Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite
El cuesco de palma de aceite (CPA) es un residuo del proceso de extracción de aceite de palma, que tiene características adecuadas para la producción de carbón activado (CA). Colombia ocupa el cuarto lugar en el mundo en producción de aceite de palma y se estima que en 2019 la cantidad producida de...
- Autores:
-
Alvarez Alvarez, Oscar Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79381
- Palabra clave:
- 600 - Tecnología (Ciencias aplicadas)
Activated carbon
Paraquat
Carbón activado
Aceite de palma
PALM OIL
Carbón activado
Cuesco de palma
Curvas de ruptura
Paraquat
Limpieza de agua
Activated carbon
Oil palm kernel shell
Paraquat
Breakthrough curves
Water treatment
Aceite vegetal
Vegetable oils
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNACIONAL2_93c96df2173cc579c29b51e5b43fc250 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79381 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
title |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
spellingShingle |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite 600 - Tecnología (Ciencias aplicadas) Activated carbon Paraquat Carbón activado Aceite de palma PALM OIL Carbón activado Cuesco de palma Curvas de ruptura Paraquat Limpieza de agua Activated carbon Oil palm kernel shell Paraquat Breakthrough curves Water treatment Aceite vegetal Vegetable oils |
title_short |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
title_full |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
title_fullStr |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
title_full_unstemmed |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
title_sort |
Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite |
dc.creator.fl_str_mv |
Alvarez Alvarez, Oscar Fernando |
dc.contributor.advisor.none.fl_str_mv |
Rincón Prat, Sonia Lucia |
dc.contributor.author.none.fl_str_mv |
Alvarez Alvarez, Oscar Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Biomasa y Optimización Térmica de Procesos - BIOT |
dc.subject.ddc.spa.fl_str_mv |
600 - Tecnología (Ciencias aplicadas) |
topic |
600 - Tecnología (Ciencias aplicadas) Activated carbon Paraquat Carbón activado Aceite de palma PALM OIL Carbón activado Cuesco de palma Curvas de ruptura Paraquat Limpieza de agua Activated carbon Oil palm kernel shell Paraquat Breakthrough curves Water treatment Aceite vegetal Vegetable oils |
dc.subject.agrovoc.none.fl_str_mv |
Activated carbon Paraquat Carbón activado |
dc.subject.ocde.none.fl_str_mv |
Aceite de palma PALM OIL |
dc.subject.proposal.spa.fl_str_mv |
Carbón activado Cuesco de palma Curvas de ruptura Paraquat Limpieza de agua |
dc.subject.proposal.eng.fl_str_mv |
Activated carbon Oil palm kernel shell Paraquat Breakthrough curves Water treatment |
dc.subject.unesco.none.fl_str_mv |
Aceite vegetal Vegetable oils |
description |
El cuesco de palma de aceite (CPA) es un residuo del proceso de extracción de aceite de palma, que tiene características adecuadas para la producción de carbón activado (CA). Colombia ocupa el cuarto lugar en el mundo en producción de aceite de palma y se estima que en 2019 la cantidad producida de CPA fue de aproximadamente 336.000 ton por año. Dentro de los contaminantes de las aguas superficiales, el pesticida Paraquat se identifica como uno de los más peligrosos para la salud humana y es el más utilizado en la agricultura en Colombia. Se encuentra en todo el mundo en aguas naturales en el rango de 50 µg/l a 5000 µg /l. El CPA se carbonizó primero en un horno horizontal bajo atmósfera de N2 hasta 850 ºC durante 30 min. Después de eso, tres lotes, cada uno de 300 g de carbonizado de CPA se activaron en el mismo reactor horizontal por medio de gasificación parcial usando H2O como agente de reacción. El proceso de activación comienza con una etapa de calentamiento elevando la temperatura de 20 ºC a 850 ºC en aproximadamente 280 min bajo un flujo de 0,481 l/min N2 en condiciones estándar. Posteriormente, en la etapa de activación, el flujo de N2 se suspende y se reemplaza por un flujo de vapor de agua a 20,68 l/min mientras se mantiene la temperatura a 850 ± 10 ºC durante 310 min. Finalmente, el flujo de vapor de agua se cambia a N2 y el horno se enfría hasta temperatura ambiente. Como resultado del proceso de activación, se obtuvo un carbón activado (CA-CPA) con aproximadamente un 50% de grado de activación y un área superficial de 1200 m2/g. El carbón activado se caracteriza por medio de la determinación del pH, el contenido de agua soluble, el contenido de ácido extraíble, índice de yodo, índice de azul de metileno, adsorción de fenol, área de superficie BET de adsorción de N2 y densidad. La capacidad de adsorción del CA-CPA de paraquat diluido en agua se estudia midiendo curvas de ruptura en una columna de adsorción utilizando concentraciones iniciales de paraquat entre 600 µg/l y 5000 µg/l. Se realiza una comparación utilizando un carbón activado comercial (CAC) referencia Hydraffin de la compañía Donau Carbon. La determinación de la concentración de paraquat en el agua se realiza por voltamperometría. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-04-06T18:39:15Z |
dc.date.available.none.fl_str_mv |
