Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla
ilustraciones, diagramas, tablas
- Autores:
-
Roa Bohórquez, María Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86644
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::616 - Enfermedades
Osteoartritis
Artroplastia de Reemplazo
Osteoartritis de la Rodilla
Osteoarthritis
Arthroplasty, Replacement
Osteoarthritis, Knee
Inflamación
Sinoviocitos
Células Mesenquimales
Biomarcador
Interleuquina-17A
Interleuquina-20
Inflammation
Synoviocytes
Mesenchymal Cells
Biomarker
Interleukin-17A
Interleukin-20
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_93b4f284e3ad478e14dc78d140b7530e |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86644 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
dc.title.translated.eng.fl_str_mv |
Quantification and distribution of IL 17A and IL 20 as prognostic markers in patients with early knee osteoarthritis |
title |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
spellingShingle |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla 610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades Osteoartritis Artroplastia de Reemplazo Osteoartritis de la Rodilla Osteoarthritis Arthroplasty, Replacement Osteoarthritis, Knee Inflamación Sinoviocitos Células Mesenquimales Biomarcador Interleuquina-17A Interleuquina-20 Inflammation Synoviocytes Mesenchymal Cells Biomarker Interleukin-17A Interleukin-20 |
title_short |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
title_full |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
title_fullStr |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
title_full_unstemmed |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
title_sort |
Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla |
dc.creator.fl_str_mv |
Roa Bohórquez, María Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Rojas Rojas, Angela Patricia Rondón Herrera, Federico |
dc.contributor.author.none.fl_str_mv |
Roa Bohórquez, María Alejandra |
dc.contributor.orcid.spa.fl_str_mv |
Roa Bohórquez, María Alejandra [0009000122169224] |
dc.contributor.cvlac.spa.fl_str_mv |
María Alejandra Roa Bohórquez |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades Osteoartritis Artroplastia de Reemplazo Osteoartritis de la Rodilla Osteoarthritis Arthroplasty, Replacement Osteoarthritis, Knee Inflamación Sinoviocitos Células Mesenquimales Biomarcador Interleuquina-17A Interleuquina-20 Inflammation Synoviocytes Mesenchymal Cells Biomarker Interleukin-17A Interleukin-20 |
dc.subject.decs.spa.fl_str_mv |
Osteoartritis Artroplastia de Reemplazo Osteoartritis de la Rodilla |
dc.subject.decs.eng.fl_str_mv |
Osteoarthritis Arthroplasty, Replacement Osteoarthritis, Knee |
dc.subject.proposal.spa.fl_str_mv |
Inflamación Sinoviocitos Células Mesenquimales Biomarcador Interleuquina-17A Interleuquina-20 |
dc.subject.proposal.eng.fl_str_mv |
Inflammation Synoviocytes Mesenchymal Cells Biomarker Interleukin-17A Interleukin-20 |
description |
ilustraciones, diagramas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-29T19:35:46Z |
dc.date.available.none.fl_str_mv |
2024-07-29T19:35:46Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86644 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86644 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine, 29-30, 100587. https://doi.org/10.1016/j.eclinm.2020.100587 2. Nota Estadística de personas mayores en Colombia: hacia la inclusión y la participación (DANE y Fundación Saldarriaga Concha). Disponible en: https://www.dane.gov.co/files/investigaciones/notas-estadisticas/oct-2022-nota-estadistica-personas-mayores-en-colombia.pdf 3. WHO. Osteoarthritis. Fecha de consulta: 04 de agosto del 2023. Disponible en: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis 4. Abdel-Naby, H. M., El-Tawab, S. S., Rizk, M. M., & Aboeladl, N. A. (2022). Is interleukin-17 implicated in early knee osteoarthritis pathogenesis as in rheumatoid arthritis? Egyptian Rheumatology and Rehabilitation, 49(1), 29. https://doi.org/10.1186/s43166-022-00130-4 5. Attur, M., Krasnokutsky-Samuels, S., Samuels, J., & Abramson, S. B. (2013). Prognostic biomarkers in osteoarthritis. Current opinion in rheumatology, 25(1), 136–144. https://doi.org/10.1097/BOR.0b013e32835a9381 6. Ahmed, U., Anwar, A., Savage, R. S., Costa, M. L., Mackay, N., Filer, A., Raza, K., Watts, R. A., Winyard, P. G., Tarr, J., Haigh, R. C., Thornalley, P. J., & Rabbani, N. (2015). Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Scientific reports, 5, 9259. https://doi.org/10.1038/srep09259 7. Hashimoto M. Th17 in Animal Models of Rheumatoid Arthritis. J Clin Med. 2017 Jul 21;6(7):73. doi: 10.3390/jcm6070073. 8. Arya RK, Jain V. Osteoarthritis of the knee joint: An overview. JIACM. 2013;14(2):154-62. 9. Vargas E Silva, N. C. O., Dos Anjos, R. L., Santana, M. M. C., Battistella, L. R., & Marcon Alfieri, F. (2020). Discordance between radiographic findings, pain, and superficial temperature in knee osteoarthritis. Reumatologia, 58(6), 375–380. https://doi.org/10.5114/reum.2020.102002 10. Lourido, L., Ayoglu, B., Fernández-Tajes, J., Oreiro, N., Henjes, F., Hellström, C., Schwenk, J. M., Ruiz-Romero, C., Nilsson, P., & Blanco, F. J. (2017). Discovery of circulating proteins associated to knee radiographic osteoarthritis. Scientific Reports, 7(1), 137. https://doi.org/10.1038/s41598-017-00195-8 11. Tschon, M., Contartese, D., Pagani, S., Borsari, V., & Fini, M. (2021). Gender and sex are key determinants in osteoarthritis not only confounding variables. A systematic review of clinical data. Journal of Clinical Medicine, 10(14), 3178. https://doi.org/10.3390/jcm10143178 12. De Sousa, E. B., Casado, P. L., Neto, V. M., Duarte, M. E. L., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5(5), 112. https://doi.org/10.1186/scrt501 13. Gallo Vallejo, F. J., & Ruiz, V. G. (2014). Diagnóstico. Examen del líquido sinovial. Atención Primaria, 46, 29-31. https://doi.org/10.1016/S0212-6567(14)70041-1 14. Køster, D., Egedal, J. H., Lomholt, S., Hvid, M., Jakobsen, M. R., Müller-Ladner, U., Eibel, H., Deleuran, B., Kragstrup, T. W., Neumann, E., & Nielsen, M. A. (2021). Phenotypic and functional characterization of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis. Scientific Reports, 11(1), 22168. https://doi.org/10.1038/s41598-021-01692-7 15. Hsu, Y.-H., & Chang, M.-S. (2017). IL-20 in rheumatoid arthritis. Drug Discovery Today, 22(6), 960-964. https://doi.org/10.1016/j.drudis.2015.08.002 16. Van Dooren, F. H., Duijvis, N. W., & Te Velde, A. A. (2013). Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. Journal of Immunological Methods, 396(1-2), 128-133. https://doi.org/10.1016/j.jim.2013.08.006 17. Brzustewicz, E., & Bryl, E. (2015). The role of cytokines in the pathogenesis of rheumatoid arthritis – Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine, 76(2), 527-536. https://doi.org/10.1016/j.cyto.2015.08.260 18. Bettencourt, R. B., & Linder, M. M. (2010). Arthrocentesis and therapeutic joint injection: An overview for the primary care physician. Primary Care: Clinics in Office Practice, 37(4), 691-702. https://doi.org/10.1016/j.pop.2010.07.002 19. Choi, M.-C., Jo, J., Park, J., Kang, H. K., & Park, Y. (2019). Nf-κb signaling pathways in osteoarthritic cartilage destruction. Cells, 8(7), 734. https://doi.org/10.3390/cells8070734 20. Nees, T. A., Rosshirt, N., Zhang, J. A., Reiner, T., Sorbi, R., Tripel, E., Walker, T., Schiltenwolf, M., Hagmann, S., & Moradi, B. (2019). Synovial cytokines significantly correlate with osteoarthritis-related knee pain and disability: Inflammatory mediators of potential clinical relevance. Journal of Clinical Medicine, 8(9), 1343. https://doi.org/10.3390/jcm8091343 21. Ge, Y., Huang, M., & Yao, Y. (2020). Biology of interleukin-17 and its pathophysiological significance in sepsis. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01558 22. Francisco, V., Pérez, T., Pino, J., López, V., Franco, E., Alonso, A., Gonzalez‐Gay, M. A., Mera, A., Lago, F., Gómez, R., & Gualillo, O. (2018). Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research, 36(2), 594-604. https://doi.org/10.1002/jor.23788 23. Sun, L., Wang, L., Moore, B. B., Zhang, S., Xiao, P., Decker, A. M., & Wang, H.-L. (2023). Il-17: Balancing protective immunity and pathogenesis. Journal of Immunology Research, 2023, 1-9. https://doi.org/10.1155/2023/3360310 24. Kragstrup, T. W., Andersen, T., Heftdal, L. D., Hvid, M., Gerwien, J., Sivakumar, P., Taylor, P. C., Senolt, L., & Deleuran, B. (2018). The il-20 cytokine family in rheumatoid arthritis and spondyloarthritis. Frontiers in Immunology, 9, 2226. https://doi.org/10.3389/fimmu.2018.02226 25. Kouri, V.-P., Olkkonen, J., Nurmi, K., Peled, N., Ainola, M., Mandelin, J., Nordström, D. C., & Eklund, K. K. (2023). IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology, 62(2), 872-885. https://doi.org/10.1093/rheumatology/keac385 26. Van Hamburg, J. P., & Tas, S. W. (2018). Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity, 87, 69-81. https://doi.org/10.1016/j.jaut.2017.12.006 27. Tschammer, N. (2015). Interleukins in cancer biology: Their heterogeneous role. By arseniy e. Yuzhalin, anton g. Kutikhin. ChemMedChem, 10(8), 1442-1442. https://doi.org/10.1002/cmdc.201500253 28. Hsu, Y., Li, H., Hsieh, M., Liu, M., Huang, K., Chin, L., Chen, P., Cheng, H., & Chang, M. (2006). Function of interleukin‐20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis & Rheumatism, 54(9), 2722-2733. https://doi.org/10.1002/art.22039 29. Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H., & Shimoda, T. (2010). Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford, England), 49(7), 1215–1228. https://doi.org/10.1093/rheumatology/keq031 30. Li, H., Xie, S., Qi, Y., Li, H., Zhang, R., & Lian, Y. (2018). TNF-α increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Experimental and therapeutic medicine, 16(6), 4737–4744. https://doi.org/10.3892/etm.2018.6770 31. Ayhan, E. (2014). Intraarticular injections (Corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World Journal of Orthopedics, 5(3), 351. https://doi.org/10.5312/wjo.v5.i3.351 32. Shioda, M., Muneta, T., Tsuji, K., Mizuno, M., Komori, K., Koga, H., & Sekiya, I. (2017). TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLOS ONE, 12(5), e0177771. https://doi.org/10.1371/journal.pone.0177771 33. Stocco, E., Barbon, S., Piccione, M., Belluzzi, E., Petrelli, L., Pozzuoli, A., Ramonda, R., Rossato, M., Favero, M., Ruggieri, P., Porzionato, A., Di Liddo, R., De Caro, R., & Macchi, V. (2019). Infrapatellar fat pad stem cells responsiveness to microenvironment in osteoarthritis: From morphology to function. Frontiers in Cell and Developmental Biology, 7, 323. https://doi.org/10.3389/fcell.2019.00323 34. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050-1056. https://doi.org/10.1002/stem.37 35. Tarte, K., Gaillard, J., Lataillade, J.-J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N.-C., Sensebé, L., & on behalf of Société Française de Greffe de Moelle et Thérapie Cellulaire. (2010). Clinical-grade production of human mesenchymal stromal cells: Occurrence of aneuploidy without transformation. Blood, 115(8), 1549-1553. https://doi.org/10.1182/blood-2009-05-219907 36. Leung, G. J., Rainsford, K. D., & Kean, W. F. (2014). Osteoarthritis of the hand I: Aetiology and pathogenesis, risk factors, investigation and diagnosis. Journal of Pharmacy and Pharmacology, 66(3), 339-346. https://doi.org/10.1111/jphp.12196 37. Haj-Mirzaian, A., Mohajer, B., Guermazi, A., Conaghan, P. G., Lima, J. A. C., Blaha, M. J., Bingham, C. O., Roemer, F. W., Cao, X., & Demehri, S. (2019). Statin use and knee osteoarthritis outcome measures according to the presence of heberden nodes: Results from the osteoarthritis initiative. Radiology, 293(2), 396-404. https://doi.org/10.1148/radiol.2019190557 38. Chang, J., Liao, Z., Lu, M., Meng, T., Han, W., & Ding, C. (2018). Systemic and local adipose tissue in knee osteoarthritis. Osteoarthritis and Cartilage, 26(7), 864-871. https://doi.org/10.1016/j.joca.2018.03.004 39. Wisniewska, E., Laue, D., Spinnen, J., Kuhrt, L., Kohl, B., Bußmann, P., Meier, C., Schulze-Tanzil, G., Ertel, W., & Jagielski, M. (2023). Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes. Cells, 12(24), 2850. https://doi.org/10.3390/cells12242850 40. Stannus, O. P., Jones, G., Blizzard, L., Cicuttini, F. M., & Ding, C. (2013). Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study. Annals of the Rheumatic Diseases, 72(4), 535-540. https://doi.org/10.1136/annrheumdis-2011-201047 41. Silva, L. B., Dos Santos Neto, A. P., Maia, S. M. A. S., Dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. D. A. T., Júnior, S. A., & Leão, J. C. (2019). The role of tnf-α as a proinflammatory cytokine in pathological processes. The Open Dentistry Journal, 13(1), 332-338. https://doi.org/10.2174/1874210601913010332 42. Svensson, M. N. D., Zoccheddu, M., Yang, S., Nygaard, G., Secchi, C., Doody, K. M., Slowikowski, K., Mizoguchi, F., Humby, F., Hands, R., Santelli, E., Sacchetti, C., Wakabayashi, K., Wu, D. J., Barback, C., Ai, R., Wang, W., Sims, G. P., Mydel, P., Bottini, N. (2020). Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Science Advances, 6(26), eaba4353. https://doi.org/10.1126/sciadv.aba4353 43. Kasamatsu A, Satoh M, Yoshida T, Kosaka T. (2010). Response of human fibroblast-like synoviocytes derived from rheumatoid arthritis to inflammatory stimulation: Quality control findings (2+3+4). The Japanese Tissue Culture Association. https://doi.org/10.11418/jtca.29.167 44. Wang, Y., & Gao, W. (2021). Effects of TNF-α on autophagy of rheumatoid arthritis fibroblast-like synoviocytes and regulation of the NF-κB signaling pathway. Immunobiology, 226(2), 152059. https://doi.org/10.1016/j.imbio.2021.152059 45. Mattei, B., Lira, R. B., Perez, K. R., & Riske, K. A. (2017). Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension. Chemistry and Physics of Lipids, 202, 28-37. https://doi.org/10.1016/j.chemphyslip.2016.11.009 46. Zhang, Z., Fan, H., Richardson, W., Gao, B. Z., & Ye, T. (2023). Management of autofluorescence in formaldehyde-fixed myocardium: Choosing the right treatment. European Journal of Histochemistry, 67(4). https://doi.org/10.4081/ejh.2023.3812 47. Orozco, Danny Joan et al. Arthritis in elderly. Rev.Colomb.Reumatol. [online]. 2007, vol.14, n.1, pp.66-84. ISSN 0121-8123. 48. Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.002 49. Scarpa E, Mayor R. Collective cell migration in development. J Cell Biol. 2016 Jan 18;212(2):143-55. doi: 10.1083/jcb.201508047. 50. Theveneau, E., & Mayor, R. (2011). Can mesenchymal cells undergo collective cell migration? The case of the neural crest: The case of the neural crest. Cell Adhesion & Migration, 5(6), 490-498. https://doi.org/10.4161/cam.5.6.18623 51. Álvarez, E. (2011). Los fibroblastos sinoviales en la patogenia de la angiogénesis reumatoide.Universidad Complutense de Madrid, 52. Benz, K., Schöbel, A., Dietz, M., Maurer, P., & Jackowski, J. (2019). Adhesion behaviour of primary human osteoblasts and fibroblasts on polyether ether ketone compared with titanium under in vitro lipopolysaccharide incubation. Materials, 12(17), 2739. https://doi.org/10.3390/ma12172739 53. Campbell, K., & Casanova, J. (2016). A common framework for EMT and collective cell migration. Development, 143(23), 4291-4300. https://doi.org/10.1242/dev.139071 54. Shreiber, D. I., Barocas, V. H., & Tranquillo, R. T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical Journal, 84(6), 4102-4114. https://doi.org/10.1016/S0006-3495(03)75135-2 55. Munevar, S., Wang, Y., & Dembo, M. (2001). Traction force microscopy of migrating normal and h-ras transformed 3t3 fibroblasts. Biophysical Journal, 80(4), 1744-1757. https://doi.org/10.1016/S0006-3495(01)76145-0 56. Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 128(4), 1238-1246. https://doi.org/10.1172/JCI95148 57. Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T. M., Fullen, D. R., Pointer, J. N., Gruber, S. B., Su, L. D., Nikiforov, M. A., Kaufman, R. J., Bastian, B. C., & Soengas, M. S. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology, 8(10), 1053-1063. https://doi.org/10.1038/ncb1471 58. Del Rey, M. J., Izquierdo, E., Caja, S., Usategui, A., Santiago, B., Galindo, M., & Pablos, J. L. (2009). Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia‐inducible transcription factor 1α/vascular endothelial growth factor–mediated pathway in immunodeficient mice. Arthritis & Rheumatism, 60(10), 2926-2934. https://doi.org/10.1002/art.24844 59. Gauthier, V., Kyriazi, M., Nefla, M., Pucino, V., Raza, K., Buckley, C. D., & Alsaleh, G. (2023). Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology, 14, 1137659. https://doi.org/10.3389/fimmu.2023.1137659 60. Zha, K., Sun, Z., Yang, Y., Chen, M., Gao, C., Fu, L., Li, H., Sui, X., Guo, Q., & Liu, S. (2021). Recent developed strategies for enhancing chondrogenic differentiation of msc: Impact on msc-based therapy for cartilage regeneration. Stem Cells International, 2021, 1-15. https://doi.org/10.1155/2021/8830834 61. Agar, G., Blumenstein, S., Bar-Ziv, Y., Kardosh, R., Schrift-Tzadok, M., Gal-Levy, R., Fischler, T., Goldschmid, R., & Yayon, A. (2011). The chondrogenic potential of mesenchymal cells and chondrocytes from osteoarthritic subjects: A comparative analysis. CARTILAGE, 2(1), 40-49. https://doi.org/10.1177/1947603510380899 62. Jones, E. (2011). Synovial mesenchymal stem cells in vivo: Potential key players for joint regeneration. World Journal of Rheumatology, 1(1), 4. https://doi.org/10.5499/wjr.v1.i1.4 63. Lee, J. H., Park, A., Oh, K.-J., Lee, S. C., Kim, W. K., & Bae, K.-H. (2019). The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. International Journal of Molecular Sciences, 20(19), 4924. https://doi.org/10.3390/ijms20194924 64. Bertassoli, B. M., Assis Neto, A. C. D., Oliveira, F. D. D., Arroyo, M. A. M., Ferrão, J. S. P., Silva, J. B. D., Pignatari, G. C., & Braga, P. B. (2013). Mesenchymal stem cells: Emphasis in adipose tissue. Brazilian Archives of Biology and Technology, 56(4), 607-617. https://doi.org/10.1590/S1516-89132013000400011 65. Contreras-Zentella, M. L., & Hernández-Muñoz, R. (2021). Possible gender influence in the mechanisms underlying the oxidative stress, inflammatory response, and the metabolic alterations in patients with obesity and/or type 2 diabetes. Antioxidants, 10(11), 1729. https://doi.org/10.3390/antiox10111729Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.002 66. Nikitopoulou, I., Oikonomou, N., Karouzakis, E., Sevastou, I., Nikolaidou-Katsaridou, N., Zhao, Z., Mersinias, V., Armaka, M., Xu, Y., Masu, M., Mills, G. B., Gay, S., Kollias, G., & Aidinis, V. (2012). Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. Journal of Experimental Medicine, 209(5), 925-933. https://doi.org/10.1084/jem.20112012 67. Zafari, P., Rafiei, A., Faramarzi, F., Ghaffari, S., Amiri, A. H., & Taghadosi, M. (2021). Human fibroblast-like synoviocyte isolation matter: A comparison between cell isolation from synovial tissue and synovial fluid from patients with rheumatoid arthritis. Revista Da Associação Médica Brasileira, 67, 1654-1658. https://doi.org/10.1590/1806-9282.20210706 68. Blauvelt, A. (2016a). Ixekizumab: A new anti-IL-17A monoclonal antibody therapy for moderate-to severe plaque psoriasis. Expert Opinion on Biological Therapy, 16(2), 255-263. https://doi.org/10.1517/14712598.2016.1132695 69. Scian, R., Barrionuevo, P., Rodriguez, A. M., Arriola Benitez, P. C., García Samartino, C., Fossati, C. A., Giambartolomei, G. H., & Delpino, M. V. (2013). Brucella abortus invasion of synoviocytes inhibits apoptosis and induces bone resorption through rankl expression. Infection and Immunity, 81(6), 1940-1951. https://doi.org/10.1128/IAI.01366-12 70. Filali, S., Darragi-Raies, N., Ben-Trad, L., Piednoir, A., Hong, S.-S., Pirot, F., Landoulsi, A., Girard-Egrot, A., Granjon, T., Maniti, O., Miossec, P., & Trunfio-Sfarghiu, A.-M. (2022). Morphological and mechanical characterization of extracellular vesicles and parent human synoviocytes under physiological and inflammatory conditions. International Journal of Molecular Sciences, 23(21), 13201. https://doi.org/10.3390/ijms232113201 71. Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. https://doi.org/10.1038/sj.bjc.6600664 72. Lu, Q., Haragopal, H., Slepchenko, K. G., Stork, C., & Li, Y. V. (2016). Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. International journal of physiology, pathophysiology and pharmacology, 8(1), 35–43. 73. Colleton, B. A., Piazza, P., & Rinaldo, C. R. (2005). Viral responses – hiv-1. En Measuring Immunity (pp. 578-586). Elsevier. https://doi.org/10.1016/B978-012455900-4/50312-3 74. Bartok, B., & Firestein, G. S. (2010). Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological reviews, 233(1), 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.x |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
80 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Farmacología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86644/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86644/2/1057602278.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86644/3/1057602278.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 6ed013aeb48a94eebaff50753698f6a9 420eef93d493a738115ac134cbff55fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089411826024448 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Rojas, Angela Patriciad6d6c58bd88fbad8491e85761431333eRondón Herrera, Federico9014453c01ed18f6d6c8ce7f0b2dba06Roa Bohórquez, María Alejandra47a25eab175a0b7120f774b65a7031b3Roa Bohórquez, María Alejandra [0009000122169224]María Alejandra Roa Bohórquez2024-07-29T19:35:46Z2024-07-29T19:35:46Z2024https://repositorio.unal.edu.co/handle/unal/86644Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa osteoartritis (OA) es la enfermedad articular más frecuente a nivel mundial y una de las principales enfermedades degenerativas que causan discapacidad. Su origen es multifactorial, siendo más habitual en la etapa de envejecimiento y en pacientes que padecen obesidad, por lo que constituyen dos aspectos que en la actualidad y a corto plazo se mantienen en aumento. La OA se diagnostica con una base clínica apoyada de la evaluación sintomática y de herramientas de imagen. Sin embargo, a pesar de su alta prevalencia suele diagnosticarse cuando el daño en la articulación es importante y no se obtiene una respuesta terapéutica satisfactoria con el tratamiento farmacológico establecido, conllevando a requerir intervenciones quirúrgicas que en la mayoría de los casos implican reemplazo articular para mejorar la calidad de vida del paciente en términos de alivio del dolor además de mantener la independencia en la realización de sus actividades diarias. Por esta razón, surge la necesidad de proponer alternativas que permitan establecer un pronóstico de la enfermedad en etapas tempranas, facilitando el inicio de un tratamiento oportuno cuando todavía no se ha extendido el daño en toda la articulación, al igual que monitorear la respuesta al tratamiento en función del tiempo tomando como base dos características importantes de la OA que corresponden a la degeneración del cartílago y al proceso inflamatorio subyacente que promueven su cronicidad e involucra la secreción de diferentes citoquinas proinflamatorias en el microambiente sinovial dentro de las cuales están interleuquina 17A (IL-17A) e interleuquina 20 (IL-20), las cuales son componentes proinflamatorios del sistema inmune que participan en la comunicación intercelular y desempeñan funciones específicas según el sistema y proceso orgánico en el que estén implicadas. De acuerdo con lo anterior, el objetivo de este trabajo fue determinar el componente inflamatorio relacionado con los niveles de IL-17A e IL-20 mediante la estandarización de cultivos de sinoviocitos similares a fibroblastos (FLS) y de células mesenquimales (MSC) a partir de muestras de tejido sinovial provenientes de pacientes con OA temprana de rodilla. Posteriormente, se evaluó la localización y distribución de IL-17A e IL-20 por técnica de microscopía de fluorescencia y luego se llevó a cabo la cuantificación de los niveles de IL-17A e IL-20 en sobrenadantes de cultivo de FLS y MSC. En conjunto, los resultados presentados demuestran mediante técnicas de microscopía y de inmunoensayo que las células FLS y MSC son componentes que ejercen un rol importante en el proceso inflamatorio generado en la OA temprana de rodilla, pues se evidenció la producción de IL-17A e IL-20 en FLS y MSC en respuesta al estímulo inflamatorio inducido con TNF-α comparado con células control de acuerdo con las diferencias en la intensidad media de fluorescencia; la distribución de IL-17A, IL-20 y de CD-90 mediante microscopía de fluorescencia se observó a nivel citoplasmático y perinuclear evidenciando una variación en la intensidad de fluorescencia en las que contenían el anticuerpo de interés. Respecto a la cuantificación por técnica ELISA se obtuvo una concentración promedio de 0,0850 pg/mL para IL-17A; y de 0,0157 pg/mL para IL-20. A partir de los resultados con la prueba ELISA no se identificaron diferencias entre los niveles de las muestras evaluadas con o sin estímulo de TNF-α, en tanto, la intensidad de producción a nivel intracelular de IL-17A e IL-20 por técnica de microscopía de fluorescencia permitieron evidenciar la presencia de estas citoquinas en un ambiente inflamatorio, así que considerando la participación de IL-17A e IL-20 durante la etapa temprana de la OA, podrían ser marcadores de apoyo pronóstico cuyos niveles son indicativo de la inflamación de bajo grado de la articulación. Estudios posteriores que contemplen un mayor número de pacientes serían necesarios para establecer su utilidad (Texto tomado de la fuente).Osteoarthritis (OA) is the most common joint disease worldwide and one of the main degenerative diseases that cause disability. Its origin is multifactorial, being more common in the aging stage and in patients who suffer from obesity, which is why they constitute two aspects that currently and in the short term continue to increase. OA is diagnosed on a clinical basis supported by symptomatic evaluation and imaging tools. However, despite its high prevalence, it is usually diagnosed when the damage to the joint is significant and a satisfactory therapeutic response is not obtained with the established pharmacological treatment, leading to the need for surgical interventions that in most cases involve joint replacement to improve. the patient's quality of life in terms of pain relief as well as maintaining independence in carrying out daily activities. For this reason, the need arises to propose alternatives that allow establishing a prognosis of the disease in early stages, facilitating the start of timely treatment when the damage has not yet spread throughout the joint, as well as monitoring the response to treatment. as a function of time based on two important characteristics of OA that correspond to the degeneration of the cartilage and the underlying inflammatory process that promote its chronicity and involves the secretion of different proinflammatory cytokines in the synovial microenvironment within which are interleukin 17A (IL -17A) and interleukin 20 (IL-20), which are pro-inflammatory components of the immune system that participate in intercellular communication and perform specific functions depending on the system and organic process in which they are involved. In accordance with the above, the objective of this work was to determine the inflammatory component related to the levels of IL-17A and IL-20 by standardizing cultures of fibroblast-like synoviocytes (FLS) and mesenchymal cells (MSC) from of synovial tissue samples from patients with early knee OA. Subsequently, the localization and distribution of IL-17A and IL-20 was evaluated by fluorescence microscopy technique and then quantification of the levels of IL-17A and IL-20 in FLS and MSC culture supernatants was carried out. Altogether, the results presented demonstrate through microscopy and immunoassay techniques that FLS and MSC cells are components that play an important role in the inflammatory process generated in early knee OA, since the production of IL-17A and IL was evident. -20 in FLS and MSC in response to the inflammatory stimulus induced with TNF-α compared to control cells according to the differences in the mean fluorescence intensity; the distribution of IL-17A, IL-20 and CD-90 by microscopy Fluorescence was observed at the cytoplasmic and perinuclear level, evidencing a variation in the fluorescence intensity in those that contained the antibody of interest. Regarding the quantification by ELISA technique, an average concentration of 0.0850 pg/mL was obtained for IL-17A; and 0.0157 pg/mL for IL-20 from the results with the ELISA test, no differences were identified between the levels of the samples evaluated with or without TNF-α stimulation, meanwhile, the intensity of production at intracellular level of IL-17A and IL-20 by fluorescence microscopy technique allowed us to demonstrate the presence of these cytokines in an inflammatory environment, so considering the participation of IL-17A and IL-20 during the early stage of OA, they could be prognostic supportive markers whose levels are indicative of low-grade inflammation of the joint. Subsequent studies that include a larger number of patients would be necessary to establish its usefulness.MaestríaMagister en Ciencias FarmacologíaLa toma de muestras de tejido sinovial en pacientes con OA temprana de rodilla estuvo a cargo de un médico especialista en reumatología en el Hospital Universitario Nacional de Colombia y los ensayos celulares se realizaron en el Departamento de Farmacia de la Universidad Nacional de Colombia para establecer la caracterización fisiopatológica de las muestras obtenidas a partir de cada paciente correspondientes a: Estandarización de cultivos primarios de sinoviocitos (FLS) y células mesenquimales (MSC) provenientes de tejido sinovial, fibroblastos de piel, análisis por microscopía de luz, microscopía de fluorescencia y Prueba ELISA.80 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FarmacologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéutica610 - Medicina y salud::616 - EnfermedadesOsteoartritisArtroplastia de ReemplazoOsteoartritis de la RodillaOsteoarthritisArthroplasty, ReplacementOsteoarthritis, KneeInflamaciónSinoviocitosCélulas MesenquimalesBiomarcadorInterleuquina-17AInterleuquina-20InflammationSynoviocytesMesenchymal CellsBiomarkerInterleukin-17AInterleukin-20Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodillaQuantification and distribution of IL 17A and IL 20 as prognostic markers in patients with early knee osteoarthritisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine, 29-30, 100587. https://doi.org/10.1016/j.eclinm.2020.1005872. Nota Estadística de personas mayores en Colombia: hacia la inclusión y la participación (DANE y Fundación Saldarriaga Concha). Disponible en: https://www.dane.gov.co/files/investigaciones/notas-estadisticas/oct-2022-nota-estadistica-personas-mayores-en-colombia.pdf3. WHO. Osteoarthritis. Fecha de consulta: 04 de agosto del 2023. Disponible en: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis4. Abdel-Naby, H. M., El-Tawab, S. S., Rizk, M. M., & Aboeladl, N. A. (2022). Is interleukin-17 implicated in early knee osteoarthritis pathogenesis as in rheumatoid arthritis? Egyptian Rheumatology and Rehabilitation, 49(1), 29. https://doi.org/10.1186/s43166-022-00130-45. Attur, M., Krasnokutsky-Samuels, S., Samuels, J., & Abramson, S. B. (2013). Prognostic biomarkers in osteoarthritis. Current opinion in rheumatology, 25(1), 136–144. https://doi.org/10.1097/BOR.0b013e32835a93816. Ahmed, U., Anwar, A., Savage, R. S., Costa, M. L., Mackay, N., Filer, A., Raza, K., Watts, R. A., Winyard, P. G., Tarr, J., Haigh, R. C., Thornalley, P. J., & Rabbani, N. (2015). Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Scientific reports, 5, 9259. https://doi.org/10.1038/srep092597. Hashimoto M. Th17 in Animal Models of Rheumatoid Arthritis. J Clin Med. 2017 Jul 21;6(7):73. doi: 10.3390/jcm6070073.8. Arya RK, Jain V. Osteoarthritis of the knee joint: An overview. JIACM. 2013;14(2):154-62.9. Vargas E Silva, N. C. O., Dos Anjos, R. L., Santana, M. M. C., Battistella, L. R., & Marcon Alfieri, F. (2020). Discordance between radiographic findings, pain, and superficial temperature in knee osteoarthritis. Reumatologia, 58(6), 375–380. https://doi.org/10.5114/reum.2020.10200210. Lourido, L., Ayoglu, B., Fernández-Tajes, J., Oreiro, N., Henjes, F., Hellström, C., Schwenk, J. M., Ruiz-Romero, C., Nilsson, P., & Blanco, F. J. (2017). Discovery of circulating proteins associated to knee radiographic osteoarthritis. Scientific Reports, 7(1), 137. https://doi.org/10.1038/s41598-017-00195-811. Tschon, M., Contartese, D., Pagani, S., Borsari, V., & Fini, M. (2021). Gender and sex are key determinants in osteoarthritis not only confounding variables. A systematic review of clinical data. Journal of Clinical Medicine, 10(14), 3178. https://doi.org/10.3390/jcm1014317812. De Sousa, E. B., Casado, P. L., Neto, V. M., Duarte, M. E. L., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5(5), 112. https://doi.org/10.1186/scrt50113. Gallo Vallejo, F. J., & Ruiz, V. G. (2014). Diagnóstico. Examen del líquido sinovial. Atención Primaria, 46, 29-31. https://doi.org/10.1016/S0212-6567(14)70041-114. Køster, D., Egedal, J. H., Lomholt, S., Hvid, M., Jakobsen, M. R., Müller-Ladner, U., Eibel, H., Deleuran, B., Kragstrup, T. W., Neumann, E., & Nielsen, M. A. (2021). Phenotypic and functional characterization of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis. Scientific Reports, 11(1), 22168. https://doi.org/10.1038/s41598-021-01692-715. Hsu, Y.-H., & Chang, M.-S. (2017). IL-20 in rheumatoid arthritis. Drug Discovery Today, 22(6), 960-964. https://doi.org/10.1016/j.drudis.2015.08.00216. Van Dooren, F. H., Duijvis, N. W., & Te Velde, A. A. (2013). Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. Journal of Immunological Methods, 396(1-2), 128-133. https://doi.org/10.1016/j.jim.2013.08.00617. Brzustewicz, E., & Bryl, E. (2015). The role of cytokines in the pathogenesis of rheumatoid arthritis – Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine, 76(2), 527-536. https://doi.org/10.1016/j.cyto.2015.08.26018. Bettencourt, R. B., & Linder, M. M. (2010). Arthrocentesis and therapeutic joint injection: An overview for the primary care physician. Primary Care: Clinics in Office Practice, 37(4), 691-702. https://doi.org/10.1016/j.pop.2010.07.00219. Choi, M.-C., Jo, J., Park, J., Kang, H. K., & Park, Y. (2019). Nf-κb signaling pathways in osteoarthritic cartilage destruction. Cells, 8(7), 734. https://doi.org/10.3390/cells807073420. Nees, T. A., Rosshirt, N., Zhang, J. A., Reiner, T., Sorbi, R., Tripel, E., Walker, T., Schiltenwolf, M., Hagmann, S., & Moradi, B. (2019). Synovial cytokines significantly correlate with osteoarthritis-related knee pain and disability: Inflammatory mediators of potential clinical relevance. Journal of Clinical Medicine, 8(9), 1343. https://doi.org/10.3390/jcm809134321. Ge, Y., Huang, M., & Yao, Y. (2020). Biology of interleukin-17 and its pathophysiological significance in sepsis. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.0155822. Francisco, V., Pérez, T., Pino, J., López, V., Franco, E., Alonso, A., Gonzalez‐Gay, M. A., Mera, A., Lago, F., Gómez, R., & Gualillo, O. (2018). Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research, 36(2), 594-604. https://doi.org/10.1002/jor.2378823. Sun, L., Wang, L., Moore, B. B., Zhang, S., Xiao, P., Decker, A. M., & Wang, H.-L. (2023). Il-17: Balancing protective immunity and pathogenesis. Journal of Immunology Research, 2023, 1-9. https://doi.org/10.1155/2023/336031024. Kragstrup, T. W., Andersen, T., Heftdal, L. D., Hvid, M., Gerwien, J., Sivakumar, P., Taylor, P. C., Senolt, L., & Deleuran, B. (2018). The il-20 cytokine family in rheumatoid arthritis and spondyloarthritis. Frontiers in Immunology, 9, 2226. https://doi.org/10.3389/fimmu.2018.0222625. Kouri, V.-P., Olkkonen, J., Nurmi, K., Peled, N., Ainola, M., Mandelin, J., Nordström, D. C., & Eklund, K. K. (2023). IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology, 62(2), 872-885. https://doi.org/10.1093/rheumatology/keac38526. Van Hamburg, J. P., & Tas, S. W. (2018). Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity, 87, 69-81. https://doi.org/10.1016/j.jaut.2017.12.00627. Tschammer, N. (2015). Interleukins in cancer biology: Their heterogeneous role. By arseniy e. Yuzhalin, anton g. Kutikhin. ChemMedChem, 10(8), 1442-1442. https://doi.org/10.1002/cmdc.20150025328. Hsu, Y., Li, H., Hsieh, M., Liu, M., Huang, K., Chin, L., Chen, P., Cheng, H., & Chang, M. (2006). Function of interleukin‐20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis & Rheumatism, 54(9), 2722-2733. https://doi.org/10.1002/art.2203929. Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H., & Shimoda, T. (2010). Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford, England), 49(7), 1215–1228. https://doi.org/10.1093/rheumatology/keq03130. Li, H., Xie, S., Qi, Y., Li, H., Zhang, R., & Lian, Y. (2018). TNF-α increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Experimental and therapeutic medicine, 16(6), 4737–4744. https://doi.org/10.3892/etm.2018.677031. Ayhan, E. (2014). Intraarticular injections (Corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World Journal of Orthopedics, 5(3), 351. https://doi.org/10.5312/wjo.v5.i3.35132. Shioda, M., Muneta, T., Tsuji, K., Mizuno, M., Komori, K., Koga, H., & Sekiya, I. (2017). TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLOS ONE, 12(5), e0177771. https://doi.org/10.1371/journal.pone.017777133. Stocco, E., Barbon, S., Piccione, M., Belluzzi, E., Petrelli, L., Pozzuoli, A., Ramonda, R., Rossato, M., Favero, M., Ruggieri, P., Porzionato, A., Di Liddo, R., De Caro, R., & Macchi, V. (2019). Infrapatellar fat pad stem cells responsiveness to microenvironment in osteoarthritis: From morphology to function. Frontiers in Cell and Developmental Biology, 7, 323. https://doi.org/10.3389/fcell.2019.0032334. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050-1056. https://doi.org/10.1002/stem.3735. Tarte, K., Gaillard, J., Lataillade, J.-J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N.-C., Sensebé, L., & on behalf of Société Française de Greffe de Moelle et Thérapie Cellulaire. (2010). Clinical-grade production of human mesenchymal stromal cells: Occurrence of aneuploidy without transformation. Blood, 115(8), 1549-1553. https://doi.org/10.1182/blood-2009-05-21990736. Leung, G. J., Rainsford, K. D., & Kean, W. F. (2014). Osteoarthritis of the hand I: Aetiology and pathogenesis, risk factors, investigation and diagnosis. Journal of Pharmacy and Pharmacology, 66(3), 339-346. https://doi.org/10.1111/jphp.1219637. Haj-Mirzaian, A., Mohajer, B., Guermazi, A., Conaghan, P. G., Lima, J. A. C., Blaha, M. J., Bingham, C. O., Roemer, F. W., Cao, X., & Demehri, S. (2019). Statin use and knee osteoarthritis outcome measures according to the presence of heberden nodes: Results from the osteoarthritis initiative. Radiology, 293(2), 396-404. https://doi.org/10.1148/radiol.201919055738. Chang, J., Liao, Z., Lu, M., Meng, T., Han, W., & Ding, C. (2018). Systemic and local adipose tissue in knee osteoarthritis. Osteoarthritis and Cartilage, 26(7), 864-871. https://doi.org/10.1016/j.joca.2018.03.00439. Wisniewska, E., Laue, D., Spinnen, J., Kuhrt, L., Kohl, B., Bußmann, P., Meier, C., Schulze-Tanzil, G., Ertel, W., & Jagielski, M. (2023). Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes. Cells, 12(24), 2850. https://doi.org/10.3390/cells1224285040. Stannus, O. P., Jones, G., Blizzard, L., Cicuttini, F. M., & Ding, C. (2013). Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study. Annals of the Rheumatic Diseases, 72(4), 535-540. https://doi.org/10.1136/annrheumdis-2011-20104741. Silva, L. B., Dos Santos Neto, A. P., Maia, S. M. A. S., Dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. D. A. T., Júnior, S. A., & Leão, J. C. (2019). The role of tnf-α as a proinflammatory cytokine in pathological processes. The Open Dentistry Journal, 13(1), 332-338. https://doi.org/10.2174/187421060191301033242. Svensson, M. N. D., Zoccheddu, M., Yang, S., Nygaard, G., Secchi, C., Doody, K. M., Slowikowski, K., Mizoguchi, F., Humby, F., Hands, R., Santelli, E., Sacchetti, C., Wakabayashi, K., Wu, D. J., Barback, C., Ai, R., Wang, W., Sims, G. P., Mydel, P., Bottini, N. (2020). Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Science Advances, 6(26), eaba4353. https://doi.org/10.1126/sciadv.aba435343. Kasamatsu A, Satoh M, Yoshida T, Kosaka T. (2010). Response of human fibroblast-like synoviocytes derived from rheumatoid arthritis to inflammatory stimulation: Quality control findings (2+3+4). The Japanese Tissue Culture Association. https://doi.org/10.11418/jtca.29.16744. Wang, Y., & Gao, W. (2021). Effects of TNF-α on autophagy of rheumatoid arthritis fibroblast-like synoviocytes and regulation of the NF-κB signaling pathway. Immunobiology, 226(2), 152059. https://doi.org/10.1016/j.imbio.2021.15205945. Mattei, B., Lira, R. B., Perez, K. R., & Riske, K. A. (2017). Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension. Chemistry and Physics of Lipids, 202, 28-37. https://doi.org/10.1016/j.chemphyslip.2016.11.00946. Zhang, Z., Fan, H., Richardson, W., Gao, B. Z., & Ye, T. (2023). Management of autofluorescence in formaldehyde-fixed myocardium: Choosing the right treatment. European Journal of Histochemistry, 67(4). https://doi.org/10.4081/ejh.2023.381247. Orozco, Danny Joan et al. Arthritis in elderly. Rev.Colomb.Reumatol. [online]. 2007, vol.14, n.1, pp.66-84. ISSN 0121-8123.48. Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.00249. Scarpa E, Mayor R. Collective cell migration in development. J Cell Biol. 2016 Jan 18;212(2):143-55. doi: 10.1083/jcb.201508047.50. Theveneau, E., & Mayor, R. (2011). Can mesenchymal cells undergo collective cell migration? The case of the neural crest: The case of the neural crest. Cell Adhesion & Migration, 5(6), 490-498. https://doi.org/10.4161/cam.5.6.1862351. Álvarez, E. (2011). Los fibroblastos sinoviales en la patogenia de la angiogénesis reumatoide.Universidad Complutense de Madrid,52. Benz, K., Schöbel, A., Dietz, M., Maurer, P., & Jackowski, J. (2019). Adhesion behaviour of primary human osteoblasts and fibroblasts on polyether ether ketone compared with titanium under in vitro lipopolysaccharide incubation. Materials, 12(17), 2739. https://doi.org/10.3390/ma1217273953. Campbell, K., & Casanova, J. (2016). A common framework for EMT and collective cell migration. Development, 143(23), 4291-4300. https://doi.org/10.1242/dev.13907154. Shreiber, D. I., Barocas, V. H., & Tranquillo, R. T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical Journal, 84(6), 4102-4114. https://doi.org/10.1016/S0006-3495(03)75135-255. Munevar, S., Wang, Y., & Dembo, M. (2001). Traction force microscopy of migrating normal and h-ras transformed 3t3 fibroblasts. Biophysical Journal, 80(4), 1744-1757. https://doi.org/10.1016/S0006-3495(01)76145-056. Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 128(4), 1238-1246. https://doi.org/10.1172/JCI9514857. Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T. M., Fullen, D. R., Pointer, J. N., Gruber, S. B., Su, L. D., Nikiforov, M. A., Kaufman, R. J., Bastian, B. C., & Soengas, M. S. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology, 8(10), 1053-1063. https://doi.org/10.1038/ncb147158. Del Rey, M. J., Izquierdo, E., Caja, S., Usategui, A., Santiago, B., Galindo, M., & Pablos, J. L. (2009). Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia‐inducible transcription factor 1α/vascular endothelial growth factor–mediated pathway in immunodeficient mice. Arthritis & Rheumatism, 60(10), 2926-2934. https://doi.org/10.1002/art.2484459. Gauthier, V., Kyriazi, M., Nefla, M., Pucino, V., Raza, K., Buckley, C. D., & Alsaleh, G. (2023). Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology, 14, 1137659. https://doi.org/10.3389/fimmu.2023.113765960. Zha, K., Sun, Z., Yang, Y., Chen, M., Gao, C., Fu, L., Li, H., Sui, X., Guo, Q., & Liu, S. (2021). Recent developed strategies for enhancing chondrogenic differentiation of msc: Impact on msc-based therapy for cartilage regeneration. Stem Cells International, 2021, 1-15. https://doi.org/10.1155/2021/883083461. Agar, G., Blumenstein, S., Bar-Ziv, Y., Kardosh, R., Schrift-Tzadok, M., Gal-Levy, R., Fischler, T., Goldschmid, R., & Yayon, A. (2011). The chondrogenic potential of mesenchymal cells and chondrocytes from osteoarthritic subjects: A comparative analysis. CARTILAGE, 2(1), 40-49. https://doi.org/10.1177/194760351038089962. Jones, E. (2011). Synovial mesenchymal stem cells in vivo: Potential key players for joint regeneration. World Journal of Rheumatology, 1(1), 4. https://doi.org/10.5499/wjr.v1.i1.463. Lee, J. H., Park, A., Oh, K.-J., Lee, S. C., Kim, W. K., & Bae, K.-H. (2019). The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. International Journal of Molecular Sciences, 20(19), 4924. https://doi.org/10.3390/ijms2019492464. Bertassoli, B. M., Assis Neto, A. C. D., Oliveira, F. D. D., Arroyo, M. A. M., Ferrão, J. S. P., Silva, J. B. D., Pignatari, G. C., & Braga, P. B. (2013). Mesenchymal stem cells: Emphasis in adipose tissue. Brazilian Archives of Biology and Technology, 56(4), 607-617. https://doi.org/10.1590/S1516-8913201300040001165. Contreras-Zentella, M. L., & Hernández-Muñoz, R. (2021). Possible gender influence in the mechanisms underlying the oxidative stress, inflammatory response, and the metabolic alterations in patients with obesity and/or type 2 diabetes. Antioxidants, 10(11), 1729. https://doi.org/10.3390/antiox10111729Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.00266. Nikitopoulou, I., Oikonomou, N., Karouzakis, E., Sevastou, I., Nikolaidou-Katsaridou, N., Zhao, Z., Mersinias, V., Armaka, M., Xu, Y., Masu, M., Mills, G. B., Gay, S., Kollias, G., & Aidinis, V. (2012). Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. Journal of Experimental Medicine, 209(5), 925-933. https://doi.org/10.1084/jem.2011201267. Zafari, P., Rafiei, A., Faramarzi, F., Ghaffari, S., Amiri, A. H., & Taghadosi, M. (2021). Human fibroblast-like synoviocyte isolation matter: A comparison between cell isolation from synovial tissue and synovial fluid from patients with rheumatoid arthritis. Revista Da Associação Médica Brasileira, 67, 1654-1658. https://doi.org/10.1590/1806-9282.2021070668. Blauvelt, A. (2016a). Ixekizumab: A new anti-IL-17A monoclonal antibody therapy for moderate-to severe plaque psoriasis. Expert Opinion on Biological Therapy, 16(2), 255-263. https://doi.org/10.1517/14712598.2016.113269569. Scian, R., Barrionuevo, P., Rodriguez, A. M., Arriola Benitez, P. C., García Samartino, C., Fossati, C. A., Giambartolomei, G. H., & Delpino, M. V. (2013). Brucella abortus invasion of synoviocytes inhibits apoptosis and induces bone resorption through rankl expression. Infection and Immunity, 81(6), 1940-1951. https://doi.org/10.1128/IAI.01366-1270. Filali, S., Darragi-Raies, N., Ben-Trad, L., Piednoir, A., Hong, S.-S., Pirot, F., Landoulsi, A., Girard-Egrot, A., Granjon, T., Maniti, O., Miossec, P., & Trunfio-Sfarghiu, A.-M. (2022). Morphological and mechanical characterization of extracellular vesicles and parent human synoviocytes under physiological and inflammatory conditions. International Journal of Molecular Sciences, 23(21), 13201. https://doi.org/10.3390/ijms23211320171. Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. https://doi.org/10.1038/sj.bjc.660066472. Lu, Q., Haragopal, H., Slepchenko, K. G., Stork, C., & Li, Y. V. (2016). Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. International journal of physiology, pathophysiology and pharmacology, 8(1), 35–43.73. Colleton, B. A., Piazza, P., & Rinaldo, C. R. (2005). Viral responses – hiv-1. En Measuring Immunity (pp. 578-586). Elsevier. https://doi.org/10.1016/B978-012455900-4/50312-374. Bartok, B., & Firestein, G. S. (2010). Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological reviews, 233(1), 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.xEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86644/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1057602278.2024.pdf1057602278.2024.pdfTesis de Maestría en Ciencias Farmacologíaapplication/pdf2798468https://repositorio.unal.edu.co/bitstream/unal/86644/2/1057602278.2024.pdf6ed013aeb48a94eebaff50753698f6a9MD52THUMBNAIL1057602278.2024.pdf.jpg1057602278.2024.pdf.jpgGenerated Thumbnailimage/jpeg4079https://repositorio.unal.edu.co/bitstream/unal/86644/3/1057602278.2024.pdf.jpg420eef93d493a738115ac134cbff55feMD53unal/86644oai:repositorio.unal.edu.co:unal/866442024-10-04 10:11:33.066Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |