Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales
ilustraciones, diagramas
- Autores:
-
Uribe Rendón, Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84814
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::001 - Conocimiento
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Aprendizaje automático (Inteligencia artificial)
Procesamiento electrónico de datos en la educación
Profesionales de información
Machine learning
Education - Data processing
Information professionals
Aprendizaje ontológico
Transformadores
Incrustación de grafos de conocimiento
Reglas de asociación
E-recruitment
Tecnologías de la información
Redes profesionales
Ontological learning
Transformers
Knowledge Graph Embedding
Association rules
E-recruitment
Information Technology
Professional social networks
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_940a6cf89bbb633721a1c837058037b0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84814 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
dc.title.translated.eng.fl_str_mv |
Ontological learning model in the e-recruitment domain associated with IT professional profiles and supported by professional social networks |
title |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
spellingShingle |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales 000 - Ciencias de la computación, información y obras generales::001 - Conocimiento 000 - Ciencias de la computación, información y obras generales::003 - Sistemas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Aprendizaje automático (Inteligencia artificial) Procesamiento electrónico de datos en la educación Profesionales de información Machine learning Education - Data processing Information professionals Aprendizaje ontológico Transformadores Incrustación de grafos de conocimiento Reglas de asociación E-recruitment Tecnologías de la información Redes profesionales Ontological learning Transformers Knowledge Graph Embedding Association rules E-recruitment Information Technology Professional social networks |
title_short |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
title_full |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
title_fullStr |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
title_full_unstemmed |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
title_sort |
Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales |
dc.creator.fl_str_mv |
Uribe Rendón, Andrea |
dc.contributor.advisor.none.fl_str_mv |
Guzmán Luna, Jaime Alberto |
dc.contributor.author.none.fl_str_mv |
Uribe Rendón, Andrea |
dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Inteligentes Web (Sintelweb) |
dc.contributor.orcid.spa.fl_str_mv |
Guzmán Luna, Jaime Alberto [0000-0003-4737-1119] Uribe Rendón, Andrea [0000-0002-1601-0313] |
dc.contributor.cvlac.spa.fl_str_mv |
URIBE RENDÓN, ANDREA |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::001 - Conocimiento 000 - Ciencias de la computación, información y obras generales::003 - Sistemas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
000 - Ciencias de la computación, información y obras generales::001 - Conocimiento 000 - Ciencias de la computación, información y obras generales::003 - Sistemas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Aprendizaje automático (Inteligencia artificial) Procesamiento electrónico de datos en la educación Profesionales de información Machine learning Education - Data processing Information professionals Aprendizaje ontológico Transformadores Incrustación de grafos de conocimiento Reglas de asociación E-recruitment Tecnologías de la información Redes profesionales Ontological learning Transformers Knowledge Graph Embedding Association rules E-recruitment Information Technology Professional social networks |
dc.subject.lemb.spa.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Procesamiento electrónico de datos en la educación Profesionales de información |
dc.subject.lemb.eng.fl_str_mv |
Machine learning Education - Data processing Information professionals |
dc.subject.proposal.spa.fl_str_mv |
Aprendizaje ontológico Transformadores Incrustación de grafos de conocimiento Reglas de asociación E-recruitment Tecnologías de la información Redes profesionales |
dc.subject.proposal.eng.fl_str_mv |
Ontological learning Transformers Knowledge Graph Embedding Association rules E-recruitment Information Technology Professional social networks |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-19T14:28:49Z |
dc.date.available.none.fl_str_mv |
2023-10-19T14:28:49Z |
dc.date.issued.none.fl_str_mv |
2023-10-18 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84814 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84814 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
[Python Software Foundation,Ludovico Fabbri, 2022] Python Software Founda- tion,Ludovico Fabbri (2022). https://pypi.org/project/linkedin-jobs-scraper/#us age. Alfonso-Hermelo et al., 2019a] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019a). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer. [Alfonso-Hermelo et al., 2019b] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019b). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer. [Alfonso-Hermelo et al., 2019c] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019c). Automatically Learning a Human-Resource Ontology from Professional Social-Network Data, pages 132–145. Springer, Cham. [Apostolico and Galil, 1997] Apostolico, A. and Galil, Z., editors (1997). Pattern Matching Algorithms. Oxford University Press. [Arendt et al., 2023] Arendt, L., Ga-lecka-Burdziak, E., Nu´n˜ez, F., Pater, R., and Usabiaga,C. (2023). Skills requirements across task-content groups in poland: What online job offers tell us. Technological Forecasting and Social Change, 187:122245. [Arnal et al., 2001] Arnal, E., Ok, W., and Torres, R. (2001). Knowledge, work organisation and economic growth. In Internet, economic growth and globalization, pages 327–376. Springer. [Arroyo Mesa, 2022] Arroyo Mesa, L. (2022). Tendencias actuales en la búsqueda y selección de personal en el ámbito empresarial. [Asim et al., 2018a] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018a). A survey of ontology learning techniques and applications. Database, 2018. bay101. [Asim et al., 2018b] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018b). A survey of ontology learning techniques and applications. Database : the journal of biological databases and curation, 2018. [Balachander and Moh, 2018] Balachander, Y. and Moh, T.-S. (2018). Ontology based si- milarity for information technology skills. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 302–305. [Bechhofer et al., 2004] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuin- ness, D. L., Patel-Schneider, P. F., Stein, L. A., et al. (2004). Owl web ontology language reference. W3C recommendation, 10(2):1–53. [Bernaras et al., 1996] Bernaras, A., Laresgoiti, I., and Corera, J. M. (1996). Building and reusing ontologies for electrical network applications. In European Conference on Artificial Intelligence. [BERNERS-LEE et al., 2001] BERNERS-LEE, T., HENDLER, J., and LASSILA, 2001). The semantic web. Scientific American, 284(5):34–43. [Borst, 1999] Borst, W. N. (1999). Construction of engineering ontologies for knowledge sharing and reuse. CKL. [Brencic and Norris, 2010] Brencic, V. and Norris, J. B. (2010). Do employers change job offers in their online job ads to facilitate search? Economics Letters, 108(1):46–48. [Brewster et al., 2004] Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data driven ontology evaluation. International Conference on Language Resources and Evaluation, Lisbon, Portugal. [Bui et al., 2021] Bui, T.-C., Le, V.-D., To, H.-T., and Cha, S. K. (2021). Generative pre- training for paraphrase generation by representing and predicting spans in exemplars. In 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pages 83–90. IEEE. [Cañete et al., 2020] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., and Pérez, J. (2020). Spanish pre-trained bert model and evaluation data. In PML4DC at ICLR 2020. [CB Insights Research, 2020] CBInsights Research (3deAbrilde2020) https://www.cbinsights.com/research/hr-tech/f. [Cer et al., 2018] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Cons- tant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175. [Chala, 2018] Chala, S. A. (2018). Bidirectional job matching through unsupervised feature learning. In Master’s thesis. OPUS Siegen Master’s thesis, Universit¨at Siegen, URN 467–12858. [Chen and Gu, 2021] Chen, J. and Gu, J. (2021). Adol: a novel framework for automatic domain ontology learning. The Journal of Supercomputing, 77(1):152–169. [Chiatti and Daga, 2022] Chiatti, A. and Daga, E. (2022). Neuro-symbolic learning for dealing with sparsity in cultural heritage image archives: an empirical journey. [Chow and Chapman, 2013] Chow, S. and Chapman, D. (2013). Gamifying the employee recruitment process. In Proceedings of the First International Conference on Gameful Design, Research, and Applications, pages 91–94. [Coggle, 2021] Coggle (2021). Dataset validator relevant for iot ontologies. https:// coggle.it/diagram/WZ8ANCiQegABugPa/t/how-to-validate-ontologies. [Cordero Mena and Yunga Tucto, 2022] Cordero Mena, K. I. and Yunga Tucto, C. M. (2022). Diseño y desarrollo de un chatbot usando redes neuronales y procesamiento de lenguaje natural orientado a entidades bancarias. B.S. thesis. [Cormen et al., 2022] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press. [Costabello et al., 2023] Costabello, L., Janik, A., Bayram, E., and Pai, S. (2023). Knowledge graph embeddings for nlp: From theory to practice. [Costabello et al., 2019] Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N., and Tabacof, P. (2019). AmpliGraph: a Library for Representation Learning on Knowledge Graphs. [Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. [Dong et al., 2020] Dong, H., Wang, W., Coenen, F., and Huang, K. (2020). Knowledge base enrichment by relation learning from social tagging data. Information Sciences, 526:203–220. [Ebiele et al., 2022] Ebiele, M., McKenna, L., Bendechache, M., and Brennan, R. (2022). Multi-label classification using bert and knowledge graphs with a limited training dataset. [Ehrlinger and Wo, 2016] Ehrlinger, L. and W¨oß, W. (2016). Towards a definition of know- ledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48(1-4):2. [Erd et al., 2022] Erd, R., Feddoul, L., Lachenmaier, C., and Mauch, M. J. (2022). Evaluation of data augmentation for named entity recognition in the German legal domain. [Europass, 2017] Europass (22 de Mayo de 2017). https://europa.eu/europass/es/euro pean-qualifications-framework-eqf. [europass Union Europea, 2022] europass Union Europea (2022). europass. https:// europa.eu/europass/es/find-courses. [European Commission, 2022] European Commission (27 de Enero de 2022).https://ec.europa.eu/esco/lod/static/model.html. [European Commission website, 2022] European Commission website (27 de Enero de 2022).https://esco.ec.europa.eu/es/about-esco/what-esco. [Fajcıkova et al., 2018] Fajcıkova, A., Urbancova, H., and Fejfarova, M. (2018). New trends in the recruitment of employees in Czech ICT organizations. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration, 26:39–49. [Faliagka et al., 2012] Faliagka, E., Tsakalidis, A., and Tzimas, G. (2012). An integrated e-recruitment system for automated personality mining and applicant ranking. Internet research Feng et al., 2020] Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020).Language-agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852. [Fensel et al., 2020] Fensel, D., S¸im¸sek, U., Angele, K., Huaman, E., K¨arle, E., Panasiuk, O., Toma, I., Umbrich, J., Wahler, A., Fensel, D., et al. (2020). Introduction: what is a knowledge graph? Knowledge graphs: Methodology, tools and selected use cases, pages 1–10. [Fensel et al., 2001] Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web. IEEE intelligent systems, 16(2):38–45. [Fraga, 2016] Fraga, D. C. (2016). Métodos y técnicas para la evaluación del aprendizaje de ontologías de dominio. [Gao and Chen, 2020] Gao, W. and Chen, Y. (2020). Approximation analysis of ontology learning algorithm in linear combination setting. Journal of Cloud Computing, 9(1):1–10. [Garceia-Sanchez et al., 2006] García-Sánchez, F., Marteinez-Béjar, R., Contreras, L., Fernández-Breis, J. T., and Castellanos-Nieves, D. (2006). An ontology-based intelligent system for recruitment. Expert Systems with Applications, 31(2):248–263. [Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2):199–220. [Guarino, 1997] Guarino, N. (1997). Understanding, building and using ontologies. International journal of human-computer studies, 46(2-3):293–310. [Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press. [Harzallah et al., 2002] Harzallah, M., Leclere, M., and Trichet, F. (2002). Commoncv: modeling the competencies underlying a curriculum vitae. In Proceedings of the 14th international conference on Software engineering and knowledge engineering, pages 65–71. [Hogan et al., 2021] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37. [Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language model fine- tuning for text classification. arXiv preprint arXiv:1801.06146. [Hsu et al., 2021] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021). Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451–3460. [Hubert et al., 2022] Hubert, N., Monnin, P., Brun, A., and Monticolo, D. (2022). Knowledge graph embeddings for link prediction: Beware of semantics! In DL4KG@ ISWC 2022: Workshop on Deep Learning for Knowledge Graphs, held as part of ISWC 2022: the 21st International Semantic Web Conference. [HuntersAmericas, 2023] HuntersAmericas (2023). Las fallas en los perfiles de puesto y el impacto de sus resultados. http://www.hlghunters.com/blog/ 96-fallas-perfiles-puestos. [Jiménez-Ruiz et al., 2012] Jiménez-Ruiz, E., Grau, B. C., Zhou, Y., and Horrocks, I. (2012). Large-scale interactive ontology matching: Algorithms and implementation. In ECAI, volume 242, pages 444–449. [Jun, 2011] Jun, Z. (2011). Manufacturing process skill systematization based on ontology technology. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, volume 2, pages 496–499. [Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement. [Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement. International Journal of Advanced Computer Science and Applications, 11(3). [Kasereka, 2020] Kasereka, H. (2020). Importance of web scraping in e-commerce and e-marketing. SSRN Electronic Journal. [Katyshev and Anikin, 2023] Katyshev, A. and Anikin, A. (2023). Modern approaches for concepts and relations extraction for ontology learning. In Novel & Intelligent Digital Systems Conferences, pages 290–296. Springer. [Khatiwada et al., 2022] Khatiwada, A., Shirai, S., Srinivas, K., and Hassanzadeh, O. (2022). Knowledge graph embeddings for causal relation prediction. In Workshop on Deep Learning for Knowledge Graphs (DL4KG@ ISWC2022). [Khder, 2021] Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing & Its Applications, 13(3). [Kinsta, Maddy Osman, 2022] Kinsta,MaddyOsman(2022). https://kinsta.com/es/blog/estadisticas-de-linkedin/. [Kumaran and Sankar, 2013] Kumaran, V. S. and Sankar, A. (2013). Towards an automated system for intelligent screening of candidates for recruitment using ontology mapping (expert). International Journal of Metadata, Semantics and Ontologies, 8(1):56–64. [Lakzaei and Shamsfard, 2021] Lakzaei, B. and Shamsfard, M. (2021). Ontology learning from relational databases. Information Sciences, 577:280–297. [LAMY, 2019] LAMY, J.-B. (2019). Consultas sparql owlready2. ://owlready2. readthedocs.io/en/v0.37/sparql.html. [Lawi et al., 2022] Lawi, A., Mesra, H., and Amir, S. (2022). Implementation of long short-term memory and gated recurrent units on grouped time-series data to predict stock prices accurately. Journal of Big Data, 9(1):1–19. [le Vrang et al., 2014] le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P., Vandensteen, D., and De Smedt, J. (2014). Esco: Boosting job matching in europe with semantic interoperability. Computer, 47(10):57–64. [Lievens et al., 2007] Lievens, F., Van Hoye, G., and Anseel, F. (2007). Organizational identity and employer image: Towards a unifying framework. British Journal of Management, 18:S45–S59. [LinkedIn Corporation, 2022] LinkedInCorporation(2022).https://www.linkedin.com/feed/. [Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. [Lopez-Bassols, 2002] Lopez-Bassols, V. (2002). Ict skills and employment. OECD. [López Bonilla et al., 2012] López Bonilla, M., Guzmán Luna, J. A., and Durley Torres, I. (2012). Metodologías y métodos para la construcción de ontologías. Scientia Et Technica [Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent systems, 16(2):72–79. [Manzano-Macho et al., 2008] Manzano-Macho, D., Gomez-Pérez, A., and Borrajo Millán, D. (2008). Unsupervised and domain independent ontology learning: combining heterogeneous sources of evidence. Sixth International Language Resources and Evaluation (LREC’08). [Maree et al., 2018] Maree, M., Kmail, A. B., and Belkhatir, M. (2018). Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science, 45(6):713–735. [McGuinness et al., 2002] McGuinness, D. L., Fikes, R., Hendler, J., and Stein, L. A. (2002). Daml+ oil: an ontology language for the semantic web. IEEE Intelligent Systems, 17(5):72– 80. [McGuinness et al., 2003] McGuinness, D. L., Fikes, R., Stein, L. A., and Hendler, J. A. (2003). Daml-ont: An ontology language for the semantic web. In Spinning the Semantic Web, pages 65–93. [McGuinness et al., 2004] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language overview. W3C recommendation, 10(10):2004. [Mhammedi et al., 2021] Mhammedi, S., El Massari, H., and Gherabi, N. (2021). Cb2onto: Owl ontology learning approach from couchbase. In Intelligent Systems in Big Data, Semantic Web and Machine Learning, pages 95–110. Springer. [Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26. [Mnih and Kavukcuoglu, 2013] Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. Advances in neural information processing systems, 26. [Neches et al., 1991] Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3):36–36. [NERI, 2005] NERI, F. (2005). Evaluation of ontolearn, a methodology for automatic learning of domain ontologies. Ontology Learning from Text: Methods, Evaluation and Appli- cations, 123. [Nordsieck et al., 2022] Nordsieck, R., Heider, M., Hummel, A., and H¨ahner, J. (2022). A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge. In Alam, M., Buscaldi, D., Cochez, M., Osborne, F., and Recupero, D. R., editors, DL4KG 2022 - Deep Learning for Knowledge Graphs 2022: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), virtual conference, online, October 24, 2022, page 7. [Novalija and Grobelnik, 2018] Novalija, I. and Grobelnik, M. (2018). Towards smart statistics in labour market domain. Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2018. [Noy and Mcguinness, 2001] Noy, N. and Mcguinness, D. (2001). Ontology development 101: A guide to creating your first ontology. Knowledge Systems Laboratory, 32. [OECD, 2004] OECD (2004). Information Technology Outlook 2004. OECD. [OECD, 2010] OECD (2010). OECD Information Technology Outlook 2010. OECD. [OIT, 2022] OIT (2022). Isco international standard classification of occupations. https://www.ilo.org/public/spanish/bureau/stat/isco/index.htm. [on Information Technology Curricula, 2017] on Information Technology Curricula, T. G. (2017). Information Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology. Association for Computing Machinery, New York, NY, USA. [Organización internacional del trabajo, 2005] Organización internacional del trabajo (30 de Enero de 2005). https://www.ilo.org/public/spanish/bureau/stat/isco/isco08/ index.htm. [Organization, 2022] Organization, I. L. (2022). Isco international standard classification of occupations. https://www.ilo.org/public/english/bureau/stat/isco/isco08/ index.htm. [Park et al., 2018] Park, S. H., Kim, B., Kang, C. M., Chung, C. C., and Choi, J. W. (2018). Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE. [Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics. [Porzel and Malaka, 2004] Porzel, R. and Malaka, R. (2004). A task-based approach for ontology evaluation. In ECAI Workshop on Ontology Learning and Population, Valencia, Spain, pages 1–6. Citeseer. [Pouliakas, 2021] Pouliakas, K. (2021). Artificial intelligence and job automation: an EU analysis using online job vacancy data. Publications Office of the European Union. [Prud’hommeaux and Seaborne, 2007] Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL query language for RDF. Live Draft - version. [Puduppully and Lapata, 2021] Puduppully, R. and Lapata, M. (2021). Data-to-text generation with Macro Planning. Transactions of the Association for Computational Linguistics, 9:510–527. [Radevski and Trichet, 2006] Radevski, V. and Trichet, F. (2006). Ontology-based systems dedicated to human resources management: An application in e-recruitment. In Meersman, R., Tari, Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 1068–1077, Berlin, Heidelberg. Springer Berlin Heidelberg. [Radziwon et al., 2014] Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia engineering, 69:1184-1190. [Ramos et al., 2009] Ramos, E., NAA, H., and CasaA, R. (2009). Esquema para evaluar ontologías para un dominio de conocimiento. Enlace, 6:57 – 71. [Raza et al., 2020] Raza, M. A., Raza, B., Jabeen, T., Raza, S., and Abbas, M. (2020). Using combined list hierarchy and headings of HTML documents for learning domain-specific ontology. International Journal of Advanced Computer Science and Applications, 11(4). [Reimers and Gurevych, 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen- tence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. [Rentzsch and Staneva, 2020] Rentzsch, R. and Staneva, M. (2020). Skills-matching and skills intelligence through curated and data-driven ontologies. In Proceedings of the DELFI Workshops. [Revenko et al., 2022] Revenko, A., Mireles, V., Breit, A., Bourgonje, P., Schneider, J., Kh- valchik, M., and Rehm, G. (2022). Learning Ontology Classes from Text by Clustering Lexical Substitutes Derived from Language Models1. [Rohman et al., 2023] Rohman, M. A., Suhartono, S., and Chamidy, T. (2023). Bidirectional gru dengan attention mechanism pada analisis sentiment pln mobile. Techno. Com, 22(2):358–372. [Ross, 2021] Ross, L. (2021). 25 emerging recruitment trends in 2021. https://vervoe. com/recruitment-trends-2021/. [Saeeda et al., 2020] Saeeda, L., Med, M., Ledvinka, M., Blaˇsko, M., and Kˇremen, P. (2020). Entity linking and lexico-semantic patterns for ontology learning. In European Semantic Web Conference, pages 138–153. Springer. [Salas and Salas, 2020] Salas, A. M. D. L. M. and Salas, L. M. (2020). Brecha de habilidades de los jóvenes en el mercado laboral colombiano. Universitas Económica 018139, Universidad Javeriana - Bogotá. [Salazar et al., 2015] Salazar, O. M., Jaramillo, J. C., Ovalle, D. A., and Guzmán, J. A. (2015). A case-based multi-agent and recommendation environment to improve the e- recruitment process. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 389–397. Springer. [Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a dis-tilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. [Seedorf and Schader, 2011] Seedorf, S. and Schader, M. (2011). Towards an enterprise software component ontology. In A Renaissance of Information Technology for Sustainability and Global Competitiveness., volume 5. [Shakya and Paudel, 2019] Shakya, A. and Paudel, S. (2019). Job-candidate matching using esco ontology. Journal of the Institute of Engineering, 15(1):1–13. [Sibarani et al., 2017] Sibarani, E. M., Scerri, S., Morales, C., Auer, S., and Collarana, D. (2017). Ontology-guided job market demand analysis: A cross-sectional study for the data science field. In Proceedings of the 13th International Conference on Semantic Systems, Semantics2017, page 25–32, New York, NY, USA. Association for Computing Machinery. [Singto and Mingkhwan, 2013] Singto, P. and Mingkhwan, A. (2013). Semantic searching it careers concepts based on ontology. Journal of Advanced Management Science, 1:103–106. [Soni and Swaminarayan, 2017] Soni, H. H. and Swaminarayan, P. R. (2017). ”study of semantic web based e-recruitment system: Review”. International Journal of Advanced Research in Computer Science, 8(9). [So-lek-Borowska and Wilczewska, 2018] So-lek-Borowska, C. and Wilczewska, M. (2018).New technologies in the recruitment process. Economics and Culture, 15:25–33. [Tong, 2009] Tong, D. Y. K. (2009). A study of e-recruitment technology adoption in Malaysia. Industrial Management & Data Systems. [Turney, 2002] Turney, P. D. (2002). Mining the web for synonyms: Pmi-ir versus lsa on toefl. Computer information sciences. [ul haq Dar and Dorn, 2018] ul haq Dar, E. and Dorn, J. (2018). Ontology based classification system for online job offers. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–8. IEEE. [Van der Velde, 2020] Van der Velde, L. (2020). Within occupation wage dispersion and the task content of jobs. Oxford Bulletin of Economics and Statistics, 82(5):1161–1197. [Van Hautte et al., 2020] Van Hautte, J., Schelstraete, V., and Wornoo, M. (2020). Leveraging the inherent hierarchy of vacancy titles for automated job ontology expansion. In Proceedings of the 6th International Workshop on Computational Terminology, pages 37–42, Marseille, France. European Language Resources Association. [Varen Caballero et al., 2019] Varen Caballero, E., Silega Mart´ınez, N., and Rojas Carbo- nell, R. (2019). Ontología para gestionar la información científica de los recursos humanos en proyectos de desarrollo de software. Serie Científica De La Universidad De Las Ciencias Informáticas, 10(9). [Vashishth et al., 2018] Vashishth, S., Jain, P., and Talukdar, P. (2018). Cesi: Canonicalizing open knowledge bases using embeddings and side information. In Proceedings of the 2018 World Wide Web Conference, pages 1317–1327 [Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L- ., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. [Vrandecic, 2009] Vrandecic, D. (2009). Ontology evaluation. In Handbook on ontologies, pages 293–313. Springer. [Vrolijk et al., 2022] Vrolijk, J., Mol, S. T., Weber, C., Tavakoli, M., Kismihok, G., and Pelucchi, M. (2022). Ontojob: Automated ontology learning from labor market data. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pages 195–200. [W3C, 2012] W3C (2012). Owl 2 web ontology language profiles (second edition). https://www.w3.org/TR/owl2-profiles/. [Wong et al., 2017] Wong, I. A., Wan, Y. K. P., and Gao, J. H. (2017). How to attract and retain Generation Y employees? an exploration of career choice and the meaning of work. Tourism Management Perspectives, 23:140–150. [World Wide Web Consortium, “Semantic Web - W3C,” W3.org, 2012] World Wide Web Consortium “Semantic Web-W3C,”W3.org(2012). https://www.w3.org/standards/semanticweb/. [Xu et al., 2020] Xu, Z., Harzallah, M., Guillet, F., and Ichise, R. (2020). Towards a term clustering framework for modular ontology learning. In Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., and Filipe, J., editors, Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 178–201, Cham. Springer International Publishing. [Zhou et al., 2021] Zhou, J., Naseem, T., Fernandez Astudillo, R., Lee, Y.-S., Florian, R., and Roukos, S. (2021). Structure-aware fine-tuning of sequence-to-sequence transformers for transition-based AMR parsing. In Proceedings of the 2021 Conference on Empiri- cal Methods in Natural Language Processing, pages 6279–6290, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics [Zhou, 2007] Zhou, L. (2007). Ontology learning: State of the art and open issues. Information Technology and Management, 8:241–252. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 218 p{aginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Analítica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84814/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84814/2/1152438312.