2021-04-06T18:39:15Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79381 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional UN |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79381 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional UN |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] M. J. Ahmed. Preparation of activated carbons from date (phoenix dactylifera l.) palm stones and application for wastewater treatments. Process safety and environmental protection, 102:168-182, 2016. [2] D. Alvarez. Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en soluci on acuosa. Master's thesis, Universidad Nacional de Colombia, 2019. [3] O. Alvarez. Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite. Master's thesis, Universidad Nacional de Colombia, 2020. [4] W. R. Alza-Camacho, J. M. García-Colmenares, and S. P. Chaparro-Acu~na. Voltammetric quantification of paraquat and glyphosate in surface waters. Corpoica Ciencia y Tecnología Agropecuaria, 17(3):331-345, 2016. [5] F. A. Aouada, Z. Pan, W. J. Orts, and L. H. Mattoso. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. Journal of Applied Polymer Science, 114(4):2139-2148, 2009. [6] G. Aschermann, F. Zietzschmann, and M. Jekel. In uence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption. Water research, 133:123-131, 2018. [7] ASTM. Astm d 6586-03: Standard practice for the prediction of contaminant adsorption on gac in aqueous systems using rapid small-scale column tests, 2008. [8] D. Atwood and C. Paisley-Jones. Pesticides industry sales and usage: 2008-2012 market estimates. US Environmental Protection Agency, Washington, DC, 20460, 2017. [9] R. C. Bansal and M. Goyal. Activated carbon adsorption. CRC press, 2005. [10] S. F. Barna, E. A. Ott, T. H. Nguyen, M. A. Shannon, and A. Scheeline. Silica adsorbents and peroxide functionality for removing paraquat from wastewater. Journal of Environmental Engineering, 139(7):975-985, 2013. [11] S. Brunauer. Xiv. The adsorption of gases and vapors, 1, 1943. [12] F. Cecen and Ö. Aktas. Activated carbon for water and wastewater treatment: Inte- gration of adsorption and biological treatment. John Wiley & Sons, 2011. [13] P. Chuntib and J. Jakmunee. Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta, 144:432-438, 2015. [14] P. Chuntib, S. Themsirimongkon, S. Saipanya, and J. Jakmunee. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/nafion for sensitive determination of paraquat. Talanta, 170:1-8, 2017. [15] D. S. Cocenza, M. A. de Moraes, M. M. Beppu, and L. F. Fraceto. Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water, Air, & Soil Pollution, 223(6):3093-3104, 2012. [16] D. D. P. E. Y. D. CONSEJO. Propuesta de directiva del parlamento europeo y del consejo relativa a la calidad del agua destinada al consumo humano. Ecosostenible, 2019. [17] N. E. R. Contreras, Á. S. S. Ramírez, E. M. G. González, E. E. Y. Angarita, and J. C. Espinosa. Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletines técnicos, 46, 2011. [18] L. C. de Figueiredo-Filho, M. Baccarin, B. C. Janegitz, and O. Fatibello-Filho. A disposable and inexpensive bismuth film minisensor for a voltammetric determination of diquat and paraquat pesticides in natural water samples. Sensors and Actuators B: Chemical, 240:749-756, 2017. [19] L. C. S. de Figueiredo-Filho, V. B. dos Santos, B. C. Janegitz, T. B. Guerreiro, O. Fatibello-Filho, R. C. Faria, and L. H. Marcolino-Junior. Di erential pulse voltammetric determination of paraquat using a bismuth-film electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electro- analysis, 22(11):1260-1266, 2010. [20] O. De Schutter. Report of the Special Rapporteur on the right to food. UN, 2009. [21] D. De Souza and S. Machado. Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes. Analytica Chimica Acta, 546(1):85-91, 2005. [22] D. De Souza, S. A. Machado, and R. C. Pires. Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes. Talanta, 69(5):1200-1207, 2006. [23] A. Dhaouadi and N. Adhoum. Degradation of paraquat herbicide by electrochemical advanced oxidation methods. Journal of Electroanalytical Chemistry, 637(1-2):33-42, 2009. [24] H. El Harmoudi, M. Achak, A. Farahi, S. Lahrich, L. El Gaini, M. Abdennouri, A. Bouzidi, M. Bakasse, and M. El Mhammedi. Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode. Talanta, 115:172-177, 2013. [25] S. El Kasmi, S. Lahrich, A. Farahi, M. Zriouil, M. Ahmamou, M. Bakasse, and M. El Mhammedi. Electrochemical determination of paraquat in potato, lemon, orange and natural water samples using sensitive-rich clay carbon electrode. Journal of the Taiwan Institute of Chemical Engineers, 58:165-172, 2016. [26] EPA. Paraquat dichloride. Citeseer, 1997. [27] EPA. 2018 edition of the drinking water standards and health advisories tables. urlhttps://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf, 2018. Accedido 27/04/2019. [28] EPA. Seguridad laboral al usar pesticidas. urlhttps://espanol.epa.gov/seguridadlaboral-al-usar-pesticidas/dicloruro-de-paraquat, 2019. Accedido 24/02/2020. [29] S. Ergun. Fluid flow through packed columns. Chem. Eng. Prog., 48:89-94, 1952. [30] U. Europea. Diario oficial de la Uni on Europea. Oficina de Publicaciones, 2011. [31] FAO. Agua y cultivos, 2002. [32] FAO. Informe sobre temas hídricos, 2013. [33] A. Farahi, M. Achak, L. El Gaini, M. El Mhammedi, and M. Bakasse. Silver particles modified carbon paste electrodes for di erential pulse voltammetric determination of paraquat in ambient water samples. Journal of the Association of Arab Universities for Basic and Applied Sciences, 19(1):37-43, 2016. [34] A. Farahi, S. Lahrich, M. Achak, L. El Gaini, M. Bakasse, and M. El Mhammedi. Parameters a ecting the determination of paraquat at silver rotating electrodes using di erential pulse voltammetry. Analytical Chemistry Research, 1:16-21, 2014. [35] Fedepalma. Desempe~no del sector palmero colombiano. urlhttp://web.fedepalma.org/sites/default/files/files/18072016, 2016. Accedido 10/04/2019. [36] T. Fernandes, S. F. Soares, T. Trindade, and A. L. Daniel-da Silva. Magnetic hybrid nanosorbents for the uptake of paraquat from water. Nanomaterials, 7(3):68, 2017. [37] K. Foo and B. Hameed. Detoxification of pesticide waste via activated carbon adsorption process. Journal of hazardous materials, 175(1-3):1-11, 2010. [38] L. Gao, J. Liu, C. Wang, G. Liu, X. Niu, C. Shu, and J. Zhu. Fast determination of paraquat in plasma and urine samples by solid-phase microextraction and gas chromatography{mass spectrometry. Journal of Chromatography B, 944:136-140, 2014. [39] I. Gardi, S. Nir, and Y. G. Mishael. Filtration of triazine herbicides by polymer-clay sorbents: Coupling an experimental mechanistic approach with empirical modeling. Water research, 70:64-73, 2015. [40] A. Gevaerd, P. R. de Oliveira, A. S. Mangrich, M. F. Bergamini, and L. H. Marcolino- Junior. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Materials Science and Engineering: C, 62:123-129, 2016. [41] E. Gilliland. Fluidised particles, jf davidson and d. harrison, cambridge university press, new york (1963). 155 pages. AIChE Journal, 10(5):783-785, 1964. [42] A. Gómez, S. Rincón, and W. Klose. Carbón activado de cuesco de palma: estudio de termogravimetría y estructura. kassel university press GmbH, 2010. [43] R. G. Gómez. Efecto del control de malezas con paraquat y glifosato sobre la erosi on y p erdida de nutrimentos del suelo en cafeto. Agronomía Mesoamericana, pages 77-87, 2005. [44] U. Gómez, F. C. González, C. Benavides, N. Angulo, V. Llinás, L. M. Q. Quiceno, D. Padilla, and P. Castaño. Impacto en la mortalidad de un tratamiento conjugado, en pacientes intoxicados no ocupacionalmente, con paraquat en el hospital universitario san vicente de paúl de medellín, entre agosto de 2002 y agosto de 2003. Iatreia, 17(1):24-33, 2004. [45] N. K. Hamadi, S. Swaminathan, and X. D. Chen. Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, 112(1-2):133-141, 2004. [46] C. Hao, X. Zhao, D. Morse, P. Yang, V. Taguchi, and F. Morra. Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides. Journal of Chromatography A, 1304:169-176, 2013. [47] ICA. Registros nacionales febrero 28 de 2017, 2017. [48] J. Incédy, T. Lengyed, A. Ure, A. Gelencsér, and A. Hulanicki. International union of pure and applied chemistry (iupac), compendium of analytical nomenclature, 1998. [49] C. M. Infante, A. Morales-Rubio, M. de La Guardia, and F. R. Rocha. A multicommuted flow system with solenoid micro-pumps for paraquat determination in natural waters. Talanta, 75(5):1376-1381, 2008. [50] S. Jafarinejad. Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Int Res J Appl Basic Sci, 9:1758-1774, 2015. [51] A. Jain, K. K. Verma, and A. Townshend. Determination of paraquat by flow-injection spectrophotometry. Analytica chimica acta, 284(2):275-279, 1993. [52] W. Kast and W. Otten. Der durchbruch in adsorptions-festbetten: Methoden der berechnung und einflu der verfahrensparameter. Chemie Ingenieur Technik, 59(1):1-12, 1987. [53] J. Liddle. The use of powered hydraffin active carbon for water purification. Journal of the Society of Chemical Industry, 51(16):337-344, 1932. [54] K.-Y. A. Lin, Y.-T. Heish, T.-Y. Tsai, and C.-F. Huang. Tempo-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water. Cellulose, 22(5):3261-3274, 2015. [55] D. Luna, A. González, M. Gordon, and N. Martín. Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64(10):39-48, 2007. [56] C. B. Marien, T. Cottineau, D. Robert, and P. Drogui. Tio2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat. Applied Catalysis B: Environmental, 194:1-6, 2016. [57] M. Marín Cuartas and M. C. Berrouet Mejía. Intoxicación por paraquat. CES Medicina, 30(1):114-121, 2016. [58] H. Marsh and F. R. Reinoso. Activated carbon. Elsevier, 2006. [59] F. Maya, J. M. Estela, and V. Cerdà. Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system. Talanta, 85(1):588-595, 2011. [60] Minagricultura. Registros plaguicidas registrados 26 de mayo de 2020, 2020. [61] MINAMBIENTE. Resolución no. 0631 del 17 marzo de 2015, 2015. [62] MINSALUD. Decreto 475 de 1998 marzo 10, 1998. [63] T. Nakamura, N. Kawasaki, H. Ogawa, S. Tanada, M. Kogirima, and M. Imaki. Adsorption removal of paraquat and diquat onto activated carbon at different adsorption temperature. Toxicological & Environmental Chemistry, 70(3-4):275-280, 1999. [64] A. Namane and A. Hellal. The dynamic adsorption characteristics of phenol by granular activated carbon. Journal of hazardous materials, 137(1):618-625, 2006. [65] C. P. Nanseu-Njiki, G. K. Dedzo, and E. Ngameni. Study of the removal of paraquat from aqueous solution by biosorption onto ayous (triplochiton schleroxylon) sawdust. Journal of Hazardous Materials, 179(1-3):63-71, 2010. [66] J. E. B. Ojeda. Fabricación de adoquines para uso en vías peatonales, usando cuesco de palma africana. INGE CUC, 6(1):67-78, 2010. [67] ONU. World population prospects 2017, 2017. [68] W. H. Organization et al. The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. Geneva: World Health Organization, 2010. [69] M. Ortegon. Adsorción de fenol en soluci on acuosa empleando carbón activado de cuesco de palma de aceite: determinación de isotermas de adsorción, determinación de curvas de ruptura, determinación de curvas de sorción en fase acuosa. Master's thesis, Universidad Nacional de Colombia, 2015. [70] M. Othman, F. Roddick, and R. Snow. Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water research, 35(12):2943-2949, 2001. [71] A. Pop, F. Manea, A. Flueras, and J. Schoonman. Simultaneous voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors, 17(9):2033, 2017. [72] Á. d. Prada Díaz. Estudio experimental de la aglomeración de partículas en un lecho fluidizado. Master's thesis, Universidad Carlos III de Madrid, 2014. [73] Á. Prieto Padilla. Caracterización hidrodinámica de un lecho fluido. Master's thesis, Universidad Carlos III de Madrid, 2007. [74] S. Ragan and N. Megonnell. Activated carbon from renewable resources-lignin. Ce- llulose Chemistry and Technology, 45(7):527, 2011. [75] M. Rai, J. V. Das, and V. Gupta. A sensitive determination of paraquat by spectrophotometry. Talanta, 45(2):343-348, 1997. [76] M. Raupach, W. W. Emerson, and P. G. Slade. The arrangement of paraquat bound by vermiculite and montmorillonite. Journal of Colloid and Interface Science, 69(3):398-408, 1979. [77] P. Reynoso Quispe and R. J. d. Carvalho. Degradación del pesticida paraquat a través del proceso de ozonización. Revista CENIC. Ciencias Qu micas, 41, 2010. [78] S. Rincón Pratt. Zur Adsorption und Reaktion von Sticksto monoxid an Aktivkohle. PhD thesis, Universitat Kassel, 2005. [79] X.-L. Ruan, J.-J. Qiu, C. Wu, T. Huang, R.-B. Meng, and Y.-Q. Lai. Magnetic singlewalled carbon nanotubes{dispersive solid-phase extraction method combined with liquid chromatography{tandem mass spectrometry for the determination of paraquat in urine. Journal of Chromatography B, 965:85-90, 2014. [80] D. M. Ruthven. Principles of adsorption and adsorption processes. John Wiley & Sons, 1984. [81] M. Salgado. Cuesco de palma africana, un nuevo combustible para uso comercial en ecuador: análisis económico y evidencia experimental. CESAM, 01 2017. [82] A. E. L. Sandoval, J. M. G. Colmenares, and S. P. C. Acu~na. Validación del método voltamétrico para la determinación de residuos de paraquat aplicado en cultivos de papa. Acta Agronómica, 64(4):336-341, 2015. [83] M. S. Santos, A. Alves, and L. M. Madeira. Paraquat removal from water by oxidation with fenton's reagent. Chemical Engineering Journal, 175:279-290, 2011. [84] P. Shivhare and V. Gupta. Spectrophotometric method for the determination of paraquat in water, grain and plant materials. Analyst, 116(4):391-393, 1991. [85] D. A. Sidhoum, M. Socías-Viciana, M. Ureña-Amate, A. Derdour, E. Gonz alez-Pradas, and N. Debbagh-Boutarbouch. Removal of paraquat from water by an algerian bentonite. Applied Clay Science, 83:441-448, 2013. [86] J. Sieliechi and P. Thue. Removal of paraquat from drinking water by activated carbon prepared from waste wood. Desalination and Water Treatment, 55(4):986-998, 2015. [87] Sispa. Evolución histórica anual de fruto procesado en colombia. urlhttp://sispaweb.fedepalma.org/sispaweb, 2018. Accedido 10/04/2019. [88] A. Srivastava, N. K. Jangid, M. Srivastava, and V. Rawat. Pesticides as water pollutants. In Handbook of Research on the Adverse E ects of Pesticide Pollution in Aquatic Ecosystems, pages 1-19. IGI Global, 2019. [89] Syngenta. Etiqueta gramoxone super, 2016. [90] V. Y. Taguchi, S. W. Jenkins, P. W. Crozier, and D. T. Wang. Determination of diquat and paraquat in water by liquid chromatography-(electrospray ionization) mass spectrometry. Journal of the American Society for Mass Spectrometry, 9(8):830-839, 1998. [91] X.-f. Tan, S.-b. Liu, Y.-g. Liu, Y.-l. Gu, G.-m. Zeng, X.-j. Hu, X. Wang, S.-h. Liu, and L.-h. Jiang. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource technology, 227:359-372, 2017. [92] H. Tomková, R. Sokolová, T. Opletal, P. Kucerov a, L. Kucera, J. Soucková, J. Skopalov á, and P. Barták. Electrochemical sensor based on phospholipid modified glassy carbon electrode-determination of paraquat. Journal of Electroanalytical Chemistry, 821:33-39, 2018. [93] W. T. Tsai, K. Hsien, Y. Chang, and C. Lo. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource technology, 96(6):657-663, 2005. [94] K. Tyszczuk-Rotko, I. Beczkowska, and A. Nosal-Wiercinska. Simple, selective and sensitive voltammetric method for the determination of herbicide (paraquat) using a bare boron-doped diamond electrode. Diamond and Related Materials, 50:86-90, 2014. [95] U. Water. Sustainable development goal 6 synthesis report on water and sanitation. Published by the United Nations New York, New York, 10017, 2018. [96] C. Wen and Y. Yu. A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3):610-612, 1966. [97] E. Worch. Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter, 2012. [98] A. WWAP, UNESCO. Informe mundial de las naciones unidas sobre el desarrollo de los recursos hidricos 2019: No dejar nadie atras, 2019. [99] C. C. Xu and J. Zhu. Prediction of the minimum fluidization velocity for fine particles of various degrees of cohesiveness. Chemical Engineering Communications, 196(4):499-517, 2008. [100] D. Zadaka, S. Nir, A. Radian, and Y. G. Mishael. Atrazine removal from water by polycation-clay composites: effect of dissolved organic matter and comparison to activated carbon. water research, 43(3):677-683, 2009. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (115 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79381/1/1061685629.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79381/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79381/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79381/4/1061685629.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
46ac19920d7aeca676188025ef17e5d7 cccfe52f796b7c63423298c2d3365fc6 4460e5956bc1d1639be9ae6146a50347 af4cf53fd7cf6e79b16e6d0aec9de57a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089710785527808 |
spelling |
Rincón Prat, Sonia Luciadbed86bc6660323dc905f0d4e4caa888Alvarez Alvarez, Oscar Fernandoa3c9996031a84538de52ad956952da13Biomasa y Optimización Térmica de Procesos - BIOT2021-04-06T18:39:15Z2021-04-06T18:39:15Z2020https://repositorio.unal.edu.co/handle/unal/79381Universidad Nacional de ColombiaRepositorio Institucional UNhttps://repositorio.unal.edu.co/El cuesco de palma de aceite (CPA) es un residuo del proceso de extracción de aceite de palma, que tiene características adecuadas para la producción de carbón activado (CA). Colombia ocupa el cuarto lugar en el mundo en producción de aceite de palma y se estima que en 2019 la cantidad producida de CPA fue de aproximadamente 336.000 ton por año. Dentro de los contaminantes de las aguas superficiales, el pesticida Paraquat se identifica como uno de los más peligrosos para la salud humana y es el más utilizado en la agricultura en Colombia. Se encuentra en todo el mundo en aguas naturales en el rango de 50 µg/l a 5000 µg /l. El CPA se carbonizó primero en un horno horizontal bajo atmósfera de N2 hasta 850 ºC durante 30 min. Después de eso, tres lotes, cada uno de 300 g de carbonizado de CPA se activaron en el mismo reactor horizontal por medio de gasificación parcial usando H2O como agente de reacción. El proceso de activación comienza con una etapa de calentamiento elevando la temperatura de 20 ºC a 850 ºC en aproximadamente 280 min bajo un flujo de 0,481 l/min N2 en condiciones estándar. Posteriormente, en la etapa de activación, el flujo de N2 se suspende y se reemplaza por un flujo de vapor de agua a 20,68 l/min mientras se mantiene la temperatura a 850 ± 10 ºC durante 310 min. Finalmente, el flujo de vapor de agua se cambia a N2 y el horno se enfría hasta temperatura ambiente. Como resultado del proceso de activación, se obtuvo un carbón activado (CA-CPA) con aproximadamente un 50% de grado de activación y un área superficial de 1200 m2/g. El carbón activado se caracteriza por medio de la determinación del pH, el contenido de agua soluble, el contenido de ácido extraíble, índice de yodo, índice de azul de metileno, adsorción de fenol, área de superficie BET de adsorción de N2 y densidad. La capacidad de adsorción del CA-CPA de paraquat diluido en agua se estudia midiendo curvas de ruptura en una columna de adsorción utilizando concentraciones iniciales de paraquat entre 600 µg/l y 5000 µg/l. Se realiza una comparación utilizando un carbón activado comercial (CAC) referencia Hydraffin de la compañía Donau Carbon. La determinación de la concentración de paraquat en el agua se realiza por voltamperometría.Oil Palm Kernel Shell (OPKS) is a residue of the palm oil extraction process, which has good characteristics for the production of activated carbon (AC). Colombia ranks fourth in the world in palm oil production and it is estimated that in 2019 the amount produced of OPKS was approximately 336.000 ton per year. Within the contaminants of surface waters, the pesticide paraquat is identified as one of the most dangerous for human health and most used in agriculture in Colombia. It is found worldwide in natural waters in the range of 50 µg/l to 5000 µg/l. Oil palm kernel shells were first carbonized in a horizontal oven under N2 atmosphere until 850 ºC for 30 min. After that, three batches, each of 300 g of the carbonized OPKS (COPKS) were activated in the same horizontal reactor by means of partial gasification using H2O as reaction agent. The activation process starts with a heating stage by raising the temperature from 20 ºC to 850 ºC in approximately 280 minutes under a flow of 481 ml/min N2 at standard conditions. Subsequently in the activation stage the flow of N2 is suspended and replaced by a flow of 20,68 l/min steam while maintaining the temperature at 850 ± 10 ºC for another 310 minutes. Finally the flow of steam is changed to N2 and the oven is cooled down until ambient temperature. As a result of the activation process, an activated carbon (AC-OPKS) with approximately 50% degree of activation and a surface area of 1200 m2/g were obtained. The activated carbon is characterized by means of determination of pH, soluble water content, extractable acid content, iodine number, methylene blue index, phenol adsorption, BET surface area from N2 adsorption and density. The adsorption capacity of the AC-OPKS towards paraquat is studied by measuring breakthrough curves in an adsorption column using initial concentrations of Paraquat between 600 µg/l and 5000 µg/l. A comparison is performed by using a commercial activated carbon CO-AC from the company Donau Carbon ref. Hydraffin. The determination of the concentration of paraquat in water is made by voltammetry.MaestríaInvestigación en el uso de biomasa como fuente renovable de energía a través de su procesamiento termoquímico. Específicamente por medio de pirólisis y gasificación - Disminución de emisión de gases contaminantes. - Optimización térmica de procesosTérmica, fluidos y medio ambiente1 recurso en línea (115 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotáhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2600 - Tecnología (Ciencias aplicadas)Activated carbonParaquatCarbón activadoAceite de palmaPALM OILCarbón activadoCuesco de palmaCurvas de rupturaParaquatLimpieza de aguaActivated carbonOil palm kernel shellParaquatBreakthrough curvesWater treatmentAceite vegetalVegetable oilsRemoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceiteTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] M. J. Ahmed. Preparation of activated carbons from date (phoenix dactylifera l.) palm stones and application for wastewater treatments. Process safety and environmental protection, 102:168-182, 2016.[2] D. Alvarez. Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en soluci on acuosa. Master's thesis, Universidad Nacional de Colombia, 2019.[3] O. Alvarez. Remoción de paraquat diluido en agua mediante carbón activado de cuesco de palma de aceite. Master's thesis, Universidad Nacional de Colombia, 2020.[4] W. R. Alza-Camacho, J. M. García-Colmenares, and S. P. Chaparro-Acu~na. Voltammetric quantification of paraquat and glyphosate in surface waters. Corpoica Ciencia y Tecnología Agropecuaria, 17(3):331-345, 2016.[5] F. A. Aouada, Z. Pan, W. J. Orts, and L. H. Mattoso. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. Journal of Applied Polymer Science, 114(4):2139-2148, 2009.[6] G. Aschermann, F. Zietzschmann, and M. Jekel. In uence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption. Water research, 133:123-131, 2018.[7] ASTM. Astm d 6586-03: Standard practice for the prediction of contaminant adsorption on gac in aqueous systems using rapid small-scale column tests, 2008.[8] D. Atwood and C. Paisley-Jones. Pesticides industry sales and usage: 2008-2012 market estimates. US Environmental Protection Agency, Washington, DC, 20460, 2017.[9] R. C. Bansal and M. Goyal. Activated carbon adsorption. CRC press, 2005.[10] S. F. Barna, E. A. Ott, T. H. Nguyen, M. A. Shannon, and A. Scheeline. Silica adsorbents and peroxide functionality for removing paraquat from wastewater. Journal of Environmental Engineering, 139(7):975-985, 2013.[11] S. Brunauer. Xiv. The adsorption of gases and vapors, 1, 1943.[12] F. Cecen and Ö. Aktas. Activated carbon for water and wastewater treatment: Inte- gration of adsorption and biological treatment. John Wiley & Sons, 2011.[13] P. Chuntib and J. Jakmunee. Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta, 144:432-438, 2015.[14] P. Chuntib, S. Themsirimongkon, S. Saipanya, and J. Jakmunee. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/nafion for sensitive determination of paraquat. Talanta, 170:1-8, 2017.[15] D. S. Cocenza, M. A. de Moraes, M. M. Beppu, and L. F. Fraceto. Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water, Air, & Soil Pollution, 223(6):3093-3104, 2012.[16] D. D. P. E. Y. D. CONSEJO. Propuesta de directiva del parlamento europeo y del consejo relativa a la calidad del agua destinada al consumo humano. Ecosostenible, 2019.[17] N. E. R. Contreras, Á. S. S. Ramírez, E. M. G. González, E. E. Y. Angarita, and J. C. Espinosa. Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletines técnicos, 46, 2011.[18] L. C. de Figueiredo-Filho, M. Baccarin, B. C. Janegitz, and O. Fatibello-Filho. A disposable and inexpensive bismuth film minisensor for a voltammetric determination of diquat and paraquat pesticides in natural water samples. Sensors and Actuators B: Chemical, 240:749-756, 2017.[19] L. C. S. de Figueiredo-Filho, V. B. dos Santos, B. C. Janegitz, T. B. Guerreiro, O. Fatibello-Filho, R. C. Faria, and L. H. Marcolino-Junior. Di erential pulse voltammetric determination of paraquat using a bismuth-film electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electro- analysis, 22(11):1260-1266, 2010.[20] O. De Schutter. Report of the Special Rapporteur on the right to food. UN, 2009.[21] D. De Souza and S. Machado. Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes. Analytica Chimica Acta, 546(1):85-91, 2005.[22] D. De Souza, S. A. Machado, and R. C. Pires. Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes. Talanta, 69(5):1200-1207, 2006.[23] A. Dhaouadi and N. Adhoum. Degradation of paraquat herbicide by electrochemical advanced oxidation methods. Journal of Electroanalytical Chemistry, 637(1-2):33-42, 2009.[24] H. El Harmoudi, M. Achak, A. Farahi, S. Lahrich, L. El Gaini, M. Abdennouri, A. Bouzidi, M. Bakasse, and M. El Mhammedi. Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode. Talanta, 115:172-177, 2013.[25] S. El Kasmi, S. Lahrich, A. Farahi, M. Zriouil, M. Ahmamou, M. Bakasse, and M. El Mhammedi. Electrochemical determination of paraquat in potato, lemon, orange and natural water samples using sensitive-rich clay carbon electrode. Journal of the Taiwan Institute of Chemical Engineers, 58:165-172, 2016.[26] EPA. Paraquat dichloride. Citeseer, 1997.[27] EPA. 2018 edition of the drinking water standards and health advisories tables. urlhttps://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf, 2018. Accedido 27/04/2019.[28] EPA. Seguridad laboral al usar pesticidas. urlhttps://espanol.epa.gov/seguridadlaboral-al-usar-pesticidas/dicloruro-de-paraquat, 2019. Accedido 24/02/2020.[29] S. Ergun. Fluid flow through packed columns. Chem. Eng. Prog., 48:89-94, 1952.[30] U. Europea. Diario oficial de la Uni on Europea. Oficina de Publicaciones, 2011.[31] FAO. Agua y cultivos, 2002.[32] FAO. Informe sobre temas hídricos, 2013.[33] A. Farahi, M. Achak, L. El Gaini, M. El Mhammedi, and M. Bakasse. Silver particles modified carbon paste electrodes for di erential pulse voltammetric determination of paraquat in ambient water samples. Journal of the Association of Arab Universities for Basic and Applied Sciences, 19(1):37-43, 2016.[34] A. Farahi, S. Lahrich, M. Achak, L. El Gaini, M. Bakasse, and M. El Mhammedi. Parameters a ecting the determination of paraquat at silver rotating electrodes using di erential pulse voltammetry. Analytical Chemistry Research, 1:16-21, 2014.[35] Fedepalma. Desempe~no del sector palmero colombiano. urlhttp://web.fedepalma.org/sites/default/files/files/18072016, 2016. Accedido 10/04/2019.[36] T. Fernandes, S. F. Soares, T. Trindade, and A. L. Daniel-da Silva. Magnetic hybrid nanosorbents for the uptake of paraquat from water. Nanomaterials, 7(3):68, 2017.[37] K. Foo and B. Hameed. Detoxification of pesticide waste via activated carbon adsorption process. Journal of hazardous materials, 175(1-3):1-11, 2010.[38] L. Gao, J. Liu, C. Wang, G. Liu, X. Niu, C. Shu, and J. Zhu. Fast determination of paraquat in plasma and urine samples by solid-phase microextraction and gas chromatography{mass spectrometry. Journal of Chromatography B, 944:136-140, 2014.[39] I. Gardi, S. Nir, and Y. G. Mishael. Filtration of triazine herbicides by polymer-clay sorbents: Coupling an experimental mechanistic approach with empirical modeling. Water research, 70:64-73, 2015.[40] A. Gevaerd, P. R. de Oliveira, A. S. Mangrich, M. F. Bergamini, and L. H. Marcolino- Junior. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Materials Science and Engineering: C, 62:123-129, 2016.[41] E. Gilliland. Fluidised particles, jf davidson and d. harrison, cambridge university press, new york (1963). 155 pages. AIChE Journal, 10(5):783-785, 1964.[42] A. Gómez, S. Rincón, and W. Klose. Carbón activado de cuesco de palma: estudio de termogravimetría y estructura. kassel university press GmbH, 2010.[43] R. G. Gómez. Efecto del control de malezas con paraquat y glifosato sobre la erosi on y p erdida de nutrimentos del suelo en cafeto. Agronomía Mesoamericana, pages 77-87, 2005.[44] U. Gómez, F. C. González, C. Benavides, N. Angulo, V. Llinás, L. M. Q. Quiceno, D. Padilla, and P. Castaño. Impacto en la mortalidad de un tratamiento conjugado, en pacientes intoxicados no ocupacionalmente, con paraquat en el hospital universitario san vicente de paúl de medellín, entre agosto de 2002 y agosto de 2003. Iatreia, 17(1):24-33, 2004.[45] N. K. Hamadi, S. Swaminathan, and X. D. Chen. Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, 112(1-2):133-141, 2004.[46] C. Hao, X. Zhao, D. Morse, P. Yang, V. Taguchi, and F. Morra. Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides. Journal of Chromatography A, 1304:169-176, 2013.[47] ICA. Registros nacionales febrero 28 de 2017, 2017.[48] J. Incédy, T. Lengyed, A. Ure, A. Gelencsér, and A. Hulanicki. International union of pure and applied chemistry (iupac), compendium of analytical nomenclature, 1998.[49] C. M. Infante, A. Morales-Rubio, M. de La Guardia, and F. R. Rocha. A multicommuted flow system with solenoid micro-pumps for paraquat determination in natural waters. Talanta, 75(5):1376-1381, 2008.[50] S. Jafarinejad. Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Int Res J Appl Basic Sci, 9:1758-1774, 2015.[51] A. Jain, K. K. Verma, and A. Townshend. Determination of paraquat by flow-injection spectrophotometry. Analytica chimica acta, 284(2):275-279, 1993.[52] W. Kast and W. Otten. Der durchbruch in adsorptions-festbetten: Methoden der berechnung und einflu der verfahrensparameter. Chemie Ingenieur Technik, 59(1):1-12, 1987.[53] J. Liddle. The use of powered hydraffin active carbon for water purification. Journal of the Society of Chemical Industry, 51(16):337-344, 1932.[54] K.-Y. A. Lin, Y.-T. Heish, T.-Y. Tsai, and C.-F. Huang. Tempo-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water. Cellulose, 22(5):3261-3274, 2015.[55] D. Luna, A. González, M. Gordon, and N. Martín. Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64(10):39-48, 2007.[56] C. B. Marien, T. Cottineau, D. Robert, and P. Drogui. Tio2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat. Applied Catalysis B: Environmental, 194:1-6, 2016.[57] M. Marín Cuartas and M. C. Berrouet Mejía. Intoxicación por paraquat. CES Medicina, 30(1):114-121, 2016.[58] H. Marsh and F. R. Reinoso. Activated carbon. Elsevier, 2006.[59] F. Maya, J. M. Estela, and V. Cerdà. Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system. Talanta, 85(1):588-595, 2011.[60] Minagricultura. Registros plaguicidas registrados 26 de mayo de 2020, 2020.[61] MINAMBIENTE. Resolución no. 0631 del 17 marzo de 2015, 2015.[62] MINSALUD. Decreto 475 de 1998 marzo 10, 1998.[63] T. Nakamura, N. Kawasaki, H. Ogawa, S. Tanada, M. Kogirima, and M. Imaki. Adsorption removal of paraquat and diquat onto activated carbon at different adsorption temperature. Toxicological & Environmental Chemistry, 70(3-4):275-280, 1999.[64] A. Namane and A. Hellal. The dynamic adsorption characteristics of phenol by granular activated carbon. Journal of hazardous materials, 137(1):618-625, 2006.[65] C. P. Nanseu-Njiki, G. K. Dedzo, and E. Ngameni. Study of the removal of paraquat from aqueous solution by biosorption onto ayous (triplochiton schleroxylon) sawdust. Journal of Hazardous Materials, 179(1-3):63-71, 2010.[66] J. E. B. Ojeda. Fabricación de adoquines para uso en vías peatonales, usando cuesco de palma africana. INGE CUC, 6(1):67-78, 2010.[67] ONU. World population prospects 2017, 2017.[68] W. H. Organization et al. The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. Geneva: World Health Organization, 2010.[69] M. Ortegon. Adsorción de fenol en soluci on acuosa empleando carbón activado de cuesco de palma de aceite: determinación de isotermas de adsorción, determinación de curvas de ruptura, determinación de curvas de sorción en fase acuosa. Master's thesis, Universidad Nacional de Colombia, 2015.[70] M. Othman, F. Roddick, and R. Snow. Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water research, 35(12):2943-2949, 2001.[71] A. Pop, F. Manea, A. Flueras, and J. Schoonman. Simultaneous voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors, 17(9):2033, 2017.[72] Á. d. Prada Díaz. Estudio experimental de la aglomeración de partículas en un lecho fluidizado. Master's thesis, Universidad Carlos III de Madrid, 2014.[73] Á. Prieto Padilla. Caracterización hidrodinámica de un lecho fluido. Master's thesis, Universidad Carlos III de Madrid, 2007.[74] S. Ragan and N. Megonnell. Activated carbon from renewable resources-lignin. Ce- llulose Chemistry and Technology, 45(7):527, 2011.[75] M. Rai, J. V. Das, and V. Gupta. A sensitive determination of paraquat by spectrophotometry. Talanta, 45(2):343-348, 1997.[76] M. Raupach, W. W. Emerson, and P. G. Slade. The arrangement of paraquat bound by vermiculite and montmorillonite. Journal of Colloid and Interface Science, 69(3):398-408, 1979.[77] P. Reynoso Quispe and R. J. d. Carvalho. Degradación del pesticida paraquat a través del proceso de ozonización. Revista CENIC. Ciencias Qu micas, 41, 2010.[78] S. Rincón Pratt. Zur Adsorption und Reaktion von Sticksto monoxid an Aktivkohle. PhD thesis, Universitat Kassel, 2005.[79] X.-L. Ruan, J.-J. Qiu, C. Wu, T. Huang, R.-B. Meng, and Y.-Q. Lai. Magnetic singlewalled carbon nanotubes{dispersive solid-phase extraction method combined with liquid chromatography{tandem mass spectrometry for the determination of paraquat in urine. Journal of Chromatography B, 965:85-90, 2014.[80] D. M. Ruthven. Principles of adsorption and adsorption processes. John Wiley & Sons, 1984.[81] M. Salgado. Cuesco de palma africana, un nuevo combustible para uso comercial en ecuador: análisis económico y evidencia experimental. CESAM, 01 2017.[82] A. E. L. Sandoval, J. M. G. Colmenares, and S. P. C. Acu~na. Validación del método voltamétrico para la determinación de residuos de paraquat aplicado en cultivos de papa. Acta Agronómica, 64(4):336-341, 2015.[83] M. S. Santos, A. Alves, and L. M. Madeira. Paraquat removal from water by oxidation with fenton's reagent. Chemical Engineering Journal, 175:279-290, 2011.[84] P. Shivhare and V. Gupta. Spectrophotometric method for the determination of paraquat in water, grain and plant materials. Analyst, 116(4):391-393, 1991.[85] D. A. Sidhoum, M. Socías-Viciana, M. Ureña-Amate, A. Derdour, E. Gonz alez-Pradas, and N. Debbagh-Boutarbouch. Removal of paraquat from water by an algerian bentonite. Applied Clay Science, 83:441-448, 2013.[86] J. Sieliechi and P. Thue. Removal of paraquat from drinking water by activated carbon prepared from waste wood. Desalination and Water Treatment, 55(4):986-998, 2015.[87] Sispa. Evolución histórica anual de fruto procesado en colombia. urlhttp://sispaweb.fedepalma.org/sispaweb, 2018. Accedido 10/04/2019.[88] A. Srivastava, N. K. Jangid, M. Srivastava, and V. Rawat. Pesticides as water pollutants. In Handbook of Research on the Adverse E ects of Pesticide Pollution in Aquatic Ecosystems, pages 1-19. IGI Global, 2019.[89] Syngenta. Etiqueta gramoxone super, 2016.[90] V. Y. Taguchi, S. W. Jenkins, P. W. Crozier, and D. T. Wang. Determination of diquat and paraquat in water by liquid chromatography-(electrospray ionization) mass spectrometry. Journal of the American Society for Mass Spectrometry, 9(8):830-839, 1998.[91] X.-f. Tan, S.-b. Liu, Y.-g. Liu, Y.-l. Gu, G.-m. Zeng, X.-j. Hu, X. Wang, S.-h. Liu, and L.-h. Jiang. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource technology, 227:359-372, 2017.[92] H. Tomková, R. Sokolová, T. Opletal, P. Kucerov a, L. Kucera, J. Soucková, J. Skopalov á, and P. Barták. Electrochemical sensor based on phospholipid modified glassy carbon electrode-determination of paraquat. Journal of Electroanalytical Chemistry, 821:33-39, 2018.[93] W. T. Tsai, K. Hsien, Y. Chang, and C. Lo. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource technology, 96(6):657-663, 2005.[94] K. Tyszczuk-Rotko, I. Beczkowska, and A. Nosal-Wiercinska. Simple, selective and sensitive voltammetric method for the determination of herbicide (paraquat) using a bare boron-doped diamond electrode. Diamond and Related Materials, 50:86-90, 2014.[95] U. Water. Sustainable development goal 6 synthesis report on water and sanitation. Published by the United Nations New York, New York, 10017, 2018.[96] C. Wen and Y. Yu. A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3):610-612, 1966.[97] E. Worch. Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter, 2012.[98] A. WWAP, UNESCO. Informe mundial de las naciones unidas sobre el desarrollo de los recursos hidricos 2019: No dejar nadie atras, 2019.[99] C. C. Xu and J. Zhu. Prediction of the minimum fluidization velocity for fine particles of various degrees of cohesiveness. Chemical Engineering Communications, 196(4):499-517, 2008.[100] D. Zadaka, S. Nir, A. Radian, and Y. G. Mishael. Atrazine removal from water by polycation-clay composites: effect of dissolved organic matter and comparison to activated carbon. water research, 43(3):677-683, 2009.Grupo de Investigación en Biomasa y Optimización Térmica de Procesos - BIOT de la Universidad Nacional de ColombiaORIGINAL1061685629.2020.pdf1061685629.2020.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf9925800https://repositorio.unal.edu.co/bitstream/unal/79381/1/1061685629.2020.pdf46ac19920d7aeca676188025ef17e5d7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79381/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79381/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1061685629.2020.pdf.jpg1061685629.2020.pdf.jpgGenerated Thumbnailimage/jpeg4358https://repositorio.unal.edu.co/bitstream/unal/79381/4/1061685629.2020.pdf.jpgaf4cf53fd7cf6e79b16e6d0aec9de57aMD54unal/79381oai:repositorio.unal.edu.co:unal/793812023-07-27 23:03:47.959Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |