Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs
El principal objetivo de esta tesis de doctorado es obtener, en el contexto del Modelo con Dos Dobletes de Higgs tipo III (M2DH-III), expresiones análiticas exactas para las matrices de masa y de mezcla de neutrinos, que son generadas mediante el Mecanismo See-Saw tipo I (MSS-I) y el Mecanismo See-S...
- Autores:
-
Gutierrez Saavedra, Julian Steven
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85933
- Palabra clave:
- 530 - Física
Matrices de masa y mezcla de neutrinos
Modelo con dos dobletes de higgs
Simetría permutacional de sabor S3
Mecanismos See-Saw tipo I y tipo I+III
Generacion de masas de neutrinos
Mass and mixing matrices of the lepton
Neutrino mass generation
Two Higgs doublet model type III
S3 flavor permutational symmetry
See-Saw Mechanism type I and type I+III
Mixing and mass matrices of neutrinos
Física
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_943e2622ab5226ff9bf251b8f166b144 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85933 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
dc.title.translated.eng.fl_str_mv |
Mass and mixing matrices of the lepton sector in the two Higgs doublet model |
title |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
spellingShingle |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs 530 - Física Matrices de masa y mezcla de neutrinos Modelo con dos dobletes de higgs Simetría permutacional de sabor S3 Mecanismos See-Saw tipo I y tipo I+III Generacion de masas de neutrinos Mass and mixing matrices of the lepton Neutrino mass generation Two Higgs doublet model type III S3 flavor permutational symmetry See-Saw Mechanism type I and type I+III Mixing and mass matrices of neutrinos Física |
title_short |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
title_full |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
title_fullStr |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
title_full_unstemmed |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
title_sort |
Matrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de Higgs |
dc.creator.fl_str_mv |
Gutierrez Saavedra, Julian Steven |
dc.contributor.advisor.none.fl_str_mv |
Quimbay Herrera, Carlos Jose |
dc.contributor.author.none.fl_str_mv |
Gutierrez Saavedra, Julian Steven |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de campos y partículas |
dc.contributor.orcid.spa.fl_str_mv |
Gutierrez, Julian [0000000349442945] |
dc.contributor.cvlac.spa.fl_str_mv |
Gutierrez Saavedra, Julian Steven [0000837733] |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Matrices de masa y mezcla de neutrinos Modelo con dos dobletes de higgs Simetría permutacional de sabor S3 Mecanismos See-Saw tipo I y tipo I+III Generacion de masas de neutrinos Mass and mixing matrices of the lepton Neutrino mass generation Two Higgs doublet model type III S3 flavor permutational symmetry See-Saw Mechanism type I and type I+III Mixing and mass matrices of neutrinos Física |
dc.subject.proposal.spa.fl_str_mv |
Matrices de masa y mezcla de neutrinos Modelo con dos dobletes de higgs Simetría permutacional de sabor S3 Mecanismos See-Saw tipo I y tipo I+III Generacion de masas de neutrinos |
dc.subject.proposal.eng.fl_str_mv |
Mass and mixing matrices of the lepton Neutrino mass generation Two Higgs doublet model type III S3 flavor permutational symmetry See-Saw Mechanism type I and type I+III Mixing and mass matrices of neutrinos |
dc.subject.wikidata.spa.fl_str_mv |
Física |
description |
El principal objetivo de esta tesis de doctorado es obtener, en el contexto del Modelo con Dos Dobletes de Higgs tipo III (M2DH-III), expresiones análiticas exactas para las matrices de masa y de mezcla de neutrinos, que son generadas mediante el Mecanismo See-Saw tipo I (MSS-I) y el Mecanismo See-Saw tipo I+III (MSS-I+III), introduciendo una simetría permutacional de sabor S3. Para el caso del MSS-I la matriz de mezcla más general 6 × 6, que también se obtiene de manera analítica y exacta, es construida considerando simultáneamente los tres neutrinos ligeros y los tres neutrinos pesados (escenario 3+3). Para cumplir con el anterior objetivo, inicialmente se extiende el lagragiano de Yukawa incluyendo el término de Majorana, con el fin de implementar los dos mecanismos de generación de masa de neutrinos considerados, es decir MSS-I y MSS-I+III. A continuación, para cada uno de estos dos casos de generación de masa, se obtienen las matrices de masa para los neutrinos activos de Dirac y se deducen expresiones analíticas exactas para los elementos de las correspondientes matrices de mezcla en términos de las masas de los leptones cargados, de las diferencias de los cuadrados de las masas de los neutrinos y de los parámetros asociados a la simetría S3. Partiendo de estas expresiones e implementando un método estadístico de verosimilitud, para cada uno de los anteriores casos, se estiman los valores de las masas de los neutrinos activos de Dirac, de las fases de violación de CP de Dirac y de los ángulos de mezcla. Como aplicación de los resultados obtenidos para el caso del MSS-I, se consideran los dos canales de decaimiento leptónicos del tauón, con lo cual se obtiene una relación novedosa entre los cuadrados de las constantes de acoplamiento de Yukawa involucradas en estos dos procesos. Adicionalmente, para el caso MSS-I, se deducen expresiones analíticas para dos masas efectivas de Majorana, a partir de las cuales se estiman los valores de estas masas, usando las masas de los neutrinos activos de Dirac y de los ángulos de mezcla previamente obtenidos. Finalmente, se calculan las fases de violación de CP de Majorana α12, α13 y se calculan las probabilidades de oscilación de neutrino-antineutrino para el caso de tres generaciones con el fin de estimar los parámetros de violación de CP y el parámetro de asimetría Aαβ de materia antimateria (Texto tomado de la fuente) |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-17T16:45:17Z |
dc.date.available.none.fl_str_mv |
2024-04-17T16:45:17Z |
dc.date.issued.none.fl_str_mv |
2024-04-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85933 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85933 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579 – 588, 1961. Abdus Salam. On parity conservation and neutrino mass. Il Nuovo Cimento (1955- 1965), 5(1):299–301, 1957. Sheldon L Glashow and Steven Weinberg. Natural conservation laws for neutral currents. Physical Review D, 15(7):1958, 1977 Steven Weinberg. A model of leptons. Physical review letters, 19:1264–1266, Nov 1967 Peter Van Nieuwenhuizen. Supergravity. Physics Reports, 68(4):189–398, 1981. Tsutomu Yanagida. Proc. workshop on unified theory and the baryon number in the universe. KEK Report No. 79-18, 95, 1979. Rabindra N Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical Review Letters, 44(14):912, 1980. V Barger, JL Hewett, and RJN Phillips. New constraints on the charged higgs sector in two-higgs-doublet models. Physical Review D, 41(11):3421, 1990. Gustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-higgs-doublet models. Physics reports, 516(1-2):1–102, 2012. Stefano Bertolini. Quantum effects in a two higgs doublet model of the electroweak interactions. Nuclear Physics B, 272(1):77–98, 1986. JF Gunion, HE Haber, GL Kane, and S Dawson. The higgs hunter’s guide addison, 1990. David Atwood, Laura Reina, and Amarjit Soni. Phenomenology of two higgs doublet models with flavor-changing neutral currents. Physical Review D, 55(5):3156, 1997. David Atwood, Shaouly Bar-Shalom, and Amarjit Soni. Neutrino masses, mixing and leptogenesis in a two higgs doublet model “for the third generation”. Physics Letters B, 635(2-3):112–117, 2006. Antonio Pich. Precision tau physics. Progress in Particle and Nuclear Physics, 75:41–85, Mar 2014. J Lorenzo Diaz-Cruz, R Noriega-Papaqui, and A Rosado. Mass matrix ansatz and lepton flavor violation in the two-higgs doublet model-III. Physical Review D, 69(9):095002, 2004 TD Lee. A theory of spontaneous t violation. Physical Review D, 8(4):1226, 1973. E Barradas-Guevara, O Felix-Beltran, F Gonzalez-Canales, and M Zeleny-Mora. Lepton CP violation in a ν2HDM with flavor. Physical Review D, 97(3):035003, 2018. Subhasmita Mishra. Neutrino mixing and leptogenesis with modular s3 symmetry in the framework of type III seesaw, 2020. S Gabriel and S Nandi. A new two higgs doublet model. Physics Letters B, 655(3- 4):141–147, 2007. Daniel A Camargo, Miguel D Campos, Tessio B de Melo, and Farinaldo S Queiroz. ´ A two Higgs doublet model for dark matter and neutrino masses. Physics Letters B, 795:319–326, 2019. AE Carcamo Hernández, I de Medeiros Varzielas, and E Schumacher. Fermion and scalar phenomenology of a two-higgs-doublet model with s3. Physical Review D, 93(1):016003, 2016. DG Michael, P Adamson, T Alexopoulos, WWM Allison, GJ Alner, K Anderson, C Andreopoulos, M Andrews, R Andrews, KE Arms, et al. Observation of muon neutrino disappearance with the minos detectors in the numi neutrino beam. Physical Review Letters, 97(19):191801, 2006. MH Ahn, E Aliu, S Andringa, S Aoki, Y Aoyama, J Argyriades, K Asakura, R Ashie, F Berghaus, HG Berns, et al. Measurement of neutrino oscillation by the K2K experiment. Physical Review D, 74(7):072003, 2006. B Aharmim, SN Ahmed, JF Amsbaugh, AE Anthony, J Banar, N Barros, EW Beier, Alain Bellerive, B Beltran, M Bergevin, et al. Independent measurement of the total active B8 solar neutrino flux using an array of he 3 proportional counters at the sudbury neutrino observatory. Physical Review Letters, 101(11):111301, 2008. S Abe, T Ebihara, S Enomoto, K Furuno, Y Gando, K Ichimura, H Ikeda, K Inoue, Y Kibe, Y Kishimoto, et al. Precision measurement of neutrino oscillation parameters with kamland. Physical Review Letters, 100(22):221803, 2008. Ernest Ma. Pathways to naturally small neutrino masses. Physical Review Letters, 81(6):1171, 1998. PA Zyla, Particle Data Group, et al. to be published in prog. theor. Exp. Phys, 2020. Carlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007. Rabindra Nath Mohapatra and Palash B Pal. Massive neutrinos in physics and astrophysics, volume 72. World scientific, 2004. Rabindra N. Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical review letters, 44:912–915, Apr 1980. A Zee. A theory of lepton number violation and neutrino majorana masses. Physics Letters B, 93(4):389–393, 1980. Jackson D Clarke, Robert Foot, and Raymond R Volkas. Natural leptogenesis and neutrino masses with two higgs doublets. Physical Review D, 92(3):033006, 2015. Raymond Volkas. Neutrino mass models and their connections with other physics beyond the standard model. npa, page 46, 2018. Wei Chao and Michael J Ramsey-Musolf. Hidden from view: Neutrino masses, dark matter, and tev-scale leptogenesis in a neutrinophilic two-higgs-doublet model. Physical Review D, 89(3):033007, 2014. Wei-Shu Hou. Tree level t → ch0 or h0 → tc decays. Physics Letters B, 296(1-2):179–184, 1992. D Chang, WS Hou, and W-Y Keung. Two-loop contributions of flavor-changing neutral higgs bosons to µ → eγ. Physical Review D, 48(1):217, 1993. J-M Gerard and Michel Herquet. Twisted custodial symmetry in two-higgs-doublet models. Physical review letters, 98(25):251802, 2007. John F Gunion and Howard E Haber. CP-conserving two-Higgs-doublet model: the approach to the decoupling limit. Physical Review D, 67(7):075019, 2003. John F Gunion, Gordon L Kane, Sally Dawson, and Howard E Haber. The higgs hunter’s guide. Front. Phys., 80(BNL-41644):1–404, 1989. Santi Bejar, Jaume Guasch, and Joan Sola. Higgs boson flavor-changing neutral ´ decays into top quark in a general two-higgs-doublet model. Nuclear physics B, 675(1-2):270–288, 2003. Andreas Crivellin, Christoph Greub, and Ahmet Kokulu. Flavor-phenomenology of two-higgs-doublet models with generic yukawa structure. Physical Review D, 87(9):094031, 2013. Santi Bejar, Jaume Guasch, and Joan Sola. FCNC top quark decays beyond the standard model. arXiv preprint hep-ph/0101294, 2001. Ann E Nelson and David Wright. Horizontal, anomalous U (1) symmetry for the more minimal supersymmetric standard model. Physical Review D, 56(3):1598, 1997. Junjie Cao, Peihua Wan, Lei Wu, and Jin Min Yang. Lepton-specific two-higgsdoublet model: Experimental constraints and implication on higgs phenomenology. Physical Review D, 80(7), Oct 2009. Heather E. Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79:115022, Jun 2009. Yuji Omura, Eibun Senaha, and Kazuhiro Tobe. Lepton-flavor-violating higgs decay h → µτ and muon anomalous magnetic moment in a general two higgs doublet model. Journal of High Energy Physics, 2015(5):28, 2015. Krawczyk, M. and Temes, D. Large 2HDM(II) okkne-loop corrections in leptonic tau decays. Eur. Phys. J. C, 44(3):435–446, 2005 Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Fingerprinting the extended higgs sector using one-loop corrected higgs boson couplings and future precision measurements. Nuclear Physics B, 896:80–137, 2015. Jules Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, and Alfonso Rosado. ´ Off-diagonal terms in yukawa textures of the type-III 2-Higgs doublet model and light charged higgs boson phenomenology. Journal of High Energy Physics, 2013:1–51, 2012. Andreas Crivellin, Julian Heeck, and Peter Stoffer. Perturbed lepton-specific twohiggs-doublet model facing experimental hints for physics beyond the standard model. Physical review letters, 116:081801, Feb 2016. Marco Drewes. The phenomenology of right handed neutrinos. International Journal of Modern Physics E, 22(08):1330019, 2013. Johannes Hirn and Jan Stern. Lepton-number violation and right-handed neutrinos in higgsless effective theories. Physical Review D, 73(5):056001, 2006. Laurent Canetti, Marco Drewes, Tibor Frossard, and Mikhail Shaposhnikov. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos. Physical Review D, 87(9):093006, 2013. Naoyuki Haba and Koji Tsumura. ν-two higgs doublet model and its collider phenomenology. Journal of High Energy Physics, 2011(6):68, 2011. Florian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009. Florian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009. Zhi-zhong Xing. Hierarchical neutrino masses and large mixing angles from the fritzsch texture of lepton mass matrices. Physics Letters B, 550(3-4):178–185, 2002. Xiao-Gang He and A Zee. Some simple mixing and mass matrices for neutrinos. Physics Letters B, 560(1-2):87–90, 2003. Stephen F King. Neutrino mass models. Reports on Progress in Physics, 67(2):107, 2003. Aharon Davidson and Kameshwar C Wali. Universal seesaw mechanism? Physical Review Letters, 59(4):393, 1987. Darwin Chang and Rabindra N Mohapatra. Small and calculable dirac neutrino mass. Physical Review Letters, 58(16):1600, 1987. KS Babu and Rabindra N Mohapatra. CP violation in seesaw models of quark masses. Physical review letters, 62(10):1079, 1989. ZG Berezhiani and Riccardo Rattazzi. Universal seesaw and radiative quark mass hierarchy. Physics Letters B, 279(1-2):124–130, 1992. Peter Minkowski. µ→ eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4):421–428, 1977. M Gell-Mann, P Ramond, and R Slansky. Supergravity ed p van nieuwenhuizen and dz freedman. Amsterdam: North-Holland) p, 315:79–18, 1979. Sheldon L Glashow. Quarks and leptons ed m levy et al, 1980. W Konetschny and W Kummer. Nonconservation of total lepton number with scalar bosons. Physics Letters B, 70(4):433–435, 1977. TP Cheng and Ling-Fong Li. Neutrino masses, mixings, and oscillations in SU (2)× U (1) models of electroweak interactions. Physical Review D, 22(11):2860, 1980. George Lazarides, Q Shafi, and Ch Wetterich. Proton lifetime and fermion masses in an so (10) model. Nuclear Physics B, 181(2):287–300, 1981. J Schechter and Jose WF Valle. Neutrino masses in SU(2) ´ ⊗ U (1) theories. Physical Review D, 22(9):2227, 1980. Rabindra N Mohapatra and Goran Senjanovic. Neutrino masses and mixings in ´ gauge models with spontaneous parity violation. Physical Review D, 23(1):165, 1981. B Bajc. JHEP0708, 014 (2007); b. bajc, m. nemevsek, and g. senjanovic. Physical Review D, 76:055011, 2007. Pavel Fileviez Perez. Renormalizable adjoint SU(5). ´ Physics Letters B, 654(5- 6):189–193, 2007. Pavel Fileviez Perez. Supersymmetric adjoint SU(5). Physical Review D, 76(7):071701, 2007. J Hisano, Takeo Moroi, K Tobe, and Masahiro Yamaguchi. Lepton-flavor violation via right-handed neutrino yukawa couplings in the supersymmetric standard model. Physical Review D, 53(5):2442, 1996. Alejandro Ibarra and Cristoforo Simonetto. Understanding neutrino properties from decoupling right-handed neutrinos and extra higgs doublets. Journal of High Energy Physics, 2011(11):22, 2011. F del Aguila and JA Aguilar-Saavedra. Distinguishing seesaw models at LHC with multi-lepton signals. Nuclear Physics B, 813(1-2):22–90, 2009 Roberto Franceschini, Thomas Hambye, and Alessandro Strumia. Type-III seesaw mechanism at CERN LHC. Physical Review D, 78(3):033002, 2008 Carl H Albright and SM Barr. Leptogenesis in the type III seesaw mechanism. Physical Review D, 69(7):073010, 2004. Tong Li and Xiao-Gang He. Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism. Physical Review D, 80(9):093003, 2009 Yong Liu and Utpal Sarkar. CP violation in neutrino mixing matrix and leptogenesis. Modern Physics Letters A, 16(09):603–613, 2001. SF King. Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry. Nuclear Physics B, 562(1-2):57–77, 1999. V Barger, Duane A Dicus, Hong-Jian He, and Tianjun Li. Structure of cosmological CP-violation via neutrino seesaw. Physics Letters B, 583(1-2):173–185, 2004 Alexei Yu. Smirnov. Seesaw enhancement of lepton mixing. Physical Review D, 48:3264–3270, Oct 1993. A. Kleppe. Extending the standard model with two right-handed neutrinos. In 3rd Tallinn Symposium on Neutrino Physics, pages 118–125, 1995. Paul H Frampton, SL Glashow, and T Yanagida. Cosmological sign of neutrino CP violation. Physics Letters B, 548(3-4):119–121, 2002. Martti Raidal and ALESSANDRO Strumia. Predictions of the most minimal seesaw model. Physics Letters B, 553(1-2):72–78, 2003. Yuji Omura, Eibun Senaha, and Kazuhiro Tobe. τ-and µ-physics in a general two ’textHiggs doublet model with µ- τ flavor violation. Physical Review D, 94(5):055019, 2016. Gustavo Castello Branco, W Grimus, and L Lavoura. The seesaw mechanism in the presence of a conserved lepton number. Nuclear Physics B, 312(2):492–508, 1989. E Barradas-Guevara, O Felix-Beltrán, F Gonzalez-Canales, E Gonzáalez Hernandez, E Rodríguez-Jauregui, and M Zeleny-Mora. Analysis of the lepton mixing matrix in the two Higgs doublet model. arXiv preprint arXiv:1606.05388, 2016. F Gonzalez Canales and A Mondragon. The s3 symmetry: Flavour and texture zeroes. In Journal of Physics: Conference Series, volume 287, page 012015. IOP Publishing, 2011. H Fritzsch and Z.-Z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, Jan 2000. Walter Grimus and Luis Lavoura. On a model with two zeros in the neutrino mass matrix. Journal of Physics G: Nuclear and Particle Physics, 31(7):693, 2005. Chuan-Hung Chen and Takaaki Nomura. Two-Higgs-doublet type-II seesaw model. Physical Review D, 90(7):075008, 2014. Priyotosh Bandyopadhyay, Sandhya Choubey, and Manimala Mitra. Two higgs doublet type III seesaw with µ-τ symmetry at LHC. Journal of High Energy Physics, 2009(10):012, 2009. Asmaa Abada, Carla Biggio, Florian Bonnet, Maria B Gavela, and Thomas Hambye. Low energy effects of neutrino masses. Journal of High Energy Physics, 2007(12):061, 2007. Asmaa Abada, Carla Biggio, Florian Bonnet, Maria Belen Gavela, and Thomas Hambye. µ→ eγ and τ→ lγ decays in the fermion triplet seesaw model. Physical Review D, 78(3):033007, 2008 Abdesslam Arhrib, Rachid Benbrik, and Chuan-Hung Chen. Lepton flavor violating τ decays in the type-III seesaw mechanism. Physical Review D, 81(11):113003, 2010. D Cogollo, Ricardo D Matheus, Tessio B de Melo, and Farinaldo S Queiroz. Type I+ II seesaw in a two Higgs doublet model. Physics Letters B, 797:134813, 2019. Zhi-zhong Xing. Full parametrization of the 6× 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Physical Review D, 85(1):013008, 2012. Pavel Fileviez Perez. Type III seesaw and left-right symmetry. Journal of High Energy Physics, 2009(03):142, 2009 RN Mohapatra, Nobuchika Okada, and Hai-Bo Yu. ν-gauge mediated supersymmetry breaking with type III seesaw mechanism and phenomenology. Physical Review D, 78(7):075011, 2008. Bruno Pontecorvo. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP, 26(984-988):165, 1968. Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962. Makoto Kobayashi and Toshihide Maskawa. CP-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973. Gerhard Buchalla and Andrzej J Buras. K→π ν ν and high precision determinations of the CKM matrix. Physical Review D, 54(11):6782, 1996. A Hocker, H Lacker, S Laplace, and F Le Diberder. A new approach to a global fit of the CKM matrix. The European Physical Journal C-Particles and FieldsParticles and Fields, 21(2):225–259, 2001. Marco Battaglia, AJ Buras, Paolo Gambino, A Stocchi, D Abbaneo, A Ali, P Amaral, V Andreev, M Artuso, E Barberio, et al. The CKM matrix and the unitarity triangle. arXiv preprint hep-ph/0304132, 2003. Jeróme Charles, A Hocker, Heiko Lacker, Sandrine Laplace, FR Le Diberder, Julie Malcles, José Ocariz, Muriel Pivk, and Lydia Roos. CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories. The European Physical Journal C-Particles and Fields-Particles and Fields, 41(1):1–131, 2005. Paul F Harrison, Don H Perkins, and WG Scott. Tri-bimaximal mixing and the neutrino oscillation data. Physics Letters B, 530(1-4):167–173, 2002. Claudio Giganti, Stephane Lavignac, and Marco Zito. Neutrino oscillations: the ´ rise of the PMNS paradigm. Progress in Particle and Nuclear Physics, 98:1–54, 2018. Paul H Frampton, ST Petcov, and W Rodejohann. On deviations from bimaximal neutrino mixing. Nuclear Physics B, 687(1-2):31–54, 2004. S. Bilenky. Neutrinos: Majorana or dirac?, 2020. Samoil M Bilenky, J Hosek, and ST Petcov. On oscillations of neutrinos with dirac and majorana masses. Technical report, Joint Inst. for Nuclear Research, 1980. Werner Rodejohann, Xun-Jie Xu, and Carlos E Yaguna. Distinguishing between dirac and majorana neutrinos in the presence of general interactions. Journal of High Energy Physics, 2017(5):24, 2017. Boris Kayser and Robert E Shrock. Distinguishing between dirac and majorana neutrinos in neutral-current reactions. Physics Letters B, 112(2):137–142, 1982. Werner Rodejohann. Neutrino-less double beta decay and particle physics. International Journal of Modern Physics E, 20(09):1833–1930, 2011. Ivan Girardi, ST Petcov, and AV Titov. Determining the dirac CP violation phase in the neutrino mixing matrix from sum rules. Nuclear Physics B, 894:733–768, 2015. ST Petcov, I Girardi, and AV Titov. Predictions for the dirac CP violation phase in the neutrino mixing matrix. International Journal of Modern Physics A, 30(13):1530035, 2015. I Girardi, ST Petcov, and AV Titov. Predictions for the leptonic dirac CP violation phase: a systematic phenomenological analysis. The European Physical Journal C-Particles and Fields, 75(7):345, 2015. Ivan Girardi, ST Petcov, and AV Titov. Predictions for the majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay. Nuclear Physics B, 911:754–804, 2016. Carlo Giunti. No effect of majorana phases in neutrino oscillations. Physics Letters B, 686(1):41–43, 2010. A Capolupo, SM Giampaolo, BC Hiesmayr, and G Vitiello. Geometric phase of neutrinos: Differences between dirac and majorana neutrinos. Physics Letters B, 780:216–220, 2018. SM Bilenky and C Giunti. Neutrinoless double-beta decay: a probe of physics beyond the standard model. International Journal of Modern Physics A, 30(04n05):1530001, 2015. Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 53(19):1802, 1984. Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997. J Barranco, F Gonzalez Canales, and A Mondragon. Universal mass matrix for quarks and leptons and CP violation. Physical Review D, 82(7):073010, 2010. Darius Jurciukonis, Thomas Gajdosik, and Andrius Juodagalvis. Seesaw neutrino masses with a second Higgs doublet added. arXiv preprint arXiv:1507.03459, 2015. D Jurciukonis, T Gajdosik, and A Juodagalvis. Seesaw neutrinos with one right- handed singlet field and a second higgs doublet. Journal of High Energy Physics, 2019(11):146, 2019 J. S. Gutierrez and C. Quimbay. Relationship between the yukawa coupling constants present in the leptonic decay τ → ντ lν¯l and the neutrino masses generated via see-saw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks. ] J. S. Gutierrez and C. Quimbay. Mass and mixing matrices for neutrinos via seesaw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks. J. S. Gutierrez and C. Quimbay. See-saw mechanism in the two Higgs doublet model type III through the simultaneous introduction of a singlet and a triplet majorana. To be submitted to publication in the next weeks. RJ Guth, AH Hoang, and JH Kuhn. Tau decay in the two higgs doublet model. ¨ Physics Letters B, 285(1-2):75–79, 1992. Heather E Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79(11):115022, 2009. J. S. Gutierrez and C. Quimbay. Majorana CP violation phases in the 6 × 6 leptonic mixing matrix in the two higgs doublet model type III. To be submitted to publication in the next weeks. Harald Fritzsch and Z-z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, 2000. Zhi-Zhong Xing and He Zhang. Lepton mass matrices with four texture zeros. Physics Letters B, 569(1-2):30–40, 2003. Guido Altarelli, Ferruccio Feruglio, and Luca Merlo. Revisiting bimaximal neutrino mixing in a model with s4 discrete symmetry. Journal of High Energy Physics, 2009(05):020, 2009. Reinier de Adelhart Toorop, Federica Bazzocchi, and Luca Merlo. The interplay between gut and flavour symmetries in a pati-salam× S4 model. Journal of High Energy Physics, 2010(8):1, 2010. Florian Plentinger and Gerhart Seidl. Mapping out SU(5) grand unified theories with non-abelian discrete flavor symmetries. Physical Review D, 78(4):045004, 2008. Seungwon Baek and Takaaki Nomura. Dark matter physics in neutrino specific two higgs doublet model. Journal of High Energy Physics, 2017(3):59, 2017. Zhen Liu and Pei-Hong Gu. Extending two higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay. Nuclear Physics B, 915:206–223, 2017. Daniel A Camargo, Alex G Dias, Tessio B de Melo, and Farinaldo S Queiroz. Neu- ´ trino masses in a two Higgs doublet model with a U(1) gauge symmetry. Journal of High Energy Physics, 2019(4):129, 2019. M Kobayashi and T Maskawa. Prog. b 511, 240 (2001). Theor. Phys, 49:652, 1973. Peter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964. J Ellis. Mk gaillard and dv nanopoulos. Nuclear Physics B, 106:292, 1976 David Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+µ− colliders. Physical review letters, 75:3800–3803, Nov 1995. Rabindra N Mohapatra. Ictp lectures on theoretical aspects of neutrino masses and mixings. arXiv preprint hep-ph/0211252, 2002. KM Case. Reformulation of the majorana theory of the neutrino. Physical Review, 107(1):307, 1957. Elisabetta Sassaroli. Neutrino flavor mixing and oscillations in field theory. arXiv preprint hep-ph/9805480, 1998 Robert Foot, H Lew, X-G He, and Girish C Joshi. See-saw neutrino masses induced by a triplet of leptons. Zeitschrift fur Physik C Particles and Fields , 44(3):441–444, 1989. David Atwood, Laura Reina, and Amarjit Soni. Rb and Rc in the two-Higgs-doublet model with flavor-changing neutral currents. Physical Review D, 54(5):3296, 1996. David Atwood, Laura Reina, and Amarjit Soni. Probing flavor-changing topcharm-scalar interactions in e+e− collisions. Physical Review D, 53(3):1199, 1996. David Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+ µ− colliders. Physical review letters, 75(21):3800, 1995. Marc Sher and Yao Yuan. Rare b decays, rare τ decays, and grand unification. Physical Review D, 44:1461–1472, Sep 1991. Rabindra N Mohapatra and Alexei Y Smirnov. Neutrino mass and new physics. Annual Review of Nuclear and Particle Science, 56:569–628, 2006. Ernest Ma. Connection between the neutrino seesaw mechanism and properties of the majorana neutrino mass matrix. Physical Review D, 71(11):111301, 2005. Asan Damanik. Nonzero θ13 and neutrino masses from modified neutrino mixing matrix. International Journal of Modern Physics A, 27(17):1250091, 2012. Paul H Frampton, Sheldon L Glashow, and Danny Marfatia. Zeroes of the neutrino mass matrix. Physics Letters B, 536(1-2):79–82, 2002. Particle Data Group et al. pdg. lbl. gov, review of particle physics; latest published version m. tanabashi, et al., particle data group. Physical Review D, 98:010001, 2018. Harald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977. Sandip Pakvasa and Hirotaka Sugawara. Discrete symmetry and cabibbo angle. Physics Letters B, 73(1):61–64, 1978. Haim Harari, Herve Haut, and Jacques Weyers. Quark masses and cabibbo angles. Physics Letters B, 78(4):459–461, 1978. Harald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189– 207, 1979. Hajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Yusuke Shimizu, Hiroshi Okada, and Morimitsu Tanimoto. Non-abelian discrete symmetries in particle physics. Progress of Theoretical Physics Supplement, 183:1–163, 2010. Florian Plentinger, Gerhart Seidl, and Walter Winter. Group space scan of flavor symmetries for nearly tribimaximal lepton mixing. Journal of High Energy Physics, 2008(04):077, 2008. Zhi-zhong Xing. Flavor mixing and CP violation of massive neutrinos. International Journal of Modern Physics A, 19(01):1–79, 2004. Werner Rodejohann and JWF Valle. Symmetrical parametrizations of the lepton mixing matrix. Physical Review D, 84(7):073011, 2011. KA Hochmuth, ST Petcov, and Werner Rodejohann. UPMNS =U†l Uν .arXivpreprintarXiv : 0706,2975,2007. M Kobayashi. K. maskawa. Prog. Theor. Phys, 49:652, 1973 Ivan Esteban, MC Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Thomas Schwetz. Updated fit to three neutrino mixing: exploring the acceleratorreactor complementarity. Journal of High Energy Physics, 2017(1):87, 2017. Eung Jin Chun and Jinsu Kim. Leptonic precision test of leptophilic two-higgsdoublet model. Journal of High Energy Physics, 2016(7):1–14, 2016. William J Marciano and A Sirlin. Electroweak radiative corrections to τ decay. Physical Review Letters, 61(16):1815, 1988. J Michael Roney. Tau physics prospects at superb. Nuclear Physics B (Proceedings Supplements), (169):379–386, 2007. Francisco J Botella, GC Branco, Adrian Carmona, M Nebot, Leonardo Pedro, and ´ MN Rebelo. Physical constraints on a class of two-higgs doublet models with fcnc at tree level. Journal of High Energy Physics, 2014(7):1–33, 2014. Kazuhiro Tobe. Michel parameters for τ decays µ- τ flavor violation. Journal of High Energy Physics, 2016(10):1–14, 2016. R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022. Maria Krawczyk and David Temes. 2hdm (ii) radiative corrections in leptonic tau decays. arXiv preprint hep-ph/0410248, 2004. Ernest Ma. Neutrino mass seesaw version 3: recent developments. In AIP Conference Proceedings, volume 1116, pages 239–246. American Institute of Physics, 2009. Diego Aristizabal Sierra, Jernej F Kamenik, and Miha Nemevsek. Implications of ˇ flavor dynamics for fermion triplet leptogenesis. Journal of High Energy Physics, 2010(10):36, 2010. Ernest Ma. B and not l in supersymmetry: New U (1) gauge symmetry and dark matter. Physical Review D, 78(1):017701, 2008. JA Aguilar-Saavedra and Gustavo Castello Branco. Unitarity triangles and geometrical description of CP violation with majorana neutrinos. Physical Review D, 62(9):096009, 2000. Jose F Nieves and Palash B Pal. Rephasing-invariant CP violating parameters with majorana neutrinos. Physical Review D, 64(7):076005, 2001. Jose F Nieves and Palash B Pal. Minimal rephasing-invariant CP-violating parameters with dirac and majorana fermions. Physical Review D, 36(1):315, 1987. Patrick D Bolton. Neutrinoless double beta decay versus other probes of heavy sterile neutrinos C Barbero, Ling-Fong Li, G Lopez Castro, and A Mariano. △l = 2 hyperon semileptonic decays. Physical Review D, 76(11):116008, 2007. Hans Volker Klapdor-Kleingrothaus and Irina Vladimirovna Krivosheina. The evidence for the observation of 0νβ β decay: The identification of 0νβ β events from the full spectra. Modern Physics Letters A, 21(20):1547–1566, 2006. Stefano Dell’Oro, Simone Marcocci, Matteo Viel, and Francesco Vissani. Neutrinoless double beta decay: 2015 review. Advances in High Energy Physics, 2016, 2016. D.Q. Adams, C. Alduino, K. Alfonso, F.T. Avignone, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, and et al. Improved limit on neutrinoless double-beta decay in te130 with cuore. Physical Review Letters, 124(12), Mar 2020. Jun Cao, Guo yuan Huang, Yu-Feng Li, Yifang Wang, Liang-Jian Wen, Zhi zhong Xing, Zhen hua Zhao, and Shun Zhou. Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays. Chinese Physics C, 44(3):031001, mar 2020. J.J Gomez-Cadenas, J Martín-Albo, J. Munoz Vidal, and C Peña-Garay. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale cmb observations. Journal of Cosmology and Astroparticle Physics, 2013(03):043–043, Mar 2013. M Agostini, M Allardt, AM Bakalyarov, M Balata, I Barabanov, L Baudis, C Bauer, E Bellotti, S Belogurov, ST Belyaev, et al. Background-free search for neutrinoless double-β decay of 76 ge with gerda. Nature, 544(7648):47–52, 2017. Leslie Camilleri, Eligio Lisi, and John F Wilkerson. Neutrino masses and mixings: status and prospects. Annual Review of Nuclear and Particle Science, 58:343–369, 2008 ST Petcov. Dirac and majorana CP-violation. Nuclear Physics B-Proceedings Supplements, 145:148–153, 2005. Bernard Sadoulet. Dark matter searches. International Journal of Modern Physics A, 15:687–714, 2000. C Arnaboldi, DR Artusa, FT Avignone III, M Balata, I Bandac, M Barucci, JW Beeman, C Brofferio, C Bucci, S Capelli, et al. New limit on the neutrinoless β β decay of 130 Te. Physical review letters, 95(14):142501, 2005. R Arnold, C Augier, J Baker, AS Barabash, M Bongrand, G Broudin, V Brudanin, AJ Caffrey, V Egorov, AI Etienvre, et al. Measurement of double beta decay of 100mo to excited states in the NEMO 3 experiment. Nuclear Physics A, 781(1- 2):209–226, 2007. Michael Duerr, Manfred Lindner, and Alexander Merle. On the quantitative impact of the schechter-valle theorem. Journal of High Energy Physics, 2011(6):91, 2011. Palash B Pal. Dirac, majorana, and weyl fermions. American Journal of Physics, 79(5):485–498, 2011. J. Beringer, J. F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. J. Lin, J. Lys, H. Murayama, C. G. Wohl, W. M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, E. Bergren, G. Bernardi, W. Bertl, S. Bethke, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, R. N. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, M. C. Chen, R. S. Chivukula, G. Cowan, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. Do- ˆ brescu, M. Doser, M. Drees, D. A. Edwards, S. Eidelman, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, T. K. Gaisser, L. Garren, H. J. Gerber, G. Gerbier, T. Gherghetta, S. Golwala, M. Goodman, C. Grab, A. V. Gritsan, J. F. Grivaz, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, K. Hagiwara, C. Hagmann, ¨ C. Hanhart, S. Hashimoto, K. G. Hayes, M. Heffner, B. Heltsley, J. J. Hernandez- ´ Rey, K. Hikasa, A. Hocker, J. Holder, A. Holtkamp, J. Huston, J. D. Jackson, K. F. ¨ Johnson, T. Junk, D. Karlen, D. Kirkby, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker, A. Liddle, Z. Ligeti, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, D. Milstead, R. Miquel, K. Monig, F. Moortgat, K. Nakamura, ¨ M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, L. Pape, J. Parsons, C. Patrignani, J. A. Peacock, S. T. Petcov, A. Piepke, A. Pomarol, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. N. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. G. Seligman, M. H. Shaevitz, S. R. Sharpe, M. Silari, T. Sjostrand, P. Skands, J. G. Smith, ¨ G. F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. L. Stone, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Terning, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. Tovey, G. Valencia, K. van Bibber, G. Venanzoni, M. G. ¨ Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. W. Walter, D. R. Ward, T. Watari, G. Weiglein, E. J. Weinberg, L. R. Wiencke, L. Wolfenstein, J. Womersley, C. L. Woody, R. L. Workman, A. Yamamoto, G. P. Zeller, O. V. Zenin, J. Zhang, R. Y. Zhu, G. Harper, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 86:010001, Jul 2012. Vernon Barger, Danny Marfatia, and Adam Tregre. Neutrino mass limits from SDSS, 2dFGRS and WMAP. Physics Letters B, 595(1-4):55–59, 2004. Stephen F King, Alexander Merle, and Alexander J Stuart. The power of neutrino mass sum rules for neutrinoless double beta decay experiments. Journal of High Energy Physics, 2013(12):5, 2013. P Hernandez. Neutrino physics. arXiv preprint arXiv:1010.4131, 2010. Hitoshi Murayama and T Yanagida. Leptogenesis in supersymmetric standard model with right-handed neutrino. Physics Letters B, 322(4):349–354, 1994. R Jeannerot. New mechanism for leptogenesis. Physical review letters, 77(16):3292, 1996. Ernest Ma, Subir Sarkar, and Utpal Sarkar. Scale of SU(2)R symmetry breaking and leptogenesis. Physics Letters B, 458(1):73–78, 1999. Nicola Cabibbo, Earl C. Swallow, and Roland Winston. Semileptonichyperondecays. Annual Review of Nuclear and Particle Science, 53(1):39–75, Dec 2003. Ivan Esteban, MC Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, and Thomas Schwetz. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. Journal of High Energy Physics, 2019(1):1–35, 2019. Mario A Acero, P Adamson, L Aliaga, T Alion, V Allakhverdian, S Altakarli, N Anfimov, A Antoshkin, A Aurisano, A Back, et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOνA. Physical review letters, 123(15):151803, 2019. M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, J. Beringer, S. Bethke, A. Bettini, H. Bichsel, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, M.-C. Chen, R. S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser, M. Drees, H. K. Dreiner, D. A. Dwyer, P. Eerola, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, R. Firestone, B. Foster, A. Freitas, H. Gallagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, D. E. Groom, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, K. G. Hayes, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernandez-Rey, J. Hisano, A. Hocker, J. Holder, A. Holtkamp, T. Hyodo, K. D. Irwin, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, J. Lesgourgues, A. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, U.-G. Meißner, D. Milstead, R. E. Mitchell, K. Monig, P. Molaro, F. Moortgat, M. Moskovic, H. Murayama, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, S. Pagan Griso, J. Parsons, C. Patrignani, J. A. Peacock, M. Pennington,S. T. Petcov, V. A. Petrov, E. Pianori, A. Piepke, A. Pomarol, A. Quadt, J. Rademacker, G. Raffelt, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, R. A. Ryutin, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjostrand, P. Skands, T. Skwarnicki, J. G. Smith, G. F. Smoot, S. Spanier, H. Spieler, C. Spiering, A. Stahl, S. L. Stone, T. Sumiyoshi, M. J. Syphers, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. R. Tovey, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M. G. Vincter, P. Vogel, A. Vogt, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, D. R. Ward, M. O. Wascko, G. Weiglein, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq, C. G. Wohl, J. Womersley, C. L. Woody, R. L. Workman, W.-M. Yao, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, P. A. Zyla, J. Anderson, L. Fuller, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 98:030001, Aug 2018. Borut Bajc and Goran Senjanovic. Seesaw at lhc. ´ Journal of High Energy Physics, 2007(08):014, 2007. M Fukugita and Tsutomu Yanagida. Barygenesis without grand unification. Physics Letters B, 174(1):45–47, 1986. Masaharu Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018. Mattias Blennow and Enrique Fernandez-Martinez. Parametrization of seesaw models and light sterile neutrinos. Physics Letters B, 704(3):223–229, 2011. Joachim Kopp, Michele Maltoni, and Thomas Schwetz. Are there sterile neutrinos at the eV scale? Physical Review Letters, 107(9):091801, 2011. Gayatri Ghosh. Significance of broken µ − τ symmetry in correlating δCP, θ13, lightest neutrino mass and neutrinoless double beta decay 0νβ β, 2020 S. M. Bilenky, S. Pascoli, and S. T. Petcov. Majorana neutrinos, neutrino mass spectrum, CP violation, and neutrinoless double β decay: The three-neutrino mixing case. Physical Review D, 64(5), Aug 2001. Junxing Pan, Jin Sun, Xiao-Dong Ma, and Xiao-Gang He. CP violating phase sum rule δqKM +δLKM = 0 for CKM and PMNS matrices. Physics Letters B, 807:135573, Aug 2020. Michelle J Dolinski, Alan WP Poon, and Werner Rodejohann. Neutrinoless doublebeta decay: status and prospects. Annual Review of Nuclear and Particle Science, 69:219–251, 2019. B Dziewit, K Kajda, J Gluza, and M Zrałek. Majorana neutrino textures from numerical considerations: The c p conserving case. Physical Review D, 74(3):033003, 2006. YH Ahn and Paolo Gondolo. Towards a realistic model of quarks and leptons, leptonic CP violation, and neutrinoless β β-decay. Physical Review D, 91(1):013007, 2015. Julia Gehrlein, Alexander Merle, and Martin Spinrath. Predictivity of neutrino mass sum rules. Physical Review D, 94(9):093003, 2016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
v, 115 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85933/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85933/2/TesisDoctoradoJulianGutierrezFeb2024F%20%282%29.pdf https://repositorio.unal.edu.co/bitstream/unal/85933/3/TesisDoctoradoJulianGutierrezFeb2024F%20%282%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 11fc6d6363ea40ff016d4fcff4ab4127 fb6340ddbd42ad69ede3f23a3d5b3125 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089423422226432 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quimbay Herrera, Carlos Jose07d61b7db612a82e8dc92ed3f63470dcGutierrez Saavedra, Julian Steven704804ba78885ef2e1680e865e6f3cf0Grupo de campos y partículasGutierrez, Julian [0000000349442945]Gutierrez Saavedra, Julian Steven [0000837733]2024-04-17T16:45:17Z2024-04-17T16:45:17Z2024-04-08https://repositorio.unal.edu.co/handle/unal/85933Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/El principal objetivo de esta tesis de doctorado es obtener, en el contexto del Modelo con Dos Dobletes de Higgs tipo III (M2DH-III), expresiones análiticas exactas para las matrices de masa y de mezcla de neutrinos, que son generadas mediante el Mecanismo See-Saw tipo I (MSS-I) y el Mecanismo See-Saw tipo I+III (MSS-I+III), introduciendo una simetría permutacional de sabor S3. Para el caso del MSS-I la matriz de mezcla más general 6 × 6, que también se obtiene de manera analítica y exacta, es construida considerando simultáneamente los tres neutrinos ligeros y los tres neutrinos pesados (escenario 3+3). Para cumplir con el anterior objetivo, inicialmente se extiende el lagragiano de Yukawa incluyendo el término de Majorana, con el fin de implementar los dos mecanismos de generación de masa de neutrinos considerados, es decir MSS-I y MSS-I+III. A continuación, para cada uno de estos dos casos de generación de masa, se obtienen las matrices de masa para los neutrinos activos de Dirac y se deducen expresiones analíticas exactas para los elementos de las correspondientes matrices de mezcla en términos de las masas de los leptones cargados, de las diferencias de los cuadrados de las masas de los neutrinos y de los parámetros asociados a la simetría S3. Partiendo de estas expresiones e implementando un método estadístico de verosimilitud, para cada uno de los anteriores casos, se estiman los valores de las masas de los neutrinos activos de Dirac, de las fases de violación de CP de Dirac y de los ángulos de mezcla. Como aplicación de los resultados obtenidos para el caso del MSS-I, se consideran los dos canales de decaimiento leptónicos del tauón, con lo cual se obtiene una relación novedosa entre los cuadrados de las constantes de acoplamiento de Yukawa involucradas en estos dos procesos. Adicionalmente, para el caso MSS-I, se deducen expresiones analíticas para dos masas efectivas de Majorana, a partir de las cuales se estiman los valores de estas masas, usando las masas de los neutrinos activos de Dirac y de los ángulos de mezcla previamente obtenidos. Finalmente, se calculan las fases de violación de CP de Majorana α12, α13 y se calculan las probabilidades de oscilación de neutrino-antineutrino para el caso de tres generaciones con el fin de estimar los parámetros de violación de CP y el parámetro de asimetría Aαβ de materia antimateria (Texto tomado de la fuente)The main purpose of this doctoral thesis is to obtain, in the context of the two-Higgs Doublet Model type III (2HDM-III), exact analytical expressions for the mass and mixing matrices of neutrinos. These matrices are generated by the See-Saw Mechanism type I (SSM-I) and See-Saw Mechanism type I + III (SSM-I+III), introducing a permutational flavor symmetry S3. For the SSM-I, the 6 × 6 most general mixing matrix, which is also obtained in an analytical and exact form, is constructed considering simultaneously the three light and three heavy neutrinos (3+3 scenario). To accomplish the objective previously stated, initially the Yukawa Lagragian is extended including the Majorana term in order to implement the two neutrino mass generation mechanisms considered, that is, SSM-I, and SSM-I+III. Then, for each of these two cases of mass generation, the mass matrices for the Dirac active neutrinos are obtained, and exact analytical expressions for the elements of the corresponding mixing matrices are deduced in terms of the charged lepton masses, the differences between the squares of the neutrino masses, and the parameters associated to the S3 symmetry. Starting from these expressions and implementing a statistical method of verisimilitude, for each of the previous cases, the values of the Dirac active neutrino masses, CP violation phases and mixing angles are estimated. As an application of the results obtained for the case of MSS-I, the two lepton decay channels are considered of the tauon, thereby obtaining a novel relationship between the squares of the Yukawa association constants involved in these two processes. Additionally, for the SSM-I case, analytical expressions for two effective Majorana masses are deduced, with which the values of these two masses are estimated using the previously obtained values of the Dirac active neutrino masses and mixing angles. Finally, the Majorana CP violation phases α12, α13 are calculated and the probabilities of neutrino-antineutrino oscillation are calculated for the case of three generations in order to estimate the CP violation parameters △CP and the Aαβ matter-antimatter asymmetry parameter.DoctoradoDoctor en Ciencias - FísicaFísica de neutrinosv, 115 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaMatrices de masa y mezcla de neutrinosModelo con dos dobletes de higgsSimetría permutacional de sabor S3Mecanismos See-Saw tipo I y tipo I+IIIGeneracion de masas de neutrinosMass and mixing matrices of the leptonNeutrino mass generationTwo Higgs doublet model type IIIS3 flavor permutational symmetrySee-Saw Mechanism type I and type I+IIIMixing and mass matrices of neutrinosFísicaMatrices de masa y mezcla del sector leptónico en el modelo con dos dobletes de HiggsMass and mixing matrices of the lepton sector in the two Higgs doublet modelTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDSheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579 – 588, 1961.Abdus Salam. On parity conservation and neutrino mass. Il Nuovo Cimento (1955- 1965), 5(1):299–301, 1957.Sheldon L Glashow and Steven Weinberg. Natural conservation laws for neutral currents. Physical Review D, 15(7):1958, 1977Steven Weinberg. A model of leptons. Physical review letters, 19:1264–1266, Nov 1967Peter Van Nieuwenhuizen. Supergravity. Physics Reports, 68(4):189–398, 1981.Tsutomu Yanagida. Proc. workshop on unified theory and the baryon number in the universe. KEK Report No. 79-18, 95, 1979.Rabindra N Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical Review Letters, 44(14):912, 1980.V Barger, JL Hewett, and RJN Phillips. New constraints on the charged higgs sector in two-higgs-doublet models. Physical Review D, 41(11):3421, 1990.Gustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.Stefano Bertolini. Quantum effects in a two higgs doublet model of the electroweak interactions. Nuclear Physics B, 272(1):77–98, 1986.JF Gunion, HE Haber, GL Kane, and S Dawson. The higgs hunter’s guide addison, 1990.David Atwood, Laura Reina, and Amarjit Soni. Phenomenology of two higgs doublet models with flavor-changing neutral currents. Physical Review D, 55(5):3156, 1997.David Atwood, Shaouly Bar-Shalom, and Amarjit Soni. Neutrino masses, mixing and leptogenesis in a two higgs doublet model “for the third generation”. Physics Letters B, 635(2-3):112–117, 2006.Antonio Pich. Precision tau physics. Progress in Particle and Nuclear Physics, 75:41–85, Mar 2014.J Lorenzo Diaz-Cruz, R Noriega-Papaqui, and A Rosado. Mass matrix ansatz and lepton flavor violation in the two-higgs doublet model-III. Physical Review D, 69(9):095002, 2004TD Lee. A theory of spontaneous t violation. Physical Review D, 8(4):1226, 1973.E Barradas-Guevara, O Felix-Beltran, F Gonzalez-Canales, and M Zeleny-Mora. Lepton CP violation in a ν2HDM with flavor. Physical Review D, 97(3):035003, 2018.Subhasmita Mishra. Neutrino mixing and leptogenesis with modular s3 symmetry in the framework of type III seesaw, 2020.S Gabriel and S Nandi. A new two higgs doublet model. Physics Letters B, 655(3- 4):141–147, 2007.Daniel A Camargo, Miguel D Campos, Tessio B de Melo, and Farinaldo S Queiroz. ´ A two Higgs doublet model for dark matter and neutrino masses. Physics Letters B, 795:319–326, 2019.AE Carcamo Hernández, I de Medeiros Varzielas, and E Schumacher. Fermion and scalar phenomenology of a two-higgs-doublet model with s3. Physical Review D, 93(1):016003, 2016.DG Michael, P Adamson, T Alexopoulos, WWM Allison, GJ Alner, K Anderson, C Andreopoulos, M Andrews, R Andrews, KE Arms, et al. Observation of muon neutrino disappearance with the minos detectors in the numi neutrino beam. Physical Review Letters, 97(19):191801, 2006.MH Ahn, E Aliu, S Andringa, S Aoki, Y Aoyama, J Argyriades, K Asakura, R Ashie, F Berghaus, HG Berns, et al. Measurement of neutrino oscillation by the K2K experiment. Physical Review D, 74(7):072003, 2006.B Aharmim, SN Ahmed, JF Amsbaugh, AE Anthony, J Banar, N Barros, EW Beier, Alain Bellerive, B Beltran, M Bergevin, et al. Independent measurement of the total active B8 solar neutrino flux using an array of he 3 proportional counters at the sudbury neutrino observatory. Physical Review Letters, 101(11):111301, 2008.S Abe, T Ebihara, S Enomoto, K Furuno, Y Gando, K Ichimura, H Ikeda, K Inoue, Y Kibe, Y Kishimoto, et al. Precision measurement of neutrino oscillation parameters with kamland. Physical Review Letters, 100(22):221803, 2008.Ernest Ma. Pathways to naturally small neutrino masses. Physical Review Letters, 81(6):1171, 1998.PA Zyla, Particle Data Group, et al. to be published in prog. theor. Exp. Phys, 2020.Carlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007.Rabindra Nath Mohapatra and Palash B Pal. Massive neutrinos in physics and astrophysics, volume 72. World scientific, 2004.Rabindra N. Mohapatra and Goran Senjanovic. Neutrino mass and spontaneous ´ parity nonconservation. Physical review letters, 44:912–915, Apr 1980.A Zee. A theory of lepton number violation and neutrino majorana masses. Physics Letters B, 93(4):389–393, 1980.Jackson D Clarke, Robert Foot, and Raymond R Volkas. Natural leptogenesis and neutrino masses with two higgs doublets. Physical Review D, 92(3):033006, 2015.Raymond Volkas. Neutrino mass models and their connections with other physics beyond the standard model. npa, page 46, 2018.Wei Chao and Michael J Ramsey-Musolf. Hidden from view: Neutrino masses, dark matter, and tev-scale leptogenesis in a neutrinophilic two-higgs-doublet model. Physical Review D, 89(3):033007, 2014.Wei-Shu Hou. Tree level t → ch0 or h0 → tc decays. Physics Letters B, 296(1-2):179–184, 1992.D Chang, WS Hou, and W-Y Keung. Two-loop contributions of flavor-changing neutral higgs bosons to µ → eγ. Physical Review D, 48(1):217, 1993.J-M Gerard and Michel Herquet. Twisted custodial symmetry in two-higgs-doublet models. Physical review letters, 98(25):251802, 2007.John F Gunion and Howard E Haber. CP-conserving two-Higgs-doublet model: the approach to the decoupling limit. Physical Review D, 67(7):075019, 2003.John F Gunion, Gordon L Kane, Sally Dawson, and Howard E Haber. The higgs hunter’s guide. Front. Phys., 80(BNL-41644):1–404, 1989.Santi Bejar, Jaume Guasch, and Joan Sola. Higgs boson flavor-changing neutral ´ decays into top quark in a general two-higgs-doublet model. Nuclear physics B, 675(1-2):270–288, 2003.Andreas Crivellin, Christoph Greub, and Ahmet Kokulu. Flavor-phenomenology of two-higgs-doublet models with generic yukawa structure. Physical Review D, 87(9):094031, 2013.Santi Bejar, Jaume Guasch, and Joan Sola. FCNC top quark decays beyond the standard model. arXiv preprint hep-ph/0101294, 2001.Ann E Nelson and David Wright. Horizontal, anomalous U (1) symmetry for the more minimal supersymmetric standard model. Physical Review D, 56(3):1598, 1997.Junjie Cao, Peihua Wan, Lei Wu, and Jin Min Yang. Lepton-specific two-higgsdoublet model: Experimental constraints and implication on higgs phenomenology. Physical Review D, 80(7), Oct 2009.Heather E. Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79:115022, Jun 2009.Yuji Omura, Eibun Senaha, and Kazuhiro Tobe. Lepton-flavor-violating higgs decay h → µτ and muon anomalous magnetic moment in a general two higgs doublet model. Journal of High Energy Physics, 2015(5):28, 2015.Krawczyk, M. and Temes, D. Large 2HDM(II) okkne-loop corrections in leptonic tau decays. Eur. Phys. J. C, 44(3):435–446, 2005Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Fingerprinting the extended higgs sector using one-loop corrected higgs boson couplings and future precision measurements. Nuclear Physics B, 896:80–137, 2015.Jules Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, and Alfonso Rosado. ´ Off-diagonal terms in yukawa textures of the type-III 2-Higgs doublet model and light charged higgs boson phenomenology. Journal of High Energy Physics, 2013:1–51, 2012.Andreas Crivellin, Julian Heeck, and Peter Stoffer. Perturbed lepton-specific twohiggs-doublet model facing experimental hints for physics beyond the standard model. Physical review letters, 116:081801, Feb 2016.Marco Drewes. The phenomenology of right handed neutrinos. International Journal of Modern Physics E, 22(08):1330019, 2013.Johannes Hirn and Jan Stern. Lepton-number violation and right-handed neutrinos in higgsless effective theories. Physical Review D, 73(5):056001, 2006.Laurent Canetti, Marco Drewes, Tibor Frossard, and Mikhail Shaposhnikov. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos. Physical Review D, 87(9):093006, 2013.Naoyuki Haba and Koji Tsumura. ν-two higgs doublet model and its collider phenomenology. Journal of High Energy Physics, 2011(6):68, 2011.Florian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009.Florian Bonnet, Daniel Hernandez, Toshihiko Ota, and Walter Winter. Neutrino masses from higher than d= 5 effective operators. Journal of High Energy Physics, 2009(10):076, 2009.Zhi-zhong Xing. Hierarchical neutrino masses and large mixing angles from the fritzsch texture of lepton mass matrices. Physics Letters B, 550(3-4):178–185, 2002.Xiao-Gang He and A Zee. Some simple mixing and mass matrices for neutrinos. Physics Letters B, 560(1-2):87–90, 2003.Stephen F King. Neutrino mass models. Reports on Progress in Physics, 67(2):107, 2003.Aharon Davidson and Kameshwar C Wali. Universal seesaw mechanism? Physical Review Letters, 59(4):393, 1987.Darwin Chang and Rabindra N Mohapatra. Small and calculable dirac neutrino mass. Physical Review Letters, 58(16):1600, 1987.KS Babu and Rabindra N Mohapatra. CP violation in seesaw models of quark masses. Physical review letters, 62(10):1079, 1989.ZG Berezhiani and Riccardo Rattazzi. Universal seesaw and radiative quark mass hierarchy. Physics Letters B, 279(1-2):124–130, 1992.Peter Minkowski. µ→ eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4):421–428, 1977.M Gell-Mann, P Ramond, and R Slansky. Supergravity ed p van nieuwenhuizen and dz freedman. Amsterdam: North-Holland) p, 315:79–18, 1979.Sheldon L Glashow. Quarks and leptons ed m levy et al, 1980.W Konetschny and W Kummer. Nonconservation of total lepton number with scalar bosons. Physics Letters B, 70(4):433–435, 1977.TP Cheng and Ling-Fong Li. Neutrino masses, mixings, and oscillations in SU (2)× U (1) models of electroweak interactions. Physical Review D, 22(11):2860, 1980.George Lazarides, Q Shafi, and Ch Wetterich. Proton lifetime and fermion masses in an so (10) model. Nuclear Physics B, 181(2):287–300, 1981.J Schechter and Jose WF Valle. Neutrino masses in SU(2) ´ ⊗ U (1) theories. Physical Review D, 22(9):2227, 1980.Rabindra N Mohapatra and Goran Senjanovic. Neutrino masses and mixings in ´ gauge models with spontaneous parity violation. Physical Review D, 23(1):165, 1981.B Bajc. JHEP0708, 014 (2007); b. bajc, m. nemevsek, and g. senjanovic. Physical Review D, 76:055011, 2007.Pavel Fileviez Perez. Renormalizable adjoint SU(5). ´ Physics Letters B, 654(5- 6):189–193, 2007.Pavel Fileviez Perez. Supersymmetric adjoint SU(5). Physical Review D, 76(7):071701, 2007.J Hisano, Takeo Moroi, K Tobe, and Masahiro Yamaguchi. Lepton-flavor violation via right-handed neutrino yukawa couplings in the supersymmetric standard model. Physical Review D, 53(5):2442, 1996.Alejandro Ibarra and Cristoforo Simonetto. Understanding neutrino properties from decoupling right-handed neutrinos and extra higgs doublets. Journal of High Energy Physics, 2011(11):22, 2011.F del Aguila and JA Aguilar-Saavedra. Distinguishing seesaw models at LHC with multi-lepton signals. Nuclear Physics B, 813(1-2):22–90, 2009Roberto Franceschini, Thomas Hambye, and Alessandro Strumia. Type-III seesaw mechanism at CERN LHC. Physical Review D, 78(3):033002, 2008Carl H Albright and SM Barr. Leptogenesis in the type III seesaw mechanism. Physical Review D, 69(7):073010, 2004.Tong Li and Xiao-Gang He. Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism. Physical Review D, 80(9):093003, 2009Yong Liu and Utpal Sarkar. CP violation in neutrino mixing matrix and leptogenesis. Modern Physics Letters A, 16(09):603–613, 2001.SF King. Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry. Nuclear Physics B, 562(1-2):57–77, 1999.V Barger, Duane A Dicus, Hong-Jian He, and Tianjun Li. Structure of cosmological CP-violation via neutrino seesaw. Physics Letters B, 583(1-2):173–185, 2004Alexei Yu. Smirnov. Seesaw enhancement of lepton mixing. Physical Review D, 48:3264–3270, Oct 1993.A. Kleppe. Extending the standard model with two right-handed neutrinos. In 3rd Tallinn Symposium on Neutrino Physics, pages 118–125, 1995.Paul H Frampton, SL Glashow, and T Yanagida. Cosmological sign of neutrino CP violation. Physics Letters B, 548(3-4):119–121, 2002.Martti Raidal and ALESSANDRO Strumia. Predictions of the most minimal seesaw model. Physics Letters B, 553(1-2):72–78, 2003.Yuji Omura, Eibun Senaha, and Kazuhiro Tobe. τ-and µ-physics in a general two ’textHiggs doublet model with µ- τ flavor violation. Physical Review D, 94(5):055019, 2016.Gustavo Castello Branco, W Grimus, and L Lavoura. The seesaw mechanism in the presence of a conserved lepton number. Nuclear Physics B, 312(2):492–508, 1989.E Barradas-Guevara, O Felix-Beltrán, F Gonzalez-Canales, E Gonzáalez Hernandez, E Rodríguez-Jauregui, and M Zeleny-Mora. Analysis of the lepton mixing matrix in the two Higgs doublet model. arXiv preprint arXiv:1606.05388, 2016.F Gonzalez Canales and A Mondragon. The s3 symmetry: Flavour and texture zeroes. In Journal of Physics: Conference Series, volume 287, page 012015. IOP Publishing, 2011.H Fritzsch and Z.-Z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, Jan 2000.Walter Grimus and Luis Lavoura. On a model with two zeros in the neutrino mass matrix. Journal of Physics G: Nuclear and Particle Physics, 31(7):693, 2005.Chuan-Hung Chen and Takaaki Nomura. Two-Higgs-doublet type-II seesaw model. Physical Review D, 90(7):075008, 2014.Priyotosh Bandyopadhyay, Sandhya Choubey, and Manimala Mitra. Two higgs doublet type III seesaw with µ-τ symmetry at LHC. Journal of High Energy Physics, 2009(10):012, 2009.Asmaa Abada, Carla Biggio, Florian Bonnet, Maria B Gavela, and Thomas Hambye. Low energy effects of neutrino masses. Journal of High Energy Physics, 2007(12):061, 2007.Asmaa Abada, Carla Biggio, Florian Bonnet, Maria Belen Gavela, and Thomas Hambye. µ→ eγ and τ→ lγ decays in the fermion triplet seesaw model. Physical Review D, 78(3):033007, 2008Abdesslam Arhrib, Rachid Benbrik, and Chuan-Hung Chen. Lepton flavor violating τ decays in the type-III seesaw mechanism. Physical Review D, 81(11):113003, 2010.D Cogollo, Ricardo D Matheus, Tessio B de Melo, and Farinaldo S Queiroz. Type I+ II seesaw in a two Higgs doublet model. Physics Letters B, 797:134813, 2019.Zhi-zhong Xing. Full parametrization of the 6× 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Physical Review D, 85(1):013008, 2012.Pavel Fileviez Perez. Type III seesaw and left-right symmetry. Journal of High Energy Physics, 2009(03):142, 2009RN Mohapatra, Nobuchika Okada, and Hai-Bo Yu. ν-gauge mediated supersymmetry breaking with type III seesaw mechanism and phenomenology. Physical Review D, 78(7):075011, 2008.Bruno Pontecorvo. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP, 26(984-988):165, 1968.Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.Makoto Kobayashi and Toshihide Maskawa. CP-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973.Gerhard Buchalla and Andrzej J Buras. K→π ν ν and high precision determinations of the CKM matrix. Physical Review D, 54(11):6782, 1996.A Hocker, H Lacker, S Laplace, and F Le Diberder. A new approach to a global fit of the CKM matrix. The European Physical Journal C-Particles and FieldsParticles and Fields, 21(2):225–259, 2001.Marco Battaglia, AJ Buras, Paolo Gambino, A Stocchi, D Abbaneo, A Ali, P Amaral, V Andreev, M Artuso, E Barberio, et al. The CKM matrix and the unitarity triangle. arXiv preprint hep-ph/0304132, 2003.Jeróme Charles, A Hocker, Heiko Lacker, Sandrine Laplace, FR Le Diberder, Julie Malcles, José Ocariz, Muriel Pivk, and Lydia Roos. CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories. The European Physical Journal C-Particles and Fields-Particles and Fields, 41(1):1–131, 2005.Paul F Harrison, Don H Perkins, and WG Scott. Tri-bimaximal mixing and the neutrino oscillation data. Physics Letters B, 530(1-4):167–173, 2002.Claudio Giganti, Stephane Lavignac, and Marco Zito. Neutrino oscillations: the ´ rise of the PMNS paradigm. Progress in Particle and Nuclear Physics, 98:1–54, 2018.Paul H Frampton, ST Petcov, and W Rodejohann. On deviations from bimaximal neutrino mixing. Nuclear Physics B, 687(1-2):31–54, 2004.S. Bilenky. Neutrinos: Majorana or dirac?, 2020.Samoil M Bilenky, J Hosek, and ST Petcov. On oscillations of neutrinos with dirac and majorana masses. Technical report, Joint Inst. for Nuclear Research, 1980.Werner Rodejohann, Xun-Jie Xu, and Carlos E Yaguna. Distinguishing between dirac and majorana neutrinos in the presence of general interactions. Journal of High Energy Physics, 2017(5):24, 2017.Boris Kayser and Robert E Shrock. Distinguishing between dirac and majorana neutrinos in neutral-current reactions. Physics Letters B, 112(2):137–142, 1982.Werner Rodejohann. Neutrino-less double beta decay and particle physics. International Journal of Modern Physics E, 20(09):1833–1930, 2011.Ivan Girardi, ST Petcov, and AV Titov. Determining the dirac CP violation phase in the neutrino mixing matrix from sum rules. Nuclear Physics B, 894:733–768, 2015.ST Petcov, I Girardi, and AV Titov. Predictions for the dirac CP violation phase in the neutrino mixing matrix. International Journal of Modern Physics A, 30(13):1530035, 2015.I Girardi, ST Petcov, and AV Titov. Predictions for the leptonic dirac CP violation phase: a systematic phenomenological analysis. The European Physical Journal C-Particles and Fields, 75(7):345, 2015.Ivan Girardi, ST Petcov, and AV Titov. Predictions for the majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay. Nuclear Physics B, 911:754–804, 2016.Carlo Giunti. No effect of majorana phases in neutrino oscillations. Physics Letters B, 686(1):41–43, 2010.A Capolupo, SM Giampaolo, BC Hiesmayr, and G Vitiello. Geometric phase of neutrinos: Differences between dirac and majorana neutrinos. Physics Letters B, 780:216–220, 2018.SM Bilenky and C Giunti. Neutrinoless double-beta decay: a probe of physics beyond the standard model. International Journal of Modern Physics A, 30(04n05):1530001, 2015.Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 53(19):1802, 1984.Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.J Barranco, F Gonzalez Canales, and A Mondragon. Universal mass matrix for quarks and leptons and CP violation. Physical Review D, 82(7):073010, 2010.Darius Jurciukonis, Thomas Gajdosik, and Andrius Juodagalvis. Seesaw neutrino masses with a second Higgs doublet added. arXiv preprint arXiv:1507.03459, 2015.D Jurciukonis, T Gajdosik, and A Juodagalvis. Seesaw neutrinos with one right- handed singlet field and a second higgs doublet. Journal of High Energy Physics, 2019(11):146, 2019J. S. Gutierrez and C. Quimbay. Relationship between the yukawa coupling constants present in the leptonic decay τ → ντ lν¯l and the neutrino masses generated via see-saw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks.] J. S. Gutierrez and C. Quimbay. Mass and mixing matrices for neutrinos via seesaw type I mechanism in the two Higgs doublet model type III. To be submitted to publication in the next weeks.J. S. Gutierrez and C. Quimbay. See-saw mechanism in the two Higgs doublet model type III through the simultaneous introduction of a singlet and a triplet majorana. To be submitted to publication in the next weeks.RJ Guth, AH Hoang, and JH Kuhn. Tau decay in the two higgs doublet model. ¨ Physics Letters B, 285(1-2):75–79, 1992.Heather E Logan and Deanna MacLennan. Charged higgs phenomenology in the lepton-specific two higgs doublet model. Physical Review D, 79(11):115022, 2009.J. S. Gutierrez and C. Quimbay. Majorana CP violation phases in the 6 × 6 leptonic mixing matrix in the two higgs doublet model type III. To be submitted to publication in the next weeks.Harald Fritzsch and Z-z Xing. Mass and flavor mixing schemes of quarks and leptons. Progress in Particle and Nuclear Physics, 45(1):1–81, 2000.Zhi-Zhong Xing and He Zhang. Lepton mass matrices with four texture zeros. Physics Letters B, 569(1-2):30–40, 2003.Guido Altarelli, Ferruccio Feruglio, and Luca Merlo. Revisiting bimaximal neutrino mixing in a model with s4 discrete symmetry. Journal of High Energy Physics, 2009(05):020, 2009.Reinier de Adelhart Toorop, Federica Bazzocchi, and Luca Merlo. The interplay between gut and flavour symmetries in a pati-salam× S4 model. Journal of High Energy Physics, 2010(8):1, 2010.Florian Plentinger and Gerhart Seidl. Mapping out SU(5) grand unified theories with non-abelian discrete flavor symmetries. Physical Review D, 78(4):045004, 2008.Seungwon Baek and Takaaki Nomura. Dark matter physics in neutrino specific two higgs doublet model. Journal of High Energy Physics, 2017(3):59, 2017.Zhen Liu and Pei-Hong Gu. Extending two higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay. Nuclear Physics B, 915:206–223, 2017.Daniel A Camargo, Alex G Dias, Tessio B de Melo, and Farinaldo S Queiroz. Neu- ´ trino masses in a two Higgs doublet model with a U(1) gauge symmetry. Journal of High Energy Physics, 2019(4):129, 2019.M Kobayashi and T Maskawa. Prog. b 511, 240 (2001). Theor. Phys, 49:652, 1973.Peter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.J Ellis. Mk gaillard and dv nanopoulos. Nuclear Physics B, 106:292, 1976David Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+µ− colliders. Physical review letters, 75:3800–3803, Nov 1995.Rabindra N Mohapatra. Ictp lectures on theoretical aspects of neutrino masses and mixings. arXiv preprint hep-ph/0211252, 2002.KM Case. Reformulation of the majorana theory of the neutrino. Physical Review, 107(1):307, 1957.Elisabetta Sassaroli. Neutrino flavor mixing and oscillations in field theory. arXiv preprint hep-ph/9805480, 1998Robert Foot, H Lew, X-G He, and Girish C Joshi. See-saw neutrino masses induced by a triplet of leptons. Zeitschrift fur Physik C Particles and Fields , 44(3):441–444, 1989.David Atwood, Laura Reina, and Amarjit Soni. Rb and Rc in the two-Higgs-doublet model with flavor-changing neutral currents. Physical Review D, 54(5):3296, 1996.David Atwood, Laura Reina, and Amarjit Soni. Probing flavor-changing topcharm-scalar interactions in e+e− collisions. Physical Review D, 53(3):1199, 1996.David Atwood, Laura Reina, and Amarjit Soni. Flavor changing neutral scalar currents at µ+ µ− colliders. Physical review letters, 75(21):3800, 1995.Marc Sher and Yao Yuan. Rare b decays, rare τ decays, and grand unification. Physical Review D, 44:1461–1472, Sep 1991.Rabindra N Mohapatra and Alexei Y Smirnov. Neutrino mass and new physics. Annual Review of Nuclear and Particle Science, 56:569–628, 2006.Ernest Ma. Connection between the neutrino seesaw mechanism and properties of the majorana neutrino mass matrix. Physical Review D, 71(11):111301, 2005.Asan Damanik. Nonzero θ13 and neutrino masses from modified neutrino mixing matrix. International Journal of Modern Physics A, 27(17):1250091, 2012.Paul H Frampton, Sheldon L Glashow, and Danny Marfatia. Zeroes of the neutrino mass matrix. Physics Letters B, 536(1-2):79–82, 2002.Particle Data Group et al. pdg. lbl. gov, review of particle physics; latest published version m. tanabashi, et al., particle data group. Physical Review D, 98:010001, 2018.Harald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977.Sandip Pakvasa and Hirotaka Sugawara. Discrete symmetry and cabibbo angle. Physics Letters B, 73(1):61–64, 1978.Haim Harari, Herve Haut, and Jacques Weyers. Quark masses and cabibbo angles. Physics Letters B, 78(4):459–461, 1978.Harald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189– 207, 1979.Hajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Yusuke Shimizu, Hiroshi Okada, and Morimitsu Tanimoto. Non-abelian discrete symmetries in particle physics. Progress of Theoretical Physics Supplement, 183:1–163, 2010.Florian Plentinger, Gerhart Seidl, and Walter Winter. Group space scan of flavor symmetries for nearly tribimaximal lepton mixing. Journal of High Energy Physics, 2008(04):077, 2008.Zhi-zhong Xing. Flavor mixing and CP violation of massive neutrinos. International Journal of Modern Physics A, 19(01):1–79, 2004.Werner Rodejohann and JWF Valle. Symmetrical parametrizations of the lepton mixing matrix. Physical Review D, 84(7):073011, 2011.KA Hochmuth, ST Petcov, and Werner Rodejohann. UPMNS =U†l Uν .arXivpreprintarXiv : 0706,2975,2007.M Kobayashi. K. maskawa. Prog. Theor. Phys, 49:652, 1973Ivan Esteban, MC Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Thomas Schwetz. Updated fit to three neutrino mixing: exploring the acceleratorreactor complementarity. Journal of High Energy Physics, 2017(1):87, 2017.Eung Jin Chun and Jinsu Kim. Leptonic precision test of leptophilic two-higgsdoublet model. Journal of High Energy Physics, 2016(7):1–14, 2016.William J Marciano and A Sirlin. Electroweak radiative corrections to τ decay. Physical Review Letters, 61(16):1815, 1988.J Michael Roney. Tau physics prospects at superb. Nuclear Physics B (Proceedings Supplements), (169):379–386, 2007.Francisco J Botella, GC Branco, Adrian Carmona, M Nebot, Leonardo Pedro, and ´ MN Rebelo. Physical constraints on a class of two-higgs doublet models with fcnc at tree level. Journal of High Energy Physics, 2014(7):1–33, 2014.Kazuhiro Tobe. Michel parameters for τ decays µ- τ flavor violation. Journal of High Energy Physics, 2016(10):1–14, 2016.R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022.Maria Krawczyk and David Temes. 2hdm (ii) radiative corrections in leptonic tau decays. arXiv preprint hep-ph/0410248, 2004.Ernest Ma. Neutrino mass seesaw version 3: recent developments. In AIP Conference Proceedings, volume 1116, pages 239–246. American Institute of Physics, 2009.Diego Aristizabal Sierra, Jernej F Kamenik, and Miha Nemevsek. Implications of ˇ flavor dynamics for fermion triplet leptogenesis. Journal of High Energy Physics, 2010(10):36, 2010.Ernest Ma. B and not l in supersymmetry: New U (1) gauge symmetry and dark matter. Physical Review D, 78(1):017701, 2008.JA Aguilar-Saavedra and Gustavo Castello Branco. Unitarity triangles and geometrical description of CP violation with majorana neutrinos. Physical Review D, 62(9):096009, 2000.Jose F Nieves and Palash B Pal. Rephasing-invariant CP violating parameters with majorana neutrinos. Physical Review D, 64(7):076005, 2001.Jose F Nieves and Palash B Pal. Minimal rephasing-invariant CP-violating parameters with dirac and majorana fermions. Physical Review D, 36(1):315, 1987.Patrick D Bolton. Neutrinoless double beta decay versus other probes of heavy sterile neutrinosC Barbero, Ling-Fong Li, G Lopez Castro, and A Mariano. △l = 2 hyperon semileptonic decays. Physical Review D, 76(11):116008, 2007.Hans Volker Klapdor-Kleingrothaus and Irina Vladimirovna Krivosheina. The evidence for the observation of 0νβ β decay: The identification of 0νβ β events from the full spectra. Modern Physics Letters A, 21(20):1547–1566, 2006.Stefano Dell’Oro, Simone Marcocci, Matteo Viel, and Francesco Vissani. Neutrinoless double beta decay: 2015 review. Advances in High Energy Physics, 2016, 2016.D.Q. Adams, C. Alduino, K. Alfonso, F.T. Avignone, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, and et al. Improved limit on neutrinoless double-beta decay in te130 with cuore. Physical Review Letters, 124(12), Mar 2020.Jun Cao, Guo yuan Huang, Yu-Feng Li, Yifang Wang, Liang-Jian Wen, Zhi zhong Xing, Zhen hua Zhao, and Shun Zhou. Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays. Chinese Physics C, 44(3):031001, mar 2020.J.J Gomez-Cadenas, J Martín-Albo, J. Munoz Vidal, and C Peña-Garay. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale cmb observations. Journal of Cosmology and Astroparticle Physics, 2013(03):043–043, Mar 2013.M Agostini, M Allardt, AM Bakalyarov, M Balata, I Barabanov, L Baudis, C Bauer, E Bellotti, S Belogurov, ST Belyaev, et al. Background-free search for neutrinoless double-β decay of 76 ge with gerda. Nature, 544(7648):47–52, 2017.Leslie Camilleri, Eligio Lisi, and John F Wilkerson. Neutrino masses and mixings: status and prospects. Annual Review of Nuclear and Particle Science, 58:343–369, 2008ST Petcov. Dirac and majorana CP-violation. Nuclear Physics B-Proceedings Supplements, 145:148–153, 2005.Bernard Sadoulet. Dark matter searches. International Journal of Modern Physics A, 15:687–714, 2000.C Arnaboldi, DR Artusa, FT Avignone III, M Balata, I Bandac, M Barucci, JW Beeman, C Brofferio, C Bucci, S Capelli, et al. New limit on the neutrinoless β β decay of 130 Te. Physical review letters, 95(14):142501, 2005.R Arnold, C Augier, J Baker, AS Barabash, M Bongrand, G Broudin, V Brudanin, AJ Caffrey, V Egorov, AI Etienvre, et al. Measurement of double beta decay of 100mo to excited states in the NEMO 3 experiment. Nuclear Physics A, 781(1- 2):209–226, 2007.Michael Duerr, Manfred Lindner, and Alexander Merle. On the quantitative impact of the schechter-valle theorem. Journal of High Energy Physics, 2011(6):91, 2011.Palash B Pal. Dirac, majorana, and weyl fermions. American Journal of Physics, 79(5):485–498, 2011.J. Beringer, J. F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C. J. Lin, J. Lys, H. Murayama, C. G. Wohl, W. M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, E. Bergren, G. Bernardi, W. Bertl, S. Bethke, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, R. N. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, M. C. Chen, R. S. Chivukula, G. Cowan, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. Do- ˆ brescu, M. Doser, M. Drees, D. A. Edwards, S. Eidelman, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, T. K. Gaisser, L. Garren, H. J. Gerber, G. Gerbier, T. Gherghetta, S. Golwala, M. Goodman, C. Grab, A. V. Gritsan, J. F. Grivaz, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, K. Hagiwara, C. Hagmann, ¨ C. Hanhart, S. Hashimoto, K. G. Hayes, M. Heffner, B. Heltsley, J. J. Hernandez- ´ Rey, K. Hikasa, A. Hocker, J. Holder, A. Holtkamp, J. Huston, J. D. Jackson, K. F. ¨ Johnson, T. Junk, D. Karlen, D. Kirkby, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker, A. Liddle, Z. Ligeti, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, D. Milstead, R. Miquel, K. Monig, F. Moortgat, K. Nakamura, ¨ M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, L. Pape, J. Parsons, C. Patrignani, J. A. Peacock, S. T. Petcov, A. Piepke, A. Pomarol, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. N. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. G. Seligman, M. H. Shaevitz, S. R. Sharpe, M. Silari, T. Sjostrand, P. Skands, J. G. Smith, ¨ G. F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. L. Stone, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Terning, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. Tovey, G. Valencia, K. van Bibber, G. Venanzoni, M. G. ¨ Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. W. Walter, D. R. Ward, T. Watari, G. Weiglein, E. J. Weinberg, L. R. Wiencke, L. Wolfenstein, J. Womersley, C. L. Woody, R. L. Workman, A. Yamamoto, G. P. Zeller, O. V. Zenin, J. Zhang, R. Y. Zhu, G. Harper, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 86:010001, Jul 2012.Vernon Barger, Danny Marfatia, and Adam Tregre. Neutrino mass limits from SDSS, 2dFGRS and WMAP. Physics Letters B, 595(1-4):55–59, 2004.Stephen F King, Alexander Merle, and Alexander J Stuart. The power of neutrino mass sum rules for neutrinoless double beta decay experiments. Journal of High Energy Physics, 2013(12):5, 2013.P Hernandez. Neutrino physics. arXiv preprint arXiv:1010.4131, 2010.Hitoshi Murayama and T Yanagida. Leptogenesis in supersymmetric standard model with right-handed neutrino. Physics Letters B, 322(4):349–354, 1994.R Jeannerot. New mechanism for leptogenesis. Physical review letters, 77(16):3292, 1996.Ernest Ma, Subir Sarkar, and Utpal Sarkar. Scale of SU(2)R symmetry breaking and leptogenesis. Physics Letters B, 458(1):73–78, 1999.Nicola Cabibbo, Earl C. Swallow, and Roland Winston. Semileptonichyperondecays. Annual Review of Nuclear and Particle Science, 53(1):39–75, Dec 2003.Ivan Esteban, MC Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, and Thomas Schwetz. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. Journal of High Energy Physics, 2019(1):1–35, 2019.Mario A Acero, P Adamson, L Aliaga, T Alion, V Allakhverdian, S Altakarli, N Anfimov, A Antoshkin, A Aurisano, A Back, et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOνA. Physical review letters, 123(15):151803, 2019.M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, J. Tanaka, K. Agashe, G. Aielli, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, J. Beringer, S. Bethke, A. Bettini, H. Bichsel, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, M.-C. Chen, R. S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser, M. Drees, H. K. Dreiner, D. A. Dwyer, P. Eerola, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, R. Firestone, B. Foster, A. Freitas, H. Gallagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, D. E. Groom, M. Grunewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, K. G. Hayes, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernandez-Rey, J. Hisano, A. Hocker, J. Holder, A. Holtkamp, T. Hyodo, K. D. Irwin, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu. V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, J. Lesgourgues, A. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, J. Matthews, U.-G. Meißner, D. Milstead, R. E. Mitchell, K. Monig, P. Molaro, F. Moortgat, M. Moskovic, H. Murayama, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, S. Pagan Griso, J. Parsons, C. Patrignani, J. A. Peacock, M. Pennington,S. T. Petcov, V. A. Petrov, E. Pianori, A. Piepke, A. Pomarol, A. Quadt, J. Rademacker, G. Raffelt, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, R. A. Ryutin, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjostrand, P. Skands, T. Skwarnicki, J. G. Smith, G. F. Smoot, S. Spanier, H. Spieler, C. Spiering, A. Stahl, S. L. Stone, T. Sumiyoshi, M. J. Syphers, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P. Tkachenko, N. A. Tornqvist, D. R. Tovey, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M. G. Vincter, P. Vogel, A. Vogt, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, D. R. Ward, M. O. Wascko, G. Weiglein, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq, C. G. Wohl, J. Womersley, C. L. Woody, R. L. Workman, W.-M. Yao, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, P. A. Zyla, J. Anderson, L. Fuller, V. S. Lugovsky, and P. Schaffner. Review of particle physics. Physical Review D, 98:030001, Aug 2018.Borut Bajc and Goran Senjanovic. Seesaw at lhc. ´ Journal of High Energy Physics, 2007(08):014, 2007.M Fukugita and Tsutomu Yanagida. Barygenesis without grand unification. Physics Letters B, 174(1):45–47, 1986.Masaharu Tanabashi, K Hagiwara, K Hikasa, K Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, C Amsler, et al. Review of particle physics. Physical Review D, 98(3):030001, 2018.Mattias Blennow and Enrique Fernandez-Martinez. Parametrization of seesaw models and light sterile neutrinos. Physics Letters B, 704(3):223–229, 2011.Joachim Kopp, Michele Maltoni, and Thomas Schwetz. Are there sterile neutrinos at the eV scale? Physical Review Letters, 107(9):091801, 2011.Gayatri Ghosh. Significance of broken µ − τ symmetry in correlating δCP, θ13, lightest neutrino mass and neutrinoless double beta decay 0νβ β, 2020S. M. Bilenky, S. Pascoli, and S. T. Petcov. Majorana neutrinos, neutrino mass spectrum, CP violation, and neutrinoless double β decay: The three-neutrino mixing case. Physical Review D, 64(5), Aug 2001.Junxing Pan, Jin Sun, Xiao-Dong Ma, and Xiao-Gang He. CP violating phase sum rule δqKM +δLKM = 0 for CKM and PMNS matrices. Physics Letters B, 807:135573, Aug 2020.Michelle J Dolinski, Alan WP Poon, and Werner Rodejohann. Neutrinoless doublebeta decay: status and prospects. Annual Review of Nuclear and Particle Science, 69:219–251, 2019.B Dziewit, K Kajda, J Gluza, and M Zrałek. Majorana neutrino textures from numerical considerations: The c p conserving case. Physical Review D, 74(3):033003, 2006.YH Ahn and Paolo Gondolo. Towards a realistic model of quarks and leptons, leptonic CP violation, and neutrinoless β β-decay. Physical Review D, 91(1):013007, 2015.Julia Gehrlein, Alexander Merle, and Martin Spinrath. Predictivity of neutrino mass sum rules. Physical Review D, 94(9):093003, 2016.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85933/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesisDoctoradoJulianGutierrezFeb2024F (2).pdfTesisDoctoradoJulianGutierrezFeb2024F (2).pdfTesis de Doctorado en Física de Neutrinosapplication/pdf672794https://repositorio.unal.edu.co/bitstream/unal/85933/2/TesisDoctoradoJulianGutierrezFeb2024F%20%282%29.pdf11fc6d6363ea40ff016d4fcff4ab4127MD52THUMBNAILTesisDoctoradoJulianGutierrezFeb2024F (2).pdf.jpgTesisDoctoradoJulianGutierrezFeb2024F (2).pdf.jpgGenerated Thumbnailimage/jpeg4632https://repositorio.unal.edu.co/bitstream/unal/85933/3/TesisDoctoradoJulianGutierrezFeb2024F%20%282%29.pdf.jpgfb6340ddbd42ad69ede3f23a3d5b3125MD53unal/85933oai:repositorio.unal.edu.co:unal/859332024-04-17 23:35:33.172Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |