Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster

ilustraciones, gráficas, tablas

Autores:
Cortés Conde, Felix Fabián
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81095
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81095
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Vegetable oils as fuel
Palm-oil
Chemical engineering
Aceites vegetales como combustibles
Aceites de palma
Ingeniería química
Biodiesel
Modelamiento
Reactor trickle bed
Aceite de palma
Biodiesel
Palm oil
Trickle bed reactor
Hydrotreatment
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_93ccee3e3b6f2a3037ae11b7bd540c74
oai_identifier_str oai:repositorio.unal.edu.co:unal/81095
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
dc.title.translated.eng.fl_str_mv Modeling and simulation of a hydrotreatment reactor for the production of non-ester biodiesel
title Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
spellingShingle Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
660 - Ingeniería química
Vegetable oils as fuel
Palm-oil
Chemical engineering
Aceites vegetales como combustibles
Aceites de palma
Ingeniería química
Biodiesel
Modelamiento
Reactor trickle bed
Aceite de palma
Biodiesel
Palm oil
Trickle bed reactor
Hydrotreatment
title_short Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
title_full Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
title_fullStr Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
title_full_unstemmed Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
title_sort Modelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-éster
dc.creator.fl_str_mv Cortés Conde, Felix Fabián
dc.contributor.advisor.spa.fl_str_mv Oscar Yesid, Suárez Palacios
dc.contributor.author.spa.fl_str_mv Cortés Conde, Felix Fabián
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Vegetable oils as fuel
Palm-oil
Chemical engineering
Aceites vegetales como combustibles
Aceites de palma
Ingeniería química
Biodiesel
Modelamiento
Reactor trickle bed
Aceite de palma
Biodiesel
Palm oil
Trickle bed reactor
Hydrotreatment
dc.subject.lemb.eng.fl_str_mv Vegetable oils as fuel
Palm-oil
Chemical engineering
dc.subject.lemb.spa.fl_str_mv Aceites vegetales como combustibles
Aceites de palma
Ingeniería química
dc.subject.proposal.spa.fl_str_mv Biodiesel
Modelamiento
Reactor trickle bed
Aceite de palma
dc.subject.proposal.eng.fl_str_mv Biodiesel
Palm oil
Trickle bed reactor
Hydrotreatment
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-01T16:40:11Z
dc.date.available.none.fl_str_mv 2022-03-01T16:40:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81095
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81095
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ali, M. E. (2005). Handbook of Industrial Chemistry. McGraw-Hill.
Alvarez, A. A. (2008). Modeling residue hydroprocessing in a multi-fixed-bed reactor system. Applied Catalysis A: General, 148-158.
Ancheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.
Benkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.
Bezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.
Bianchi, C. (2011). Non Edible Oils: Raw Materials for Sustainable Biodiésel. En M. M. Stoytcheva, Biodiésel. Feedstocks and Processing Technologies (págs. 3-22). Rijeka: InTech.
Ceriani, R. G. (2009). Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilibria, 49-55.
Choudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.
Coumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.
Dong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.
Fangrui, M. M. (1999). Biodiésel Production: a review. Bioresource Technology, 1-15.
Furimsky, E. (2013). Hydroprocessing challenges in biofuels production. Catalysis Today, 13-56.
Hilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.
Knothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.
M. Snare, I. K.-A. (2007). Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation. Chemical Engineering Journal, 29-34.
Mederos, F. A. (2009). Review on criteria to ensure ideal behaviors in trickle bed reactors. Applied Catalysis A: General, 1-19.
Mohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.
Poling, B. P. (2001). The Properties of gases nad liquids. New York: The McGraw-Hill.
Sebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.
Soo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.
Vonortas, A. P. (2014). Comparative Analysis of Biodiésel versus Green Diesel. WIRE's Energy and Environment, 3-23.
Wang, S. G. (2012). Catalytic Conversion of Carboxylic acids in bio-oil for Liquid Hydrocarbons Production. BIOMASS AND BIOENERGY, 138-143.
Yuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.
Zhang, H. L. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 238-248.
Anand, M. S. (2012). Temperature Dependent reaction pathway for the anomalous hydrocracking of triglycerides in the presence of sulfided Co-Mo Catalyst. Bioresource Technol, 148-155.
Ancheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.
Ansys. (2010). Help, Ansys Release. Ansys Inc, 1-130.
Arun, N. S. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 240-255.
Azizi, N. A.-A. (2013). Hydrotreating of Light Cycle Oil over NiMo and CoMo Catalysts with Different Supports. Fuel Processing Technology, 172-178.
Benkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.
Bernard, E. (2014). Biodiésel: Los aspectos mecánicos en los vehículos. Costa Rica: Centro Nacional de la Producción más Limpia.
Bezergianni, S. D. (2010). Hydrotreating of waste cooking oil for biodiésel production. Part II: Effect of temperature on hydrocarbon composition. Bioresource Technology, 7658-7660.
Bezergianni, S. D. (2013). Comparison Between Different Type of Renewable Diesel. Renewable and Sustainable Energy Reviews, 110-116.
Bezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.
Bhaskar, G. V. (2004). Three-Phase Reactor Model to Simulate the Performance of pilot-plant and industrial trickle bed reactors sustaining hydrotreating reactions. Ind. Eng. Chem. Res, 6654-6689.
Boles, Y. A. (2012). Termodinamica. Mexico: McGRaw.
British Petroleum. (20 de Marzo de 2018). british petroleum. Recuperado el 14 de Noviembre de 2015, de british petroleum: http://www.bp.com
C.-Y. Yang, Z. F.-f. (2012). Review and prospects of Jatropha biodiésel industry in China. Renewable and Sustainable Energy Reviews, 2178-2190.
Chianelli, R. B. (2009). Unsupported transition metal sulfide catalysts: 100 years of science and application. Catalysis Today, 275-286.
Choudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.
Chu, C. N. (1985). Effective Thermal conductivity in trickle bed reactors application of effective medium theory and random walk analysis. Chemical Engineering Communications, 127-140.
Constantinou, L. G. (1995). Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilibria , 11-22.
Coumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.
Czernik, S. B. (2004). Overview of Applications of Biomass fast Pyrolysis Oil. Energy & Fuels, 590-598.
Demirbas, A. (2000). Mechanisms of Liquefaction and Pyrolisis Reactions of Biomass. Energy Convrsion & Management, 633-646.
Diya'uddeen, B. H. (2012). Performance Evaluation of Biodiésel from Used Domestic Waste Oils: A Review. Process Safety and Environmental Protection, 164-179.
Dong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.
Dudukovic, M. L. (2002). Multiphase catalytic Reactors: A Perspective on Current Knowledge and Future Trends. Catalysis Reviews, 123-246.
Ejisbouts, S. A. (2013). Economic and technical impacts of replacing Co and Ni promotion in hydrotreating catalysts. Applied Catalysis A: General, 169-182.
Ellman, M. M. (1990). A new improved liquid hold-up correlation for trickle bed reactors. . Chemical Engineering Science, 1677-1684.
Fillion, B. M. (2002). Kinetics, Gas-Liquid Mass Transfer, and Modeling of the Soybean Oil hydrogenation process. Ind. Eng. Chem. Res , 697-709.
Fonteix, C. B. (1995). Haploid and diploid algorithms, a new approach for global optimization: compared performances. INT. J. SYSTEMS SCI, 1919-1933.
Girgis, M. G. (1991). Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind. Eng. Chem. Res, 2021-2058.
Gosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.
Gosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.
Hilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.
IIuta, I. T. (1997). Gas-liquid mass transfer in fixed beds with two-phase cocurrent downflow: gas Newtonian and non-Newtonian liquid systems. . Chemical Engineering and Technology , 538-549.
Jeczmionek, L. P.-S. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-procesing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal Effect-Theorical Considerations. Fuel, 1-5.
Jo-Han Ng, H. K. (2009). Advances in Biodiésel fuel for Application in Compression Ignition Engines. Clean Techn Environ Policy, 459-493.
Kalnes, T. M. (2008). Green diesel production by hydrorefining renewable feedstocks. Life cicle analysis of green diesel produced from renewable feedstocks. Biofuels, 1-10.
Kan, K. G. (1979). Pressure drop and holdup in two-phase cocurrent trickle flows through beds of small particles. Industrial and Engineering Chemistry Process Design and Development, 760-.
Kikhtyanin, O. R. (2010). Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel, 3085-3092.
Knothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.
Korsten, H. H. (1996). Three-Phase Reactor model for hydrotreating in pilot trickle-bed reactors. AIChE Journal , 1350-1360.
Kubáta, A. S. (2011). Triacylglyceride thermal cracking: Pathways to Cyclic Hydrocarbons. energy & Fuels, 672-685.
Larachi, F. L. (1991). Experimental study of a trickle bed reactor operating at hight pressure: two phase pressure drop and liquid saturation. Chemical Engineering Science, 1233-1246.
Leung, D. W. (2010). A Review on Biodiésel Production Using Catalyzed Transesterification. Applied Energy, 1083-1095.
Liuta, L. L. (1999). The generalized slit model: Pressure gradient, liquid holdup and wetting efficiency in gas-lquid trickle flow. Chemical Engineering Science, 5039-5045.
Mapiour, M. (2009). Kinetics and Effects of H2 Partial Pressure on Hydrotreating of Heavy Gas Oil. Saskatoon: University of Saskatchewan .
Mills, P. D. (1981). Evaluation of liquid-solid contacting in Trickle bed reactors by tracer method. AIChE Journal, 893-904.
Mohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.
Morel, F. K. (1997). Processes and Catalysts for Hydrocracking of Heavy Oil and Residues. En G. D. Forment, Hydrotreatment and hydrocracking of oil fractions (págs. 1-15). Francia: Elsevier Science B.V.
Myung, I. (2003). Tutorial on Maximum Likelihood Estimation. Journal of Mathematical Psychology, 90-100.
Nannoola, Y. R. (2007). Estimation of pure component properties part 2. Estimation of critical property data by group contribution. Fluid Phase Equilibria, 1-27.
Nasikin, M. B.-H. (2009). Biogasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over NiMo/Zeolite Catalyst. World Applied Science Journal 5, 74-79.
Niagan, S. S. (2011). Production of Liquid biofuels from Renewable Resources. Progress in Energy and Combustion Science, 52-68.
O.B. Ayodelea, d. H. (2014). Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluoro-oxalate modified molybdenum catalyst: Kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 1-11.
Pa¨ivi Ma¨ki-Arvela, I. K. (2007). Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy & Fuels, 30-41.
Pankaj Kumar, }. S. (2014). Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 28-38.
Prausnitz, J. L. (2000). Termodinámica molecular de los equilibrios de fases. Madrid: Prentice Hall Iberia.
Quintero, J. R. (2012). Social and techno-economical analysis of biodiésel production in Peru. Energy Policy, 427-435.
Ranade, V. C. (2011). Hydrodynamics and Flow Regimes. En V. C. Ranade, Trickle Bed Reactors (págs. 25-29). España: Elsevier.
Randy L. Haupt, .. S. (2004). Practical genetic algorithms. New Jersey: WILEY-INTERSCIENCE.
Rincón, P. C. (2012). A Propósito del Año Internacional de la Energía Sostenible para Todos. Innovación y Ciencia, 18-27.
Roy, M. M. (2014). Performance and emissions of a diesel engine fueled by biodiésel–diesel, biodiésel–diesel-additive and kerosene–biodiésel blends. Energy Conversion and Management, 164-173.
Sahu, R. B.-P. (2015). A review of recent advance in catalytic hydrocracking of heavy residues. Journal of industrial and engineering chemistry, 1-12.
Sari, E. (2013). Green Diesel production via Catalytic hidrogenation/decarboxylation of triglycerides and fatty acids of vegestable oil and brown grase. Wayne State University, 1-146.
Sarin, A. (2012). Biodiésel. Production and Properties. RCSPublishing.
Satterfield, C. (1975). Trickle-Bed Reactor. AIChE Journal, 209-228.
Sebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.
Senol, O. R. (2007). Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts. Journal of Molecular Catalysis A: Chemical, 1-8.
Shen, Z. M. (2015). Reaction mechanisms of thioetherification for mercaptans and olefins over sulfided Mo-Ni/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 120-127.
Shuangning Xiu, A. S. (2012). Bio-Oil Production and Upgrading Research: A Review. Renewable and Sustainable Energy Reviews, 4406-4414.
Singh, .. P. (2011). Production of liquid biofuels from renewable resources, . Progress in Energy and Combustion Science , 52-68.
Sjoberg, J. Z. (1995). Nonlinear Black-Box Modeling in System Identification: a Unfied Overview. Automatica, 1691-1724.
Smith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.
Smith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.
Soo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.
Sotelo, R. T.-Z.-L. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. En I. Karamé, Hidrogenation (págs. 188-216). Beirut: INTECH.
Speight, J. A. (2007). Hydroprocessing of Heavy Oils and Residua. New York: Taylor & Francis Group.
Startsev, A. (1995). The Mechanism of HDS Catalysis. Catalysis Reviews: Science and Engineering , 353-423.
Suarez-Palacios, O. (2011). Producción y Modelamiento de Gliceril-Esteres como Plastificantes para PVC. Bogota: Universidad Nacional de Colombia.
Sudhakara Reddy., Y. S. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac Kinet Mech Cat, 1-50.
Thomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (First ed.). New York: VCH.
Treybal, R. (2000). Operaciones de transferencia de masa. Rhode Island: McGRAW-HILL.
Wammes, W. W. (1991). Hydrodynamics is a pressurized cocurrent gas-liquid trickle bed reactor. . Chemical Engineering Technology, 406.
Wang, C. T. (2012). One-Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel-Range Alkanes. ChemSUSChem, 1-11.
Wang, X. (2013). Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engne fueled with diesel and biodiésel at high altitude. Fuel, 852-858.
Water, E. P. (1997). Identification of Parametric Models. Birmingham: Springer.
Whitley, D. (2016). A Genetic Algorithm Tutorial. Computer Science Department, 1-20.
Yenumala, S. M. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac. Kinet. Mech.Cat, 1-15.
Yuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.
Yuwei Bie, J. K. (2015). Hydrodeoxygenation of methyl heptanoate over Rh/ZrO2 catalyst as a model reaction for biofuel production: kinetic modeling based on reaction mechanism. Industrial & Engineering Chemistry Research, 1-37.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81095/3/1022345193.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81095/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81095/5/1022345193.2022.pdf.jpg
bitstream.checksum.fl_str_mv 72ceebeaa340b80c4fdbd1a72fd78a9c
8153f7789df02f0a4c9e079953658ab2
59e9656584faae647beb21c1bc63da25
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090125812957184
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Oscar Yesid, Suárez Palaciosef7976d2b572437b937e97b07deacc04600Cortés Conde, Felix Fabián0fc97c4fa550590117267e960249048b600Grupo de Investigación en Procesos Químicos y Bioquímicos2022-03-01T16:40:11Z2022-03-01T16:40:11Z2021https://repositorio.unal.edu.co/handle/unal/81095Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas materias primas derivadas biológicamente son una fuente altamente deseable de combustibles renovables para la producción de combustibles. Se pueden cultivar de forma renovable y pueden producir combustibles similares en composición a los combustibles fósiles convencionales. Los aceites vegetales al utilizar el hidrotratamiento catalítico reducen el contenido de oxígeno aumentando su viabilidad para su uso a nivel industrial. El proceso de hidrotratamiento de aceites vegetales es un proceso el cual depende en gran medida de la composición de la materia prima y de los parámetros de operación, especialmente de la temperatura, tipo de catalizador, propiedades de transporte. Para el aceite utilizado en el hidrotratamiento, las vías de reacción asociadas se han explorado a través de estudios experimentales proporcionando modelos aplicables para determinar la tasa de producción de los hidrocarburos. Se investiga el modelo de la triestearina-hidrógeno soportado sobre un catalizador, en un reactor no isotérmico, donde se calcula las velocidades de transferencia de masa gas-líquido y sólido-liquido por medio de las correlaciones de Fillion, Forghani y Treybal. Asimismo, para el cálculo de las velocidades de transferencia de masa se tomó como base teórica la teoría de la doble película, cuyas ecuaciones con los balances de masa y energía se resuelven simultáneamente utilizando técnicas numéricas cuya fiabilidad se evaluó mediante la comparación con resultados reportados en la literatura. El presente trabajo utiliza un reactor Trickle bed para representar el comportamiento en la producción de alcanos C17 y C18 para poder determinar las composiciones de la triestearina, acido esteárico, octadecano y heptadecano utilizando el modelo propuesto por Zhang y ajustar las constantes del modelo para obtener una mayor predicción del mecanismo de reacción. También, se investigó la distribución de la concentración y la temperatura a lo largo del reactor variando variables como la presión de hidrógeno y las velocidades de transferencia de masa de cada reacción involucrada en el modelamiento. (Texto tomado de la fuente).Biologically derived raw materials are a highly desirable source of renewable fuels for fuel production. They can be grown renewablely and can be used to produce fuels with similar composition compared to conventional fossil fuels. Vegetable oils raw material for this purpose have increased their viability for industrial use. The process of hydrotreatment of vegetable oils is a process which depends largely on the composition of the raw material and the operating parameters, especially the temperature, type of catalyst and transport properties. For the oil used in hydrotreatment, the associated reaction pathways have been explored through experimental studies providing applicable models to determine the rate of hydrocarbons production. The model of the reaction of triestearin with hydrogen with supported catalyst, in a non-isothermal reactor, is investigated. The gas-liquid and solid-liquid mass transfer rates are calculated with several correlations proposed by Forghani and Trybal correlations. Likewise, for the calculation of mass transfer velocities, the double film theory was taken as theoretical basis, whose equations with mass and energy balances are solved simultaneously using numerical techniques whose reliability was evaluated by comparison with results reported in the literature. The present work models a Trickle bed reactor to represent the production of alkanes C17 and C18 to determine the compositions of triestearine, stearic acid, octadecan and heptadecan using a chemical kinetic model proposed in other study and adjusting the constants of the model to obtain a better prediction of the concentrations. Also, the distribution of concentration and temperature throughout the reactor was calculated using variables such as hydrogen pressure and mass transfer rates of each reaction involved in modeling.MaestríaMagíster en Ingeniería - Ingeniería QuímicaBiorrefinería y biorrefinaciónxx, 90 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería químicaVegetable oils as fuelPalm-oilChemical engineeringAceites vegetales como combustiblesAceites de palmaIngeniería químicaBiodieselModelamientoReactor trickle bedAceite de palmaBiodieselPalm oilTrickle bed reactorHydrotreatmentModelamiento y simulación de un reactor de hidrotratamiento para la producción de biodiésel no-ésterModeling and simulation of a hydrotreatment reactor for the production of non-ester biodieselTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAli, M. E. (2005). Handbook of Industrial Chemistry. McGraw-Hill.Alvarez, A. A. (2008). Modeling residue hydroprocessing in a multi-fixed-bed reactor system. Applied Catalysis A: General, 148-158.Ancheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.Benkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.Bezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.Bianchi, C. (2011). Non Edible Oils: Raw Materials for Sustainable Biodiésel. En M. M. Stoytcheva, Biodiésel. Feedstocks and Processing Technologies (págs. 3-22). Rijeka: InTech.Ceriani, R. G. (2009). Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilibria, 49-55.Choudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.Coumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.Dong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.Fangrui, M. M. (1999). Biodiésel Production: a review. Bioresource Technology, 1-15.Furimsky, E. (2013). Hydroprocessing challenges in biofuels production. Catalysis Today, 13-56.Hilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.Knothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.M. Snare, I. K.-A. (2007). Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation. Chemical Engineering Journal, 29-34.Mederos, F. A. (2009). Review on criteria to ensure ideal behaviors in trickle bed reactors. Applied Catalysis A: General, 1-19.Mohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.Poling, B. P. (2001). The Properties of gases nad liquids. New York: The McGraw-Hill.Sebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.Soo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.Vonortas, A. P. (2014). Comparative Analysis of Biodiésel versus Green Diesel. WIRE's Energy and Environment, 3-23.Wang, S. G. (2012). Catalytic Conversion of Carboxylic acids in bio-oil for Liquid Hydrocarbons Production. BIOMASS AND BIOENERGY, 138-143.Yuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.Zhang, H. L. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 238-248.Anand, M. S. (2012). Temperature Dependent reaction pathway for the anomalous hydrocracking of triglycerides in the presence of sulfided Co-Mo Catalyst. Bioresource Technol, 148-155.Ancheyta, J. (2011). Modeling and Simulation Catalytic Reactor for Petroleum Refining. Canada: John Wiley & Sons.Ansys. (2010). Help, Ansys Release. Ansys Inc, 1-130.Arun, N. S. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 240-255.Azizi, N. A.-A. (2013). Hydrotreating of Light Cycle Oil over NiMo and CoMo Catalysts with Different Supports. Fuel Processing Technology, 172-178.Benkrid, K. R. (1997). Prediction of pressure drop and liquid saturation in trickle-bed reactors operated high interaction regimes. Chemical Engineering Science, 4021-4032.Bernard, E. (2014). Biodiésel: Los aspectos mecánicos en los vehículos. Costa Rica: Centro Nacional de la Producción más Limpia.Bezergianni, S. D. (2010). Hydrotreating of waste cooking oil for biodiésel production. Part II: Effect of temperature on hydrocarbon composition. Bioresource Technology, 7658-7660.Bezergianni, S. D. (2013). Comparison Between Different Type of Renewable Diesel. Renewable and Sustainable Energy Reviews, 110-116.Bezergianni, S. K. (2009). Hydrocracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresource Technology , 3036-3042.Bhaskar, G. V. (2004). Three-Phase Reactor Model to Simulate the Performance of pilot-plant and industrial trickle bed reactors sustaining hydrotreating reactions. Ind. Eng. Chem. Res, 6654-6689.Boles, Y. A. (2012). Termodinamica. Mexico: McGRaw.British Petroleum. (20 de Marzo de 2018). british petroleum. Recuperado el 14 de Noviembre de 2015, de british petroleum: http://www.bp.comC.-Y. Yang, Z. F.-f. (2012). Review and prospects of Jatropha biodiésel industry in China. Renewable and Sustainable Energy Reviews, 2178-2190.Chianelli, R. B. (2009). Unsupported transition metal sulfide catalysts: 100 years of science and application. Catalysis Today, 275-286.Choudhary, T. (2011). Renewable Fuels Via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 1-12.Chu, C. N. (1985). Effective Thermal conductivity in trickle bed reactors application of effective medium theory and random walk analysis. Chemical Engineering Communications, 127-140.Constantinou, L. G. (1995). Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilibria , 11-22.Coumans, E. H. (2017). A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. pplied Catalysis B: Environmental, 290-301.Czernik, S. B. (2004). Overview of Applications of Biomass fast Pyrolysis Oil. Energy & Fuels, 590-598.Demirbas, A. (2000). Mechanisms of Liquefaction and Pyrolisis Reactions of Biomass. Energy Convrsion & Management, 633-646.Diya'uddeen, B. H. (2012). Performance Evaluation of Biodiésel from Used Domestic Waste Oils: A Review. Process Safety and Environmental Protection, 164-179.Dong-Sun, L. B.-S.-Y. (1998). Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta, 163-175.Dudukovic, M. L. (2002). Multiphase catalytic Reactors: A Perspective on Current Knowledge and Future Trends. Catalysis Reviews, 123-246.Ejisbouts, S. A. (2013). Economic and technical impacts of replacing Co and Ni promotion in hydrotreating catalysts. Applied Catalysis A: General, 169-182.Ellman, M. M. (1990). A new improved liquid hold-up correlation for trickle bed reactors. . Chemical Engineering Science, 1677-1684.Fillion, B. M. (2002). Kinetics, Gas-Liquid Mass Transfer, and Modeling of the Soybean Oil hydrogenation process. Ind. Eng. Chem. Res , 697-709.Fonteix, C. B. (1995). Haploid and diploid algorithms, a new approach for global optimization: compared performances. INT. J. SYSTEMS SCI, 1919-1933.Girgis, M. G. (1991). Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind. Eng. Chem. Res, 2021-2058.Gosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.Gosselink, R. H.-W.-H.-J.-E. (2013). Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. CHEMSUSCHEM REVIEWS, 1-20.Hilbers, T. S. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 1-8.IIuta, I. T. (1997). Gas-liquid mass transfer in fixed beds with two-phase cocurrent downflow: gas Newtonian and non-Newtonian liquid systems. . Chemical Engineering and Technology , 538-549.Jeczmionek, L. P.-S. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-procesing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal Effect-Theorical Considerations. Fuel, 1-5.Jo-Han Ng, H. K. (2009). Advances in Biodiésel fuel for Application in Compression Ignition Engines. Clean Techn Environ Policy, 459-493.Kalnes, T. M. (2008). Green diesel production by hydrorefining renewable feedstocks. Life cicle analysis of green diesel produced from renewable feedstocks. Biofuels, 1-10.Kan, K. G. (1979). Pressure drop and holdup in two-phase cocurrent trickle flows through beds of small particles. Industrial and Engineering Chemistry Process Design and Development, 760-.Kikhtyanin, O. R. (2010). Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel, 3085-3092.Knothe, G. (2010). Biodiésel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science, 364-373.Korsten, H. H. (1996). Three-Phase Reactor model for hydrotreating in pilot trickle-bed reactors. AIChE Journal , 1350-1360.Kubáta, A. S. (2011). Triacylglyceride thermal cracking: Pathways to Cyclic Hydrocarbons. energy & Fuels, 672-685.Larachi, F. L. (1991). Experimental study of a trickle bed reactor operating at hight pressure: two phase pressure drop and liquid saturation. Chemical Engineering Science, 1233-1246.Leung, D. W. (2010). A Review on Biodiésel Production Using Catalyzed Transesterification. Applied Energy, 1083-1095.Liuta, L. L. (1999). The generalized slit model: Pressure gradient, liquid holdup and wetting efficiency in gas-lquid trickle flow. Chemical Engineering Science, 5039-5045.Mapiour, M. (2009). Kinetics and Effects of H2 Partial Pressure on Hydrotreating of Heavy Gas Oil. Saskatoon: University of Saskatchewan .Mills, P. D. (1981). Evaluation of liquid-solid contacting in Trickle bed reactors by tracer method. AIChE Journal, 893-904.Mohammad, M. H. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and sustainable Energy Review, 121-132.Morel, F. K. (1997). Processes and Catalysts for Hydrocracking of Heavy Oil and Residues. En G. D. Forment, Hydrotreatment and hydrocracking of oil fractions (págs. 1-15). Francia: Elsevier Science B.V.Myung, I. (2003). Tutorial on Maximum Likelihood Estimation. Journal of Mathematical Psychology, 90-100.Nannoola, Y. R. (2007). Estimation of pure component properties part 2. Estimation of critical property data by group contribution. Fluid Phase Equilibria, 1-27.Nasikin, M. B.-H. (2009). Biogasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over NiMo/Zeolite Catalyst. World Applied Science Journal 5, 74-79.Niagan, S. S. (2011). Production of Liquid biofuels from Renewable Resources. Progress in Energy and Combustion Science, 52-68.O.B. Ayodelea, d. H. (2014). Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluoro-oxalate modified molybdenum catalyst: Kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 1-11.Pa¨ivi Ma¨ki-Arvela, I. K. (2007). Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy & Fuels, 30-41.Pankaj Kumar, }. S. (2014). Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 28-38.Prausnitz, J. L. (2000). Termodinámica molecular de los equilibrios de fases. Madrid: Prentice Hall Iberia.Quintero, J. R. (2012). Social and techno-economical analysis of biodiésel production in Peru. Energy Policy, 427-435.Ranade, V. C. (2011). Hydrodynamics and Flow Regimes. En V. C. Ranade, Trickle Bed Reactors (págs. 25-29). España: Elsevier.Randy L. Haupt, .. S. (2004). Practical genetic algorithms. New Jersey: WILEY-INTERSCIENCE.Rincón, P. C. (2012). A Propósito del Año Internacional de la Energía Sostenible para Todos. Innovación y Ciencia, 18-27.Roy, M. M. (2014). Performance and emissions of a diesel engine fueled by biodiésel–diesel, biodiésel–diesel-additive and kerosene–biodiésel blends. Energy Conversion and Management, 164-173.Sahu, R. B.-P. (2015). A review of recent advance in catalytic hydrocracking of heavy residues. Journal of industrial and engineering chemistry, 1-12.Sari, E. (2013). Green Diesel production via Catalytic hidrogenation/decarboxylation of triglycerides and fatty acids of vegestable oil and brown grase. Wayne State University, 1-146.Sarin, A. (2012). Biodiésel. Production and Properties. RCSPublishing.Satterfield, C. (1975). Trickle-Bed Reactor. AIChE Journal, 209-228.Sebos, I. M. (2009). Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Renewable diesel. Fuel, 145-149.Senol, O. R. (2007). Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts. Journal of Molecular Catalysis A: Chemical, 1-8.Shen, Z. M. (2015). Reaction mechanisms of thioetherification for mercaptans and olefins over sulfided Mo-Ni/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 120-127.Shuangning Xiu, A. S. (2012). Bio-Oil Production and Upgrading Research: A Review. Renewable and Sustainable Energy Reviews, 4406-4414.Singh, .. P. (2011). Production of liquid biofuels from renewable resources, . Progress in Energy and Combustion Science , 52-68.Sjoberg, J. Z. (1995). Nonlinear Black-Box Modeling in System Identification: a Unfied Overview. Automatica, 1691-1724.Smith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.Smith, J. (1981). External Transport Process in Heterogeneous Reactions. En J. Smith, Chemical Engineering Kinetics (págs. 434-437). Mc-GRAW-HILL.Soo-Young, N. (2014). Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review. Fuel, 88-96.Sotelo, R. T.-Z.-L. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. En I. Karamé, Hidrogenation (págs. 188-216). Beirut: INTECH.Speight, J. A. (2007). Hydroprocessing of Heavy Oils and Residua. New York: Taylor & Francis Group.Startsev, A. (1995). The Mechanism of HDS Catalysis. Catalysis Reviews: Science and Engineering , 353-423.Suarez-Palacios, O. (2011). Producción y Modelamiento de Gliceril-Esteres como Plastificantes para PVC. Bogota: Universidad Nacional de Colombia.Sudhakara Reddy., Y. S. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac Kinet Mech Cat, 1-50.Thomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (First ed.). New York: VCH.Treybal, R. (2000). Operaciones de transferencia de masa. Rhode Island: McGRAW-HILL.Wammes, W. W. (1991). Hydrodynamics is a pressurized cocurrent gas-liquid trickle bed reactor. . Chemical Engineering Technology, 406.Wang, C. T. (2012). One-Step Hydrotreatment of Vegetable Oil to Produce High Quality Diesel-Range Alkanes. ChemSUSChem, 1-11.Wang, X. (2013). Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engne fueled with diesel and biodiésel at high altitude. Fuel, 852-858.Water, E. P. (1997). Identification of Parametric Models. Birmingham: Springer.Whitley, D. (2016). A Genetic Algorithm Tutorial. Computer Science Department, 1-20.Yenumala, S. M. (2016). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reac. Kinet. Mech.Cat, 1-15.Yuwei Bie Juha, L. J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General , 1-23.Yuwei Bie, J. K. (2015). Hydrodeoxygenation of methyl heptanoate over Rh/ZrO2 catalyst as a model reaction for biofuel production: kinetic modeling based on reaction mechanism. Industrial & Engineering Chemistry Research, 1-37.EstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalORIGINAL1022345193.2022.pdf1022345193.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1921851https://repositorio.unal.edu.co/bitstream/unal/81095/3/1022345193.2022.pdf72ceebeaa340b80c4fdbd1a72fd78a9cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81095/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1022345193.2022.pdf.jpg1022345193.2022.pdf.jpgGenerated Thumbnailimage/jpeg4360https://repositorio.unal.edu.co/bitstream/unal/81095/5/1022345193.2022.pdf.jpg59e9656584faae647beb21c1bc63da25MD55unal/81095oai:repositorio.unal.edu.co:unal/810952024-08-03 23:10:38.414Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK