short Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
title_full Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
title_fullStr Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
title_full_unstemmed Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
title_sort Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa
dc.creator.fl_str_mv Montoya Moreno, Nicolas
dc.contributor.advisor.none.fl_str_mv Alí Torres, Jorge Isaac
dc.contributor.author.none.fl_str_mv Montoya Moreno, Nicolas
dc.contributor.researchgroup.spa.fl_str_mv Química Cuántica y Computacional
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines
540 - Química y ciencias afines::547 - Química orgánica
Radicales (Química)
Enzimas de cobre
Densidad electrónica
superóxido dismutasa
mimetizadores SOD
radical superóxido
estrés oxidativo
antioxidante
estrategias computacionales
análisis topológicos
superoxide dismutase
SOD mimics
superoxide radical
oxidative stress
antioxidant
computational strategies
topological analysis
Superóxido dismutasa
Catalasa
dc.subject.lemb.none.fl_str_mv Radicales (Química)
Enzimas de cobre
Densidad electrónica
dc.subject.proposal.spa.fl_str_mv superóxido dismutasa
mimetizadores SOD
radical superóxido
estrés oxidativo
antioxidante
estrategias computacionales
análisis topológicos
dc.subject.proposal.eng.fl_str_mv superoxide dismutase
SOD mimics
superoxide radical
oxidative stress
antioxidant
computational strategies
topological analysis
dc.subject.wikidata.none.fl_str_mv Superóxido dismutasa
Catalasa
description Son varias las especies radicales involucradas en el estrés oxidativo, un fenómeno que se ha relacionado con varias enfermedades que representan un gran riesgo a la salud como el cáncer, diabetes, enfermedades neurodegenerativas, entre otras. Una de ellas es el anión superóxido, que se produce continuamente en procesos metabólicos normales de las células y puede llegar a ocasionar reacciones en cadena, formando otras especies reactivas. Por lo tanto, se ha generado interés en encontrar moléculas que sean capaces de imitar la actividad antioxidante de enzimas como la superóxido dismutasa y catalasa, combinando esfuerzos y estrategias computacionales y experimentales. En este estudio se evaluaron mecanismos de reacción para 9 complejos de cobre como posibles mimetizadores de la enzima superóxido dismutasa (SOD) la enzima catalasa (CAT) mediante el cálculo de las energías libres de reacción para los mecanismos plausibles de la dismutación del anión radical superóxido y descomposición del peróxido de hidrógeno, usando la teoría del funcional de densidad con los funcionales M06-2X y modelo de solvatación implícita SMD. Posteriormente se realizó un análisis topológico de la distribución de la densidad electrónica siguiendo la teoría de átomos en moléculas o AIM, evaluando para los reactivos y productos parámetros electrónicos en los enlaces de coordinación en el mecanismo de la SOD. Como conclusión se encontró que los complejos estudiados mimetizarían a la SOD y la CAT mediante los mecanismos propuestos, además el análisis topológico demostró que los mecanismos favorables son aquellos en donde el cobre (II) y el superóxido presentan una interacción atractiva y parcialmente covalente que cambia en los productos a una interacción de carácter de capa cerrada, junto a un aumento ligero de la elipticidad. (Tomado de la fuente)
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-18T13:48:23Z
dc.date.available.none.fl_str_mv 2024-06-18T13:48:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86253
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86253
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv M. Lawson, K. Jomova, P. Poprac, K. Kuča, K. Musílek, and M. Valko, “Free Radicals and Antioxidants in Human Disease,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, Cham: Springer International Publishing, 2017, pp. 283–305. doi: 10.1007/978-3-319-67625-8_12
O. M. Ighodaro and O. A. Akinloye, “First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid,” Alexandria Journal of Medicine, vol. 54, no. 4, pp. 287–293, Dec. 2018, doi: 10.1016/j.ajme.2017.09.001
V. Rani and U. C. Singh Yadav, Free Radicals in Human Health and Disease. New Delhi: Springer India, 2015. doi: 10.1007/978-81-322-2035-0
M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” Int J Biochem Cell Biol, vol. 39, no. 1, pp. 44–84, Jan. 2007, doi: 10.1016/j.biocel.2006.07.001
A. Bafana, S. Dutt, A. Kumar, S. Kumar, and P. S. Ahuja, “The basic and applied aspects of superoxide dismutase,” J Mol Catal B Enzym, vol. 68, no. 2, pp. 129–138, Feb. 2011, doi: 10.1016/j.molcatb.2010.11.007
R. W. Strange, C. W. Yong, W. Smith, and S. S. Hasnain, “Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu–Zn superoxide dismutase,” Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 10040–10044, Jun. 2007, doi: 10.1073/pnas.0703857104
I. A. Abreu and D. E. Cabelli, “Superoxide dismutases—a review of the metal-associated mechanistic variations,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1804, no. 2, pp. 263–274, Feb. 2010, doi: 10.1016/j.bbapap.2009.11.005
A. S. Hearn et al., “Amino Acid Substitution at the Dimeric Interface of Human Manganese Superoxide Dismutase,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5861–5866, Feb. 2004, doi: 10.1074/jbc.M311310200
A. Merlino et al., “Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis,” J Struct Biol, vol. 172, no. 3, pp. 343–352, Dec. 2010, doi: 10.1016/j.jsb.2010.08.008
R. W. Herbst et al., “Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution,” Biochemistry, vol. 48, no. 15, pp. 3354–3369, Apr. 2009, doi: 10.1021/bi802029t
L. Miao and D. K. St. Clair, “Regulation of superoxide dismutase genes: Implications in disease,” Free Radic Biol Med, vol. 47, no. 4, pp. 344–356, Aug. 2009, doi: 10.1016/j.freeradbiomed.2009.05.018
C. L. Matthiesen et al., “Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization,” Free Radic Biol Med, vol. 164, pp. 399–409, Feb. 2021, doi: 10.1016/j.freeradbiomed.2021.01.027
T. Siddique, H. X. Deng, and S. Ajroud-Driss, “Motor Neuron Disease,” in Emery and Rimoin’s Principles and Practice of Medical Genetics, Elsevier, 2013, pp. 1–22. doi: 10.1016/B978-0-12-383834-6.00141-5
J. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li, “Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11648–11655, Mar. 2005, doi: 10.1074/jbc.M414327200
B. G. Trist, J. B. Hilton, D. J. Hare, P. J. Crouch, and K. L. Double, “Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic,” Angewandte Chemie International Edition, vol. 60, no. 17, pp. 9215–9246, Apr. 2021, doi: 10.1002/anie.202000451
T. Fukai, “Extracellular superoxide dismutase and cardiovascular disease,” Cardiovasc Res, vol. 55, no. 2, pp. 239–249, Aug. 2002, doi: 10.1016/S0008-6363(02)00328-0
L. A. Macmillan-Crow and D. L. Cruthirds, “Manganese superoxide dismutase in disease,” Free Radic Res, vol. 34, no. 4, pp. 325–336, Jan. 2001, doi: 10.1080/10715760100300281
H. Younus, “Therapeutic potentials of superoxide dismutase.,” Int J Health Sci (Qassim), vol. 12, no. 3, pp. 88–93, 2018
T. Ogiso, T. Fukami, C. Zhongzhe, K. Konishi, M. Nakano, and M. Nakajima, “Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid,” Toxicology, vol. 448, p. 152648, Jan. 2021, doi: 10.1016/j.tox.2020.152648
M. N. Islam et al., “Superoxide dismutase: an updated review on its health benefits and industrial applications,” Crit Rev Food Sci Nutr, vol. 62, no. 26, pp. 7282–7300, Sep. 2022, doi: 10.1080/10408398.2021.1913400
D. Salvemini, C. Muscoli, D. P. Riley, and S. Cuzzocrea, “Superoxide Dismutase Mimetics,” Pulm Pharmacol Ther, vol. 15, no. 5, pp. 439–447, Oct. 2002, doi: 10.1006/pupt.2002.0374
A. Galano, “Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols,” J Mex Chem Soc, vol. 59, no. 4, pp. 231–262, 2015, [Online]. Available: http://www.redalyc.org/articulo.oa?id=47545630002
A. Galano and J. Raúl Alvarez‐Idaboy, “Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow?,” Int J Quantum Chem, vol. 119, no. 2, p. e25665, Jan. 2019, doi: 10.1002/qua.25665
A. Mirats, J. Alí-Torres, L. Rodríguez-Santiago, M. Sodupe, and G. La Penna, “Dioxygen activation in the Cu–amyloid β complex,” Physical Chemistry Chemical Physics, vol. 17, no. 41, pp. 27270–27274, 2015, doi: 10.1039/C5CP04025F
K. Reybier et al., “Free Superoxide is an Intermediate in the Production of H 2 O 2 by Copper(I)-Aβ Peptide and O 2,” Angewandte Chemie International Edition, vol. 55, no. 3, pp. 1085–1089, Jan. 2016, doi: 10.1002/anie.201508597
A. Carlioz and D. Touati, “Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?,” EMBO J, vol. 5, no. 3, pp. 623–630, Mar. 1986, doi: 10.1002/j.1460-2075.1986.tb04256.x
O. Iranzo, “Manganese complexes displaying superoxide dismutase activity: A balance between different factors,” Bioorg Chem, vol. 39, no. 2, pp. 73–87, Apr. 2011, doi: 10.1016/j.bioorg.2011.02.001
D. P. Riley et al., “Synthesis, Characterization, and Stability of Manganese(II) C-Substituted 1,4,7,10,13-Pentaazacyclopentadecane Complexes Exhibiting Superoxide Dismutase Activity,” Inorg Chem, vol. 35, no. 18, pp. 5213–5231, Jan. 1996, doi: 10.1021/ic960262v
M. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, and B. Malfroy, “Salen-Manganese Complexes Are Superoxide Dismutase-Mimics,” Biochem Biophys Res Commun, vol. 192, no. 2, pp. 964–968, Apr. 1993, doi: 10.1006/bbrc.1993.1509
I. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential,” Antioxid Redox Signal, vol. 13, no. 6, pp. 877–918, Sep. 2010, doi: 10.1089/ars.2009.2876
A. Shariev et al., “Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic,” Redox Biol, vol. 38, p. 101790, Jan. 2021, doi: 10.1016/j.redox.2020.101790
A. Vincent et al., “Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models,” J Inorg Biochem, vol. 219, p. 111431, Jun. 2021, doi: 10.1016/j.jinorgbio.2021.111431
R. F. W. Bader, Atoms in Molecules: A Quantum Theory. in International series of monographs on chemistry. Clarendon Press, 1990. [Online]. Available: https://books.google.com.co/books?id=up1pQgAACAAJ
C. F. Matta and R. J. Boyd, The quantum theory of atoms in molecules : from solid state to DNA and drug design. Wiley-VCH, 2007
M. Jabłoński and M. Palusiak, “Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study,” J Phys Chem A, vol. 116, no. 9, pp. 2322–2332, Mar. 2012, doi: 10.1021/jp211606t
O. A. Syzgantseva, V. Tognetti, and L. Joubert, “On the Physical Nature of Halogen Bonds: A QTAIM Study,” J Phys Chem A, vol. 117, no. 36, pp. 8969–8980, Sep. 2013, doi: 10.1021/jp4059774
S. J. Grabowski, “Non-covalent interactions – QTAIM and NBO analysis,” J Mol Model, vol. 19, no. 11, pp. 4713–4721, Nov. 2013, doi: 10.1007/s00894-012-1463-7
A. R. M, A. Singh, M. S. S. Sundaram, Y. Wagh, A. Jegorov, and A. K. Jain, “In-Silico aided screening and characterization results in stability enhanced Novel Roxadustat co-crystal,” J Pharm Sci, Oct. 2023, doi: 10.1016/j.xphs.2023.10.024
M. Doust Mohammadi, F. Abbas, H. Louis, Z. Zeb, M. U. Akem, and I. Benjamin, “Computational Investigation of the Intermolecular Interactions between Decatungstate Acid and CX 2 O (X=H, F, Cl, and Br),” ChemistrySelect, vol. 8, no. 39, Oct. 2023, doi: 10.1002/slct.202300504
M. Moradkhani, A. Naghipour, and Y. A. Tyula, “Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids,” Struct Chem, Oct. 2023, doi: 10.1007/s11224-023-02243-8
J. Alí-Torres, A. Mirats, J.-D. Maréchal, L. Rodríguez-Santiago, and M. Sodupe, “Modeling Cu 2+ -Aβ complexes from computational approaches,” AIP Adv, vol. 5, no. 9, p. 092402, Sep. 2015, doi: 10.1063/1.4921072
A. L. Orjuela, F. Núñez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe 2+/3+ -Aβ model systems relevant to Alzheimer’s disease,” RSC Adv, vol. 12, no. 37, pp. 24077–24087, 2022, doi: 10.1039/D2RA03907A
M. J. Frisch et al., “Gaussian 16.” Gaussian, Inc., Wallingford CT, 2016
N. Puentes-Díaz, D. Chaparro, V. Reyes-Marquez, D. Morales-Morales, A. Flores-Gaspar, and J. Alí-Torres, “Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer’s Disease,” Journal of Alzheimer’s Disease, pp. 1–14, Jul. 2023, doi: 10.3233/JAD-230542
D. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” J Mol Model, vol. 23, no. 10, p. 283, Oct. 2017, doi: 10.1007/s00894-017-3469-7
A.-F. Miller, K. Padmakumar, D. L. Sorkin, A. Karapetian, and C. K. Vance, “Proton-coupled electron transfer in Fe-superoxide dismutase and Mn-superoxide dismutase,” J Inorg Biochem, vol. 93, no. 1–2, pp. 71–83, Jan. 2003, doi: 10.1016/S0162-0134(02)00621-9
J. A. Fee and C. Bull, “Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein.,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13000–13005, Oct. 1986, doi: 10.1016/S0021-9258(18)69261-0
D. E. Heck, M. Shakarjian, H. D. Kim, J. D. Laskin, and A. M. Vetrano, “Mechanisms of oxidant generation by catalase,” Ann N Y Acad Sci, vol. 1203, no. 1, pp. 120–125, Aug. 2010, doi: 10.1111/j.1749-6632.2010.05603.x
M. Lundberg and T. Borowski, “Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective,” Coord Chem Rev, vol. 257, no. 1, pp. 277–289, Jan. 2013, doi: 10.1016/j.ccr.2012.03.047
R. A. Himes and K. D. Karlin, “Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO),” Curr Opin Chem Biol, vol. 13, no. 1, pp. 119–131, Feb. 2009, doi: 10.1016/j.cbpa.2009.02.025
Y. Feng, P.-H. Lee, D. Wu, Z. Zhou, H. Li, and K. Shih, “Degradation of contaminants by Cu + -activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu 3+ ),” J Hazard Mater, vol. 331, pp. 81–87, Jun. 2017, doi: 10.1016/j.jhazmat.2017.02.029
T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J Comput Chem, vol. 33, no. 5, pp. 580–592, Feb. 2012, doi: 10.1002/jcc.22885
P. S. V. KUMAR, V. RAGHAVENDRA, and V. SUBRAMANIAN, “Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding,” Journal of Chemical Sciences, vol. 128, no. 10, pp. 1527–1536, Oct. 2016, doi: 10.1007/s12039-016-1172-3
C. Silva Lopez and A. R. de Lera, “Bond Ellipticity as a Measure of Electron Delocalization in Structure and Reactivity,” Curr Org Chem, vol. 15, no. 20, pp. 3576–3593, Oct. 2011, doi: 10.2174/138527211797636228
A. H. Pakiari and K. Eskandari, “The chemical nature of very strong hydrogen bonds in some categories of compounds,” Journal of Molecular Structure: THEOCHEM, vol. 759, no. 1–3, pp. 51–60, Feb. 2006, doi: 10.1016/j.theochem.2005.10.040
S. J. Grabowski, W. A. Sokalski, E. Dyguda, and J. Leszczyński, “Quantitative Classification of Covalent and Noncovalent H-Bonds,” J Phys Chem B, vol. 110, no. 13, pp. 6444–6446, Apr. 2006, doi: 10.1021/jp0600817
S. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms‐in‐Molecules Descriptors, Binding Energies, and Energy Components of Symmetry‐Adapted Perturbation Theory,” J Comput Chem, vol. 40, no. 32, pp. 2868–2881, Dec. 2019, doi: 10.1002/jcc.26068
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 69 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86253/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86253/2/1026592790.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86253/3/1026592790.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8291ebc86a2739940ae0dd5c9e1611e8
5a31285bfcaa85fcbcddc5f765caaf96
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089827005497344
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alí Torres, Jorge Isaac5ad92e519d0adeb5c7ce64cdd274cafaMontoya Moreno, Nicolas25b128763a9fb18c0f18e4df35af89feQuímica Cuántica y Computacional2024-06-18T13:48:23Z2024-06-18T13:48:23Z2023https://repositorio.unal.edu.co/handle/unal/86253Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Son varias las especies radicales involucradas en el estrés oxidativo, un fenómeno que se ha relacionado con varias enfermedades que representan un gran riesgo a la salud como el cáncer, diabetes, enfermedades neurodegenerativas, entre otras. Una de ellas es el anión superóxido, que se produce continuamente en procesos metabólicos normales de las células y puede llegar a ocasionar reacciones en cadena, formando otras especies reactivas. Por lo tanto, se ha generado interés en encontrar moléculas que sean capaces de imitar la actividad antioxidante de enzimas como la superóxido dismutasa y catalasa, combinando esfuerzos y estrategias computacionales y experimentales. En este estudio se evaluaron mecanismos de reacción para 9 complejos de cobre como posibles mimetizadores de la enzima superóxido dismutasa (SOD) la enzima catalasa (CAT) mediante el cálculo de las energías libres de reacción para los mecanismos plausibles de la dismutación del anión radical superóxido y descomposición del peróxido de hidrógeno, usando la teoría del funcional de densidad con los funcionales M06-2X y modelo de solvatación implícita SMD. Posteriormente se realizó un análisis topológico de la distribución de la densidad electrónica siguiendo la teoría de átomos en moléculas o AIM, evaluando para los reactivos y productos parámetros electrónicos en los enlaces de coordinación en el mecanismo de la SOD. Como conclusión se encontró que los complejos estudiados mimetizarían a la SOD y la CAT mediante los mecanismos propuestos, además el análisis topológico demostró que los mecanismos favorables son aquellos en donde el cobre (II) y el superóxido presentan una interacción atractiva y parcialmente covalente que cambia en los productos a una interacción de carácter de capa cerrada, junto a un aumento ligero de la elipticidad. (Tomado de la fuente)There are several radical species involved in oxidative stress, a phenomenon that has been related to several diseases that represent a great risk to health such as cancer, diabetes, neurodegenerative diseases, among others; one of them is the superoxide radical anion, which is produced continuously in normal metabolic processes of cells and can cause chain reactions, forming other reactive species. Therefore, interest has been generated in finding molecules that can mimic the antioxidant activity of the superoxide dismutase and catalase enzymes, combining computational and experimental efforts and strategies. In this study, reaction mechanisms for 9 copper complexes were evaluated as possible mimics of the superoxide dismutase (SOD) and catalase (CAT) enzymes by calculating the reaction free energies for the plausible mechanisms of the dismutation of the superoxide radical anion and decomposition of hydrogen peroxide, using the density functional theory with the M06-2X functional and the SMD solvation model. Subsequently, a topological analysis of the electronic density distribution was carried out following the theory of atoms in molecules or AIM, evaluating electronic parameters in the coordination bonds for the reactants and products in the SOD mechanism. In conclusion, it was found that the complexes studied would mimic SOD and CAT through the proposed mechanisms. In addition the topological analysis discovered that the favorable mechanisms are those in which copper (II) and superoxide present an attractive and partially covalent interaction that changes in the products. to a closed shell character interaction, along with a slight increase in ellipticity.MaestríaMagíster en Ciencias - Química69 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines540 - Química y ciencias afines::547 - Química orgánicaRadicales (Química)Enzimas de cobreDensidad electrónicasuperóxido dismutasamimetizadores SODradical superóxidoestrés oxidativoantioxidanteestrategias computacionalesanálisis topológicossuperoxide dismutaseSOD mimicssuperoxide radicaloxidative stressantioxidantcomputational strategiestopological analysisSuperóxido dismutasaCatalasaEstudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasaComputational study of the reactivity of copper complexes as superoxide dismutase and catalase enzyme mimicsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaM. Lawson, K. Jomova, P. Poprac, K. Kuča, K. Musílek, and M. Valko, “Free Radicals and Antioxidants in Human Disease,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, Cham: Springer International Publishing, 2017, pp. 283–305. doi: 10.1007/978-3-319-67625-8_12O. M. Ighodaro and O. A. Akinloye, “First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid,” Alexandria Journal of Medicine, vol. 54, no. 4, pp. 287–293, Dec. 2018, doi: 10.1016/j.ajme.2017.09.001V. Rani and U. C. Singh Yadav, Free Radicals in Human Health and Disease. New Delhi: Springer India, 2015. doi: 10.1007/978-81-322-2035-0M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” Int J Biochem Cell Biol, vol. 39, no. 1, pp. 44–84, Jan. 2007, doi: 10.1016/j.biocel.2006.07.001A. Bafana, S. Dutt, A. Kumar, S. Kumar, and P. S. Ahuja, “The basic and applied aspects of superoxide dismutase,” J Mol Catal B Enzym, vol. 68, no. 2, pp. 129–138, Feb. 2011, doi: 10.1016/j.molcatb.2010.11.007R. W. Strange, C. W. Yong, W. Smith, and S. S. Hasnain, “Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu–Zn superoxide dismutase,” Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 10040–10044, Jun. 2007, doi: 10.1073/pnas.0703857104I. A. Abreu and D. E. Cabelli, “Superoxide dismutases—a review of the metal-associated mechanistic variations,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1804, no. 2, pp. 263–274, Feb. 2010, doi: 10.1016/j.bbapap.2009.11.005A. S. Hearn et al., “Amino Acid Substitution at the Dimeric Interface of Human Manganese Superoxide Dismutase,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5861–5866, Feb. 2004, doi: 10.1074/jbc.M311310200A. Merlino et al., “Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis,” J Struct Biol, vol. 172, no. 3, pp. 343–352, Dec. 2010, doi: 10.1016/j.jsb.2010.08.008R. W. Herbst et al., “Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution,” Biochemistry, vol. 48, no. 15, pp. 3354–3369, Apr. 2009, doi: 10.1021/bi802029tL. Miao and D. K. St. Clair, “Regulation of superoxide dismutase genes: Implications in disease,” Free Radic Biol Med, vol. 47, no. 4, pp. 344–356, Aug. 2009, doi: 10.1016/j.freeradbiomed.2009.05.018C. L. Matthiesen et al., “Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization,” Free Radic Biol Med, vol. 164, pp. 399–409, Feb. 2021, doi: 10.1016/j.freeradbiomed.2021.01.027T. Siddique, H. X. Deng, and S. Ajroud-Driss, “Motor Neuron Disease,” in Emery and Rimoin’s Principles and Practice of Medical Genetics, Elsevier, 2013, pp. 1–22. doi: 10.1016/B978-0-12-383834-6.00141-5J. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li, “Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11648–11655, Mar. 2005, doi: 10.1074/jbc.M414327200B. G. Trist, J. B. Hilton, D. J. Hare, P. J. Crouch, and K. L. Double, “Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic,” Angewandte Chemie International Edition, vol. 60, no. 17, pp. 9215–9246, Apr. 2021, doi: 10.1002/anie.202000451T. Fukai, “Extracellular superoxide dismutase and cardiovascular disease,” Cardiovasc Res, vol. 55, no. 2, pp. 239–249, Aug. 2002, doi: 10.1016/S0008-6363(02)00328-0L. A. Macmillan-Crow and D. L. Cruthirds, “Manganese superoxide dismutase in disease,” Free Radic Res, vol. 34, no. 4, pp. 325–336, Jan. 2001, doi: 10.1080/10715760100300281H. Younus, “Therapeutic potentials of superoxide dismutase.,” Int J Health Sci (Qassim), vol. 12, no. 3, pp. 88–93, 2018T. Ogiso, T. Fukami, C. Zhongzhe, K. Konishi, M. Nakano, and M. Nakajima, “Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid,” Toxicology, vol. 448, p. 152648, Jan. 2021, doi: 10.1016/j.tox.2020.152648M. N. Islam et al., “Superoxide dismutase: an updated review on its health benefits and industrial applications,” Crit Rev Food Sci Nutr, vol. 62, no. 26, pp. 7282–7300, Sep. 2022, doi: 10.1080/10408398.2021.1913400D. Salvemini, C. Muscoli, D. P. Riley, and S. Cuzzocrea, “Superoxide Dismutase Mimetics,” Pulm Pharmacol Ther, vol. 15, no. 5, pp. 439–447, Oct. 2002, doi: 10.1006/pupt.2002.0374A. Galano, “Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols,” J Mex Chem Soc, vol. 59, no. 4, pp. 231–262, 2015, [Online]. Available: http://www.redalyc.org/articulo.oa?id=47545630002A. Galano and J. Raúl Alvarez‐Idaboy, “Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow?,” Int J Quantum Chem, vol. 119, no. 2, p. e25665, Jan. 2019, doi: 10.1002/qua.25665A. Mirats, J. Alí-Torres, L. Rodríguez-Santiago, M. Sodupe, and G. La Penna, “Dioxygen activation in the Cu–amyloid β complex,” Physical Chemistry Chemical Physics, vol. 17, no. 41, pp. 27270–27274, 2015, doi: 10.1039/C5CP04025FK. Reybier et al., “Free Superoxide is an Intermediate in the Production of H 2 O 2 by Copper(I)-Aβ Peptide and O 2,” Angewandte Chemie International Edition, vol. 55, no. 3, pp. 1085–1089, Jan. 2016, doi: 10.1002/anie.201508597A. Carlioz and D. Touati, “Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?,” EMBO J, vol. 5, no. 3, pp. 623–630, Mar. 1986, doi: 10.1002/j.1460-2075.1986.tb04256.xO. Iranzo, “Manganese complexes displaying superoxide dismutase activity: A balance between different factors,” Bioorg Chem, vol. 39, no. 2, pp. 73–87, Apr. 2011, doi: 10.1016/j.bioorg.2011.02.001D. P. Riley et al., “Synthesis, Characterization, and Stability of Manganese(II) C-Substituted 1,4,7,10,13-Pentaazacyclopentadecane Complexes Exhibiting Superoxide Dismutase Activity,” Inorg Chem, vol. 35, no. 18, pp. 5213–5231, Jan. 1996, doi: 10.1021/ic960262vM. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, and B. Malfroy, “Salen-Manganese Complexes Are Superoxide Dismutase-Mimics,” Biochem Biophys Res Commun, vol. 192, no. 2, pp. 964–968, Apr. 1993, doi: 10.1006/bbrc.1993.1509I. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential,” Antioxid Redox Signal, vol. 13, no. 6, pp. 877–918, Sep. 2010, doi: 10.1089/ars.2009.2876A. Shariev et al., “Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic,” Redox Biol, vol. 38, p. 101790, Jan. 2021, doi: 10.1016/j.redox.2020.101790A. Vincent et al., “Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models,” J Inorg Biochem, vol. 219, p. 111431, Jun. 2021, doi: 10.1016/j.jinorgbio.2021.111431R. F. W. Bader, Atoms in Molecules: A Quantum Theory. in International series of monographs on chemistry. Clarendon Press, 1990. [Online]. Available: https://books.google.com.co/books?id=up1pQgAACAAJC. F. Matta and R. J. Boyd, The quantum theory of atoms in molecules : from solid state to DNA and drug design. Wiley-VCH, 2007M. Jabłoński and M. Palusiak, “Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study,” J Phys Chem A, vol. 116, no. 9, pp. 2322–2332, Mar. 2012, doi: 10.1021/jp211606tO. A. Syzgantseva, V. Tognetti, and L. Joubert, “On the Physical Nature of Halogen Bonds: A QTAIM Study,” J Phys Chem A, vol. 117, no. 36, pp. 8969–8980, Sep. 2013, doi: 10.1021/jp4059774S. J. Grabowski, “Non-covalent interactions – QTAIM and NBO analysis,” J Mol Model, vol. 19, no. 11, pp. 4713–4721, Nov. 2013, doi: 10.1007/s00894-012-1463-7A. R. M, A. Singh, M. S. S. Sundaram, Y. Wagh, A. Jegorov, and A. K. Jain, “In-Silico aided screening and characterization results in stability enhanced Novel Roxadustat co-crystal,” J Pharm Sci, Oct. 2023, doi: 10.1016/j.xphs.2023.10.024M. Doust Mohammadi, F. Abbas, H. Louis, Z. Zeb, M. U. Akem, and I. Benjamin, “Computational Investigation of the Intermolecular Interactions between Decatungstate Acid and CX 2 O (X=H, F, Cl, and Br),” ChemistrySelect, vol. 8, no. 39, Oct. 2023, doi: 10.1002/slct.202300504M. Moradkhani, A. Naghipour, and Y. A. Tyula, “Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids,” Struct Chem, Oct. 2023, doi: 10.1007/s11224-023-02243-8J. Alí-Torres, A. Mirats, J.-D. Maréchal, L. Rodríguez-Santiago, and M. Sodupe, “Modeling Cu 2+ -Aβ complexes from computational approaches,” AIP Adv, vol. 5, no. 9, p. 092402, Sep. 2015, doi: 10.1063/1.4921072A. L. Orjuela, F. Núñez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe 2+/3+ -Aβ model systems relevant to Alzheimer’s disease,” RSC Adv, vol. 12, no. 37, pp. 24077–24087, 2022, doi: 10.1039/D2RA03907AM. J. Frisch et al., “Gaussian 16.” Gaussian, Inc., Wallingford CT, 2016N. Puentes-Díaz, D. Chaparro, V. Reyes-Marquez, D. Morales-Morales, A. Flores-Gaspar, and J. Alí-Torres, “Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer’s Disease,” Journal of Alzheimer’s Disease, pp. 1–14, Jul. 2023, doi: 10.3233/JAD-230542D. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” J Mol Model, vol. 23, no. 10, p. 283, Oct. 2017, doi: 10.1007/s00894-017-3469-7A.-F. Miller, K. Padmakumar, D. L. Sorkin, A. Karapetian, and C. K. Vance, “Proton-coupled electron transfer in Fe-superoxide dismutase and Mn-superoxide dismutase,” J Inorg Biochem, vol. 93, no. 1–2, pp. 71–83, Jan. 2003, doi: 10.1016/S0162-0134(02)00621-9J. A. Fee and C. Bull, “Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein.,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13000–13005, Oct. 1986, doi: 10.1016/S0021-9258(18)69261-0D. E. Heck, M. Shakarjian, H. D. Kim, J. D. Laskin, and A. M. Vetrano, “Mechanisms of oxidant generation by catalase,” Ann N Y Acad Sci, vol. 1203, no. 1, pp. 120–125, Aug. 2010, doi: 10.1111/j.1749-6632.2010.05603.xM. Lundberg and T. Borowski, “Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective,” Coord Chem Rev, vol. 257, no. 1, pp. 277–289, Jan. 2013, doi: 10.1016/j.ccr.2012.03.047R. A. Himes and K. D. Karlin, “Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO),” Curr Opin Chem Biol, vol. 13, no. 1, pp. 119–131, Feb. 2009, doi: 10.1016/j.cbpa.2009.02.025Y. Feng, P.-H. Lee, D. Wu, Z. Zhou, H. Li, and K. Shih, “Degradation of contaminants by Cu + -activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu 3+ ),” J Hazard Mater, vol. 331, pp. 81–87, Jun. 2017, doi: 10.1016/j.jhazmat.2017.02.029T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J Comput Chem, vol. 33, no. 5, pp. 580–592, Feb. 2012, doi: 10.1002/jcc.22885P. S. V. KUMAR, V. RAGHAVENDRA, and V. SUBRAMANIAN, “Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding,” Journal of Chemical Sciences, vol. 128, no. 10, pp. 1527–1536, Oct. 2016, doi: 10.1007/s12039-016-1172-3C. Silva Lopez and A. R. de Lera, “Bond Ellipticity as a Measure of Electron Delocalization in Structure and Reactivity,” Curr Org Chem, vol. 15, no. 20, pp. 3576–3593, Oct. 2011, doi: 10.2174/138527211797636228A. H. Pakiari and K. Eskandari, “The chemical nature of very strong hydrogen bonds in some categories of compounds,” Journal of Molecular Structure: THEOCHEM, vol. 759, no. 1–3, pp. 51–60, Feb. 2006, doi: 10.1016/j.theochem.2005.10.040S. J. Grabowski, W. A. Sokalski, E. Dyguda, and J. Leszczyński, “Quantitative Classification of Covalent and Noncovalent H-Bonds,” J Phys Chem B, vol. 110, no. 13, pp. 6444–6446, Apr. 2006, doi: 10.1021/jp0600817S. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms‐in‐Molecules Descriptors, Binding Energies, and Energy Components of Symmetry‐Adapted Perturbation Theory,” J Comput Chem, vol. 40, no. 32, pp. 2868–2881, Dec. 2019, doi: 10.1002/jcc.26068EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86253/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026592790.2024.pdf1026592790.2024.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf11844387https://repositorio.unal.edu.co/bitstream/unal/86253/2/1026592790.2024.pdf8291ebc86a2739940ae0dd5c9e1611e8MD52THUMBNAIL1026592790.2024.pdf.jpg1026592790.2024.pdf.jpgGenerated Thumbnailimage/jpeg5598https://repositorio.unal.edu.co/bitstream/unal/86253/3/1026592790.2024.pdf.jpg5a31285bfcaa85fcbcddc5f765caaf96MD53unal/86253oai:repositorio.unal.edu.co:unal/862532024-08-25 23:11:39.462Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=