Application of latent variable models to autoimmune diseases clinimetry

Abstract: Clinical manifestations of autoimmune diseases often are presented as presence or absence of certain symptoms, which in the clinical context can be associated with disease severity. Classical measures like number of symptoms present have been used to assess the severity of disease, neverth...

Full description

Autores:
Molano González, Nicolás
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/55431
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/55431
http://bdigital.unal.edu.co/50840/
Palabra clave:
31 Colecciones de estadística general / Statistics
51 Matemáticas / Mathematics
61 Ciencias médicas; Medicina / Medicine and health
Latent Variable
Nonlinear models
Bayesian estimation
Clinimetry
Variables latentes
Modelos No lineales
Estimacion Bayesiana
Clinimetria
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_93bb4f9a5af07685ab187c2e9f84ff94
oai_identifier_str oai:repositorio.unal.edu.co:unal/55431
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Application of latent variable models to autoimmune diseases clinimetry
title Application of latent variable models to autoimmune diseases clinimetry
spellingShingle Application of latent variable models to autoimmune diseases clinimetry
31 Colecciones de estadística general / Statistics
51 Matemáticas / Mathematics
61 Ciencias médicas; Medicina / Medicine and health
Latent Variable
Nonlinear models
Bayesian estimation
Clinimetry
Variables latentes
Modelos No lineales
Estimacion Bayesiana
Clinimetria
title_short Application of latent variable models to autoimmune diseases clinimetry
title_full Application of latent variable models to autoimmune diseases clinimetry
title_fullStr Application of latent variable models to autoimmune diseases clinimetry
title_full_unstemmed Application of latent variable models to autoimmune diseases clinimetry
title_sort Application of latent variable models to autoimmune diseases clinimetry
dc.creator.fl_str_mv Molano González, Nicolás
dc.contributor.author.spa.fl_str_mv Molano González, Nicolás
dc.contributor.spa.fl_str_mv Montenegro Díaz, Álvaro Mauricio
dc.subject.ddc.spa.fl_str_mv 31 Colecciones de estadística general / Statistics
51 Matemáticas / Mathematics
61 Ciencias médicas; Medicina / Medicine and health
topic 31 Colecciones de estadística general / Statistics
51 Matemáticas / Mathematics
61 Ciencias médicas; Medicina / Medicine and health
Latent Variable
Nonlinear models
Bayesian estimation
Clinimetry
Variables latentes
Modelos No lineales
Estimacion Bayesiana
Clinimetria
dc.subject.proposal.spa.fl_str_mv Latent Variable
Nonlinear models
Bayesian estimation
Clinimetry
Variables latentes
Modelos No lineales
Estimacion Bayesiana
Clinimetria
description Abstract: Clinical manifestations of autoimmune diseases often are presented as presence or absence of certain symptoms, which in the clinical context can be associated with disease severity. Classical measures like number of symptoms present have been used to assess the severity of disease, nevertheless this score does not reflect particular aspects of each symptom in the severity manifestation. In this setting latent variable models are a natural choice to address the problem of characterize the disease severity in function of the presence or absence of symptoms in a given patient. On the other hand, we seek associations of this latent trait (i.e severity) with other clinical and demographical information, in order to identify risk factors which can be used in the future for personalized diagnostic and treatment. Having this in mind we investigate extension to the 2pl IRT models, as proposed by Ogasawara (1995), where the individuals latent trait can be modeled by person covariates, and as result of our research, we propose a novel Bayesian algorithm based on working variables for the classical 1pl, 2pl an the extended models involving subject level covariates. This novel algorithm is based on the works of Gamerman (1997), Cepeda-Cuervo (2001), Cepeda-Cuervo and Achcar (2010) and Gutierrez (2015)
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015
dc.date.accessioned.spa.fl_str_mv 2019-07-02T11:19:20Z
dc.date.available.spa.fl_str_mv 2019-07-02T11:19:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/55431
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/50840/
url https://repositorio.unal.edu.co/handle/unal/55431
http://bdigital.unal.edu.co/50840/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Económicas
Facultad de Ciencias Económicas
dc.relation.references.spa.fl_str_mv Molano González, Nicolás (2015) Application of latent variable models to autoimmune diseases clinimetry. Maestría thesis, Universidad Nacional de Colombia- Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/55431/1/80873475.2015.pdf
https://repositorio.unal.edu.co/bitstream/unal/55431/2/80873475.2015.pdf.jpg
bitstream.checksum.fl_str_mv 343634de7de554c8c778f521726ed4e9
bb75cee67da007fd58e7ceb9e87f9e5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089987525705728
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montenegro Díaz, Álvaro MauricioMolano González, Nicolás86683704-3604-4951-b0ae-b3a9b1061d253002019-07-02T11:19:20Z2019-07-02T11:19:20Z2015https://repositorio.unal.edu.co/handle/unal/55431http://bdigital.unal.edu.co/50840/Abstract: Clinical manifestations of autoimmune diseases often are presented as presence or absence of certain symptoms, which in the clinical context can be associated with disease severity. Classical measures like number of symptoms present have been used to assess the severity of disease, nevertheless this score does not reflect particular aspects of each symptom in the severity manifestation. In this setting latent variable models are a natural choice to address the problem of characterize the disease severity in function of the presence or absence of symptoms in a given patient. On the other hand, we seek associations of this latent trait (i.e severity) with other clinical and demographical information, in order to identify risk factors which can be used in the future for personalized diagnostic and treatment. Having this in mind we investigate extension to the 2pl IRT models, as proposed by Ogasawara (1995), where the individuals latent trait can be modeled by person covariates, and as result of our research, we propose a novel Bayesian algorithm based on working variables for the classical 1pl, 2pl an the extended models involving subject level covariates. This novel algorithm is based on the works of Gamerman (1997), Cepeda-Cuervo (2001), Cepeda-Cuervo and Achcar (2010) and Gutierrez (2015)Varias manifestaciones clínicas de las enfermedades autoinmunes se presentan en forma de presencia o ausencia de ciertos síntomas que en el contexto clínico se asocian a la severidad de la enfermedad en el paciente. Enfoques clásicos como el número de síntomas presentes en un paciente se han intentado relacionar con el estado de la severidad de la enfermedad, sin embargo, desde la práctica clínica este score no refleja de manera adecuada la severidad asociada a cada síntoma individualmente. En este contexto los modelos de variables latentes surgen como un metodología natural para modelar la severidad de la enfermedad en función de la presencia o ausencia de diferentes síntomas en un paciente. Por otra parte, se desea asociar este trazo latente de severidad de la enfermedad con otras variables clínicas y demográficas de interés, con el fin de identificar factores de riesgo que pueden ser usados en el futuro para un diagnóstico y tratamiento diferenciales. Motivados por este problema practico, investigamos la extensión propuesta por Ogasawara (1995) para los modelos 2pl de TRI, en donde el trazo latente puede ser modelado con covariables asociadas a los individuos y como resultado de nuestra investigación hemos propuesto un nuevo algoritmo de estimación Bayesiana basado en variables de trabajo para los modelos 1pl, 2pl y sus extensiones que involucran covariables a nivel de los individuos. Este nuevo algoritmo está basado en los trabajos de Gamerman (1997), Cepeda-Cuervo (2001), Cepeda-Cuervo and Achcar (2010) y Gutiérrez (2015)Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias EconómicasFacultad de Ciencias EconómicasMolano González, Nicolás (2015) Application of latent variable models to autoimmune diseases clinimetry. Maestría thesis, Universidad Nacional de Colombia- Bogotá.31 Colecciones de estadística general / Statistics51 Matemáticas / Mathematics61 Ciencias médicas; Medicina / Medicine and healthLatent VariableNonlinear modelsBayesian estimationClinimetryVariables latentesModelos No linealesEstimacion BayesianaClinimetriaApplication of latent variable models to autoimmune diseases clinimetryTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL80873475.2015.pdfapplication/pdf1683282https://repositorio.unal.edu.co/bitstream/unal/55431/1/80873475.2015.pdf343634de7de554c8c778f521726ed4e9MD51THUMBNAIL80873475.2015.pdf.jpg80873475.2015.pdf.jpgGenerated Thumbnailimage/jpeg3803https://repositorio.unal.edu.co/bitstream/unal/55431/2/80873475.2015.pdf.jpgbb75cee67da007fd58e7ceb9e87f9e5dMD52unal/55431oai:repositorio.unal.edu.co:unal/554312024-03-18 23:07:40.005Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co