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84814/3/1152438312.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e99fa1779b8b4e8a3baf0260cf4108ab 480f30af2cdc77edc738582623a82085 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089885631381504 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán Luna, Jaime Alberto632562fd9d2ad66add0fb34ebe661d98Uribe Rendón, Andrea5b8c236774e4a048cf57056c2bc24d6bSistemas Inteligentes Web (Sintelweb)Guzmán Luna, Jaime Alberto [0000-0003-4737-1119]Uribe Rendón, Andrea [0000-0002-1601-0313]URIBE RENDÓN, ANDREA2023-10-19T14:28:49Z2023-10-19T14:28:49Z2023-10-18https://repositorio.unal.edu.co/handle/unal/84814Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl aprendizaje ontológico permite la creación automática o semiautomática de ontologías de cierto dominio, identificando clases, jerarquía de clases y restricciones a través de técnicas de recuperación de información, aprendizaje automático, aprendizaje profundo y procesamiento de lenguaje natural (PLN). En este trabajo se construye un modelo de aprendizaje ontológico que utiliza modelos, técnicas y algoritmos combinados (Transformadores, Incrustación de Grafos de Conocimiento (KGE) y Reglas de asociación) para elaborar un lenguaje común de competencias y ocupaciones en el área de e-recruitment, específicamente, profesionales en Tecnologías de la Información (TI). La fuente de extracción de información es una red social profesional seleccionada como caso de uso. Se define la ontología base a partir de la cual se inicia el aprendizaje, se diseña un modelo conceptual de aprendizaje ontológico que permite extraer clases, jerarquía de clases y restricciones para la ontología base. Seguido a esto, se implementa este modelo conceptual para obtener resultados de extensión de la ontología base, se evalúa la ontología aprendida a través de una golden ontology y se valida la ontología obtenida por medio de una aplicación para el dominio de e-recruitment. (Texto tomado de la fuente)Ontological learning allows the automatic or semi-automatic creation of ontologies in a domain, identifying classes, class hierarchy and restrictions through information retrieval techniques, machine learning and natural language processing (NLP). The aim of this document is built an ontological learning model that uses combined models, techniques and algorithms (Transformers, Knowledge Graph Embedding (KGE) and Association Rules) to develop a common language of skills and occupations in the e-recruitment area, specifically, Information Technology (IT) professionals. The source of information extraction is a selected professional social network as a use case. The base ontology from which learning begins is defined, a conceptual model of ontological learning is designed that allows information extract information for classes, hierarchy classes and the restrictions for the base ontology. Following this, this conceptual model is applied to obtain extension results of the base ontology, the learned ontology is evaluated through a golden ontology and the obtained ontology is validated through an application for the e-recruitment domain.MaestríaMagíster en Ingeniería - AnalíticaSe realiza la revisión sistemática de la literatura basada en la Metodología de Kitchenham que consta de tres etapas: planificar la revisión, conducir la revisión y documentar la revsión.Web semánticaÁrea Curricular de Ingeniería de Sistemas e Informáticaxx, 218 p{aginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::001 - Conocimiento000 - Ciencias de la computación, información y obras generales::003 - Sistemas000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAprendizaje automático (Inteligencia artificial)Procesamiento electrónico de datos en la educaciónProfesionales de informaciónMachine learningEducation - Data processingInformation professionalsAprendizaje ontológicoTransformadoresIncrustación de grafos de conocimientoReglas de asociaciónE-recruitmentTecnologías de la informaciónRedes profesionalesOntological learningTransformersKnowledge Graph EmbeddingAssociation rulesE-recruitmentInformation TechnologyProfessional social networksModelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionalesOntological learning model in the e-recruitment domain associated with IT professional profiles and supported by professional social networksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferencia[Python Software Foundation,Ludovico Fabbri, 2022] Python Software Founda- tion,Ludovico Fabbri (2022). https://pypi.org/project/linkedin-jobs-scraper/#us age.Alfonso-Hermelo et al., 2019a] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019a). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.[Alfonso-Hermelo et al., 2019b] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019b). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.[Alfonso-Hermelo et al., 2019c] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019c). Automatically Learning a Human-Resource Ontology from Professional Social-Network Data, pages 132–145. Springer, Cham.[Apostolico and Galil, 1997] Apostolico, A. and Galil, Z., editors (1997). Pattern Matching Algorithms. Oxford University Press.[Arendt et al., 2023] Arendt, L., Ga-lecka-Burdziak, E., Nu´n˜ez, F., Pater, R., and Usabiaga,C. (2023). Skills requirements across task-content groups in poland: What online job offers tell us. Technological Forecasting and Social Change, 187:122245.[Arnal et al., 2001] Arnal, E., Ok, W., and Torres, R. (2001). Knowledge, work organisation and economic growth. In Internet, economic growth and globalization, pages 327–376. Springer.[Arroyo Mesa, 2022] Arroyo Mesa, L. (2022). Tendencias actuales en la búsqueda y selección de personal en el ámbito empresarial.[Asim et al., 2018a] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018a). A survey of ontology learning techniques and applications. Database, 2018. bay101.[Asim et al., 2018b] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018b). A survey of ontology learning techniques and applications. Database : the journal of biological databases and curation, 2018.[Balachander and Moh, 2018] Balachander, Y. and Moh, T.-S. (2018). Ontology based si- milarity for information technology skills. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 302–305.[Bechhofer et al., 2004] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuin- ness, D. L., Patel-Schneider, P. F., Stein, L. A., et al. (2004). Owl web ontology language reference. W3C recommendation, 10(2):1–53.[Bernaras et al., 1996] Bernaras, A., Laresgoiti, I., and Corera, J. M. (1996). Building and reusing ontologies for electrical network applications. In European Conference on Artificial Intelligence.[BERNERS-LEE et al., 2001] BERNERS-LEE, T., HENDLER, J., and LASSILA, 2001). The semantic web. Scientific American, 284(5):34–43.[Borst, 1999] Borst, W. N. (1999). Construction of engineering ontologies for knowledge sharing and reuse. CKL.[Brencic and Norris, 2010] Brencic, V. and Norris, J. B. (2010). Do employers change job offers in their online job ads to facilitate search? Economics Letters, 108(1):46–48.[Brewster et al., 2004] Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data driven ontology evaluation. International Conference on Language Resources and Evaluation, Lisbon, Portugal.[Bui et al., 2021] Bui, T.-C., Le, V.-D., To, H.-T., and Cha, S. K. (2021). Generative pre- training for paraphrase generation by representing and predicting spans in exemplars. In 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pages 83–90. IEEE.[Cañete et al., 2020] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., and Pérez, J. (2020). Spanish pre-trained bert model and evaluation data. In PML4DC at ICLR 2020.[CB Insights Research, 2020] CBInsights Research (3deAbrilde2020) https://www.cbinsights.com/research/hr-tech/f.[Cer et al., 2018] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Cons- tant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.[Chala, 2018] Chala, S. A. (2018). Bidirectional job matching through unsupervised feature learning. In Master’s thesis. OPUS Siegen Master’s thesis, Universit¨at Siegen, URN 467–12858.[Chen and Gu, 2021] Chen, J. and Gu, J. (2021). Adol: a novel framework for automatic domain ontology learning. The Journal of Supercomputing, 77(1):152–169.[Chiatti and Daga, 2022] Chiatti, A. and Daga, E. (2022). Neuro-symbolic learning for dealing with sparsity in cultural heritage image archives: an empirical journey.[Chow and Chapman, 2013] Chow, S. and Chapman, D. (2013). Gamifying the employee recruitment process. In Proceedings of the First International Conference on Gameful Design, Research, and Applications, pages 91–94.[Coggle, 2021] Coggle (2021). Dataset validator relevant for iot ontologies. https:// coggle.it/diagram/WZ8ANCiQegABugPa/t/how-to-validate-ontologies.[Cordero Mena and Yunga Tucto, 2022] Cordero Mena, K. I. and Yunga Tucto, C. M. (2022). Diseño y desarrollo de un chatbot usando redes neuronales y procesamiento de lenguaje natural orientado a entidades bancarias. B.S. thesis.[Cormen et al., 2022] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press.[Costabello et al., 2023] Costabello, L., Janik, A., Bayram, E., and Pai, S. (2023). Knowledge graph embeddings for nlp: From theory to practice.[Costabello et al., 2019] Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N., and Tabacof, P. (2019). AmpliGraph: a Library for Representation Learning on Knowledge Graphs.[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.[Dong et al., 2020] Dong, H., Wang, W., Coenen, F., and Huang, K. (2020). Knowledge base enrichment by relation learning from social tagging data. Information Sciences, 526:203–220.[Ebiele et al., 2022] Ebiele, M., McKenna, L., Bendechache, M., and Brennan, R. (2022). Multi-label classification using bert and knowledge graphs with a limited training dataset.[Ehrlinger and Wo, 2016] Ehrlinger, L. and W¨oß, W. (2016). Towards a definition of know- ledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48(1-4):2.[Erd et al., 2022] Erd, R., Feddoul, L., Lachenmaier, C., and Mauch, M. J. (2022). Evaluation of data augmentation for named entity recognition in the German legal domain.[Europass, 2017] Europass (22 de Mayo de 2017). https://europa.eu/europass/es/euro pean-qualifications-framework-eqf.[europass Union Europea, 2022] europass Union Europea (2022). europass. https:// europa.eu/europass/es/find-courses.[European Commission, 2022] European Commission (27 de Enero de 2022).https://ec.europa.eu/esco/lod/static/model.html.[European Commission website, 2022] European Commission website (27 de Enero de 2022).https://esco.ec.europa.eu/es/about-esco/what-esco.[Fajcıkova et al., 2018] Fajcıkova, A., Urbancova, H., and Fejfarova, M. (2018). New trends in the recruitment of employees in Czech ICT organizations. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration, 26:39–49.[Faliagka et al., 2012] Faliagka, E., Tsakalidis, A., and Tzimas, G. (2012). An integrated e-recruitment system for automated personality mining and applicant ranking. Internet researchFeng et al., 2020] Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020).Language-agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852.[Fensel et al., 2020] Fensel, D., S¸im¸sek, U., Angele, K., Huaman, E., K¨arle, E., Panasiuk, O., Toma, I., Umbrich, J., Wahler, A., Fensel, D., et al. (2020). Introduction: what is a knowledge graph? Knowledge graphs: Methodology, tools and selected use cases, pages 1–10.[Fensel et al., 2001] Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web. IEEE intelligent systems, 16(2):38–45.[Fraga, 2016] Fraga, D. C. (2016). Métodos y técnicas para la evaluación del aprendizaje de ontologías de dominio.[Gao and Chen, 2020] Gao, W. and Chen, Y. (2020). Approximation analysis of ontology learning algorithm in linear combination setting. Journal of Cloud Computing, 9(1):1–10.[Garceia-Sanchez et al., 2006] García-Sánchez, F., Marteinez-Béjar, R., Contreras, L., Fernández-Breis, J. T., and Castellanos-Nieves, D. (2006). An ontology-based intelligent system for recruitment. Expert Systems with Applications, 31(2):248–263.[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2):199–220.[Guarino, 1997] Guarino, N. (1997). Understanding, building and using ontologies. International journal of human-computer studies, 46(2-3):293–310.[Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.[Harzallah et al., 2002] Harzallah, M., Leclere, M., and Trichet, F. (2002). Commoncv: modeling the competencies underlying a curriculum vitae. In Proceedings of the 14th international conference on Software engineering and knowledge engineering, pages 65–71.[Hogan et al., 2021] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37.[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language model fine- tuning for text classification. arXiv preprint arXiv:1801.06146.[Hsu et al., 2021] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021). Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451–3460.[Hubert et al., 2022] Hubert, N., Monnin, P., Brun, A., and Monticolo, D. (2022). Knowledge graph embeddings for link prediction: Beware of semantics! In DL4KG@ ISWC 2022: Workshop on Deep Learning for Knowledge Graphs, held as part of ISWC 2022: the 21st International Semantic Web Conference.[HuntersAmericas, 2023] HuntersAmericas (2023). Las fallas en los perfiles de puesto y el impacto de sus resultados. http://www.hlghunters.com/blog/ 96-fallas-perfiles-puestos.[Jiménez-Ruiz et al., 2012] Jiménez-Ruiz, E., Grau, B. C., Zhou, Y., and Horrocks, I. (2012). Large-scale interactive ontology matching: Algorithms and implementation. In ECAI, volume 242, pages 444–449.[Jun, 2011] Jun, Z. (2011). Manufacturing process skill systematization based on ontology technology. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, volume 2, pages 496–499.[Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement.[Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement. International Journal of Advanced Computer Science and Applications, 11(3).[Kasereka, 2020] Kasereka, H. (2020). Importance of web scraping in e-commerce and e-marketing. SSRN Electronic Journal.[Katyshev and Anikin, 2023] Katyshev, A. and Anikin, A. (2023). Modern approaches for concepts and relations extraction for ontology learning. In Novel & Intelligent Digital Systems Conferences, pages 290–296. Springer.[Khatiwada et al., 2022] Khatiwada, A., Shirai, S., Srinivas, K., and Hassanzadeh, O. (2022). Knowledge graph embeddings for causal relation prediction. In Workshop on Deep Learning for Knowledge Graphs (DL4KG@ ISWC2022). [Khder, 2021] Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing & Its Applications, 13(3).[Kinsta, Maddy Osman, 2022] Kinsta,MaddyOsman(2022). https://kinsta.com/es/blog/estadisticas-de-linkedin/.[Kumaran and Sankar, 2013] Kumaran, V. S. and Sankar, A. (2013). Towards an automated system for intelligent screening of candidates for recruitment using ontology mapping (expert). International Journal of Metadata, Semantics and Ontologies, 8(1):56–64.[Lakzaei and Shamsfard, 2021] Lakzaei, B. and Shamsfard, M. (2021). Ontology learning from relational databases. Information Sciences, 577:280–297.[LAMY, 2019] LAMY, J.-B. (2019). Consultas sparql owlready2. ://owlready2. readthedocs.io/en/v0.37/sparql.html.[Lawi et al., 2022] Lawi, A., Mesra, H., and Amir, S. (2022). Implementation of long short-term memory and gated recurrent units on grouped time-series data to predict stock prices accurately. Journal of Big Data, 9(1):1–19.[le Vrang et al., 2014] le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P., Vandensteen, D., and De Smedt, J. (2014). Esco: Boosting job matching in europe with semantic interoperability. Computer, 47(10):57–64.[Lievens et al., 2007] Lievens, F., Van Hoye, G., and Anseel, F. (2007). Organizational identity and employer image: Towards a unifying framework. British Journal of Management, 18:S45–S59.[LinkedIn Corporation, 2022] LinkedInCorporation(2022).https://www.linkedin.com/feed/.[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.[Lopez-Bassols, 2002] Lopez-Bassols, V. (2002). Ict skills and employment. OECD.[López Bonilla et al., 2012] López Bonilla, M., Guzmán Luna, J. A., and Durley Torres, I. (2012). Metodologías y métodos para la construcción de ontologías. Scientia Et Technica[Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent systems, 16(2):72–79.[Manzano-Macho et al., 2008] Manzano-Macho, D., Gomez-Pérez, A., and Borrajo Millán, D. (2008). Unsupervised and domain independent ontology learning: combining heterogeneous sources of evidence. Sixth International Language Resources and Evaluation (LREC’08).[Maree et al., 2018] Maree, M., Kmail, A. B., and Belkhatir, M. (2018). Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science, 45(6):713–735.[McGuinness et al., 2002] McGuinness, D. L., Fikes, R., Hendler, J., and Stein, L. A. (2002). Daml+ oil: an ontology language for the semantic web. IEEE Intelligent Systems, 17(5):72– 80.[McGuinness et al., 2003] McGuinness, D. L., Fikes, R., Stein, L. A., and Hendler, J. A. (2003). Daml-ont: An ontology language for the semantic web. In Spinning the Semantic Web, pages 65–93.[McGuinness et al., 2004] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language overview. W3C recommendation, 10(10):2004.[Mhammedi et al., 2021] Mhammedi, S., El Massari, H., and Gherabi, N. (2021). Cb2onto: Owl ontology learning approach from couchbase. In Intelligent Systems in Big Data, Semantic Web and Machine Learning, pages 95–110. Springer.[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26.[Mnih and Kavukcuoglu, 2013] Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. Advances in neural information processing systems, 26.[Neches et al., 1991] Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3):36–36.[NERI, 2005] NERI, F. (2005). Evaluation of ontolearn, a methodology for automatic learning of domain ontologies. Ontology Learning from Text: Methods, Evaluation and Appli- cations, 123.[Nordsieck et al., 2022] Nordsieck, R., Heider, M., Hummel, A., and H¨ahner, J. (2022). A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge. In Alam, M., Buscaldi, D., Cochez, M., Osborne, F., and Recupero, D. R., editors, DL4KG 2022 - Deep Learning for Knowledge Graphs 2022: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), virtual conference, online, October 24, 2022, page 7.[Novalija and Grobelnik, 2018] Novalija, I. and Grobelnik, M. (2018). Towards smart statistics in labour market domain. Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2018.[Noy and Mcguinness, 2001] Noy, N. and Mcguinness, D. (2001). Ontology development 101: A guide to creating your first ontology. Knowledge Systems Laboratory, 32.[OECD, 2004] OECD (2004). Information Technology Outlook 2004. OECD. [OECD, 2010] OECD (2010). OECD Information Technology Outlook 2010. OECD.[OIT, 2022] OIT (2022). Isco international standard classification of occupations. https://www.ilo.org/public/spanish/bureau/stat/isco/index.htm.[on Information Technology Curricula, 2017] on Information Technology Curricula, T. G. (2017). Information Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology. Association for Computing Machinery, New York, NY, USA.[Organización internacional del trabajo, 2005] Organización internacional del trabajo (30 de Enero de 2005). https://www.ilo.org/public/spanish/bureau/stat/isco/isco08/ index.htm.[Organization, 2022] Organization, I. L. (2022). Isco international standard classification of occupations. https://www.ilo.org/public/english/bureau/stat/isco/isco08/ index.htm.[Park et al., 2018] Park, S. H., Kim, B., Kang, C. M., Chung, C. C., and Choi, J. W. (2018). Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE.[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.[Porzel and Malaka, 2004] Porzel, R. and Malaka, R. (2004). A task-based approach for ontology evaluation. In ECAI Workshop on Ontology Learning and Population, Valencia, Spain, pages 1–6. Citeseer. [Pouliakas, 2021] Pouliakas, K. (2021). Artificial intelligence and job automation: an EU analysis using online job vacancy data. Publications Office of the European Union.[Prud’hommeaux and Seaborne, 2007] Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL query language for RDF. Live Draft - version.[Puduppully and Lapata, 2021] Puduppully, R. and Lapata, M. (2021). Data-to-text generation with Macro Planning. Transactions of the Association for Computational Linguistics, 9:510–527.[Radevski and Trichet, 2006] Radevski, V. and Trichet, F. (2006). Ontology-based systems dedicated to human resources management: An application in e-recruitment. In Meersman, R., Tari, Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 1068–1077, Berlin, Heidelberg. Springer Berlin Heidelberg.[Radziwon et al., 2014] Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia engineering, 69:1184-1190.[Ramos et al., 2009] Ramos, E., NAA, H., and CasaA, R. (2009). Esquema para evaluar ontologías para un dominio de conocimiento. Enlace, 6:57 – 71.[Raza et al., 2020] Raza, M. A., Raza, B., Jabeen, T., Raza, S., and Abbas, M. (2020). Using combined list hierarchy and headings of HTML documents for learning domain-specific ontology. International Journal of Advanced Computer Science and Applications, 11(4).[Reimers and Gurevych, 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen- tence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.[Rentzsch and Staneva, 2020] Rentzsch, R. and Staneva, M. (2020). Skills-matching and skills intelligence through curated and data-driven ontologies. In Proceedings of the DELFI Workshops.[Revenko et al., 2022] Revenko, A., Mireles, V., Breit, A., Bourgonje, P., Schneider, J., Kh- valchik, M., and Rehm, G. (2022). Learning Ontology Classes from Text by Clustering Lexical Substitutes Derived from Language Models1.[Rohman et al., 2023] Rohman, M. A., Suhartono, S., and Chamidy, T. (2023). Bidirectional gru dengan attention mechanism pada analisis sentiment pln mobile. Techno. Com, 22(2):358–372.[Ross, 2021] Ross, L. (2021). 25 emerging recruitment trends in 2021. https://vervoe. com/recruitment-trends-2021/. [Saeeda et al., 2020] Saeeda, L., Med, M., Ledvinka, M., Blaˇsko, M., and Kˇremen, P. (2020). Entity linking and lexico-semantic patterns for ontology learning. In European Semantic Web Conference, pages 138–153. Springer.[Salas and Salas, 2020] Salas, A. M. D. L. M. and Salas, L. M. (2020). Brecha de habilidades de los jóvenes en el mercado laboral colombiano. Universitas Económica 018139, Universidad Javeriana - Bogotá.[Salazar et al., 2015] Salazar, O. M., Jaramillo, J. C., Ovalle, D. A., and Guzmán, J. A. (2015). A case-based multi-agent and recommendation environment to improve the e- recruitment process. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 389–397. Springer.[Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a dis-tilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.[Seedorf and Schader, 2011] Seedorf, S. and Schader, M. (2011). Towards an enterprise software component ontology. In A Renaissance of Information Technology for Sustainability and Global Competitiveness., volume 5.[Shakya and Paudel, 2019] Shakya, A. and Paudel, S. (2019). Job-candidate matching using esco ontology. Journal of the Institute of Engineering, 15(1):1–13.[Sibarani et al., 2017] Sibarani, E. M., Scerri, S., Morales, C., Auer, S., and Collarana, D. (2017). Ontology-guided job market demand analysis: A cross-sectional study for the data science field. In Proceedings of the 13th International Conference on Semantic Systems, Semantics2017, page 25–32, New York, NY, USA. Association for Computing Machinery.[Singto and Mingkhwan, 2013] Singto, P. and Mingkhwan, A. (2013). Semantic searching it careers concepts based on ontology. Journal of Advanced Management Science, 1:103–106. [Soni and Swaminarayan, 2017] Soni, H. H. and Swaminarayan, P. R. (2017). ”study of semantic web based e-recruitment system: Review”. International Journal of Advanced Research in Computer Science, 8(9).[So-lek-Borowska and Wilczewska, 2018] So-lek-Borowska, C. and Wilczewska, M. (2018).New technologies in the recruitment process. Economics and Culture, 15:25–33.[Tong, 2009] Tong, D. Y. K. (2009). A study of e-recruitment technology adoption in Malaysia. Industrial Management & Data Systems.[Turney, 2002] Turney, P. D. (2002). Mining the web for synonyms: Pmi-ir versus lsa on toefl. Computer information sciences.[ul haq Dar and Dorn, 2018] ul haq Dar, E. and Dorn, J. (2018). Ontology based classification system for online job offers. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–8. IEEE.[Van der Velde, 2020] Van der Velde, L. (2020). Within occupation wage dispersion and the task content of jobs. Oxford Bulletin of Economics and Statistics, 82(5):1161–1197.[Van Hautte et al., 2020] Van Hautte, J., Schelstraete, V., and Wornoo, M. (2020). Leveraging the inherent hierarchy of vacancy titles for automated job ontology expansion. In Proceedings of the 6th International Workshop on Computational Terminology, pages 37–42, Marseille, France. European Language Resources Association.[Varen Caballero et al., 2019] Varen Caballero, E., Silega Mart´ınez, N., and Rojas Carbo- nell, R. (2019). Ontología para gestionar la información científica de los recursos humanos en proyectos de desarrollo de software. Serie Científica De La Universidad De Las Ciencias Informáticas, 10(9).[Vashishth et al., 2018] Vashishth, S., Jain, P., and Talukdar, P. (2018). Cesi: Canonicalizing open knowledge bases using embeddings and side information. In Proceedings of the 2018 World Wide Web Conference, pages 1317–1327[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L- ., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.[Vrandecic, 2009] Vrandecic, D. (2009). Ontology evaluation. In Handbook on ontologies, pages 293–313. Springer. [Vrolijk et al., 2022] Vrolijk, J., Mol, S. T., Weber, C., Tavakoli, M., Kismihok, G., and Pelucchi, M. (2022). Ontojob: Automated ontology learning from labor market data. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pages 195–200.[W3C, 2012] W3C (2012). Owl 2 web ontology language profiles (second edition). https://www.w3.org/TR/owl2-profiles/.[Wong et al., 2017] Wong, I. A., Wan, Y. K. P., and Gao, J. H. (2017). How to attract and retain Generation Y employees? an exploration of career choice and the meaning of work. Tourism Management Perspectives, 23:140–150.[World Wide Web Consortium, “Semantic Web - W3C,” W3.org, 2012] World Wide Web Consortium “Semantic Web-W3C,”W3.org(2012). https://www.w3.org/standards/semanticweb/.[Xu et al., 2020] Xu, Z., Harzallah, M., Guillet, F., and Ichise, R. (2020). Towards a term clustering framework for modular ontology learning. In Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., and Filipe, J., editors, Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 178–201, Cham. Springer International Publishing.[Zhou et al., 2021] Zhou, J., Naseem, T., Fernandez Astudillo, R., Lee, Y.-S., Florian, R., and Roukos, S. (2021). Structure-aware fine-tuning of sequence-to-sequence transformers for transition-based AMR parsing. In Proceedings of the 2021 Conference on Empiri- cal Methods in Natural Language Processing, pages 6279–6290, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics[Zhou, 2007] Zhou, L. (2007). Ontology learning: State of the art and open issues. Information Technology and Management, 8:241–252.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84814/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152438312.2023.pdf1152438312.2023.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf13153445https://repositorio.unal.edu.co/bitstream/unal/84814/2/1152438312.2023.pdfe99fa1779b8b4e8a3baf0260cf4108abMD52THUMBNAIL1152438312.2023.pdf.jpg1152438312.2023.pdf.jpgGenerated Thumbnailimage/jpeg4964https://repositorio.unal.edu.co/bitstream/unal/84814/3/1152438312.2023.pdf.jpg480f30af2cdc77edc738582623a82085MD53unal/84814oai:repositorio.unal.edu.co:unal/848142023-10-19 23:03:41.716Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |