Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)

ilustraciones, diagramas, fotografías

Autores:
Garcia Atencia, Sandy Paola
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86411
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86411
https://repositorio.unal.edu.co/
Palabra clave:
590 - Animales::595 - Artrópodos
Diversidad funcional
Scarabaeidae
Sistema agroforestal
functional diversity
Scarabaeidae
sistema agroflorestal
Rasgos funcionales
Diversidad taxonómica
Diversidad funcional
Coleoptera
Paisajes agroforestales
Functional traits
Assembly mechanisms
Taxonomic diversity
Functional diversity
Coleoptera
Agroforestry landscapes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_93a9921020c1f89d0aaea75c6d738042
oai_identifier_str oai:repositorio.unal.edu.co:unal/86411
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
dc.title.translated.eng.fl_str_mv Functional diversity of phytophagous scarab beetles (Coleoptera: Scarabaeidae) in agroforestry landscapes of Serrania del Perija (Cesar, Colombia)
title Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
spellingShingle Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
590 - Animales::595 - Artrópodos
Diversidad funcional
Scarabaeidae
Sistema agroforestal
functional diversity
Scarabaeidae
sistema agroflorestal
Rasgos funcionales
Diversidad taxonómica
Diversidad funcional
Coleoptera
Paisajes agroforestales
Functional traits
Assembly mechanisms
Taxonomic diversity
Functional diversity
Coleoptera
Agroforestry landscapes
title_short Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
title_full Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
title_fullStr Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
title_full_unstemmed Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
title_sort Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)
dc.creator.fl_str_mv Garcia Atencia, Sandy Paola
dc.contributor.advisor.spa.fl_str_mv Bonilla Gómez, Maria Argenis
Moreno Ortega, Claudia Elizabeth
dc.contributor.author.spa.fl_str_mv Garcia Atencia, Sandy Paola
dc.contributor.researchgroup.spa.fl_str_mv Biología de Organismos Tropicales (Biotun)
dc.contributor.orcid.spa.fl_str_mv García Atencia, Sandy [https://orcid.org/0000-0002-5782-4049]
dc.subject.ddc.spa.fl_str_mv 590 - Animales::595 - Artrópodos
topic 590 - Animales::595 - Artrópodos
Diversidad funcional
Scarabaeidae
Sistema agroforestal
functional diversity
Scarabaeidae
sistema agroflorestal
Rasgos funcionales
Diversidad taxonómica
Diversidad funcional
Coleoptera
Paisajes agroforestales
Functional traits
Assembly mechanisms
Taxonomic diversity
Functional diversity
Coleoptera
Agroforestry landscapes
dc.subject.agrovoc.spa.fl_str_mv Diversidad funcional
Scarabaeidae
Sistema agroforestal
dc.subject.agrovoc.eng.fl_str_mv functional diversity
Scarabaeidae
sistema agroflorestal
dc.subject.proposal.spa.fl_str_mv Rasgos funcionales
Diversidad taxonómica
Diversidad funcional
Coleoptera
Paisajes agroforestales
dc.subject.proposal.eng.fl_str_mv Functional traits
Assembly mechanisms
Taxonomic diversity
Functional diversity
Coleoptera
Agroforestry landscapes
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-07-03
dc.date.accessioned.none.fl_str_mv 2024-07-05T20:49:15Z
dc.date.available.none.fl_str_mv 2024-07-05T20:49:15Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86411
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86411
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Aguilera, M. (2016). Serranía del Perijá: Geografía, capital humano, economía y medio ambiente. Banco de La República, 249, 1–134.
Arnold, P. A., Cassey, P., & White, C. R. (2017). Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Functional Ecology, 31(3), 653–661.
Arroyo-Rodríguez, V., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S. J., Galán-Acevedo, C., Hernández-Ruedas, M. A., Rito, K. F., & San-José, M. (2019). Determinantes de la biodiversidad en paisajes antrópicos : Una revisión teórica. In La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. (pp. 65–112).
Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420.
Arroyo-Rodríguez, V., Moreno, C. E., & Galán-Acedo, C. (2017). La ecología del paisaje en México: logros, desafíos y oportunidades en las ciencias biológicas. Revista Mexicana de Biodiversidad, 88, 42–51.
Arroyo-Rodríguez, V., Rös, M., Escobar, F., Melo, F. P. L., Santos, B. A., Tabarelli, M., & Chazdon, R. (2013). Plant β-diversity in fragmented rain forests: Testing floristic homogenization and differentiation hypotheses. Journal of Ecology, 101(6), 1449–1458.
Auber, A., Waldock, C., Maire, A., Goberville, E., Albouy, C., Algar, A. C., McLean, M., Brind’Amour, A., Green, A. L., Tupper, M., Vigliola, L., Kaschner, K., Kesner-Reyes, K., Beger, M., Tjiputra, J., Toussaint, A., Violle, C., Mouquet, N., Thuiller, W., & Mouillot, D. (2022). A functional vulnerability framework for biodiversity conservation. Nature Communications, 13(1), 1–13.
Audino, L. D., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation, 169, 248–257.
Audino, L., Murphy, S., Zambaldi, L., Louzada, J., & Comita, L. (2017). Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape and space. Ecological Applications, 27(6), 1731–1745.
Ávila, F., Quintero, J., Gusmán, A., Ulian, T., Doria, G., & Diazgranados, M. (2022). Guía de plantas útiles de la Serranía del Perijá, Corregimientos de La Victoria de San Isidro y Estados Unidos, Cesar (Vol. 1). Royal Botanic Gardens, Kew; E3- Ecología, Economía y Ética, Rutas Turísticas por los Bosques y la Paz.
Bai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., Hu, X. Y., & Yang, X. K. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure and Development, 41(5), 505–513.
Barragán, F., Moreno, C. E., Escobar, F., Halffter, G., & Navarrete, D. (2011). Negative impacts of human land use on dung beetle functional diversity. PLoS ONE, 6(3), e17976.
Barton, P. S., Gibb, H., Manning, A. D., Lindenmayer, D. B., & Cunningham, S. A. (2011). Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 102(2), 301–310.
Baselga, A., Orme, D., Villéger, S., De Bortoli, J., Leprieur, F., Logez, M., Martinez-Santalla, S., Martin-Devasa, R., Gomez-Rodriguez, C., & Crujeiras, R. (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.6. https://cran.r-project.org/package=betapart
Baselga, Andrés. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143.
Basset, Y., Blažek, P., Souto-Vilarós, D., Vargas, G., Ramírez Silva, J. A., Barrios, H., Perez, F., Bobadilla, R., Lopez, Y., Ctvrtecka, R., Šípek, P., Solís, A., Segar, S. T., & Lamarre, G. P. A. (2023). Towards a functional classification of poorly known tropical insects: The case of rhinoceros beetles (Coleoptera, Dynastinae) in Panama. Insect Conservation and Diversity, 16(1), 147–163.
Begon, M., Towsend, C., & Harper, J. (2006). Ecology from Individuals to Ecosystems (4th ed.). Blackwell publishing.
Beiroz, W., Sayer, E., Slade, E. M., Audino, L., Braga, R. F., Louzada, J., & Barlow, J. (2018). Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecological Indicators, 95(May), 518–526.
Blondel, J. (2003). Guilds or functional groups: does it matter? Oikos, 100(2), 223–231.
Brown, J., Gillooly, J., Allen, A., Savage, V., & West, G. (2004). Toward a Metabolic Theory of Ecology. Ecology, 85(7), 1771–1789
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087.
Carvalho, R. L., Andresen, E., Arroyo-Rodríguez, V., Anjos, D. V, Resende, A. F., de Mello, F., & Vasconcelos, H. L. (2023). Biodiversity in landscape mosaics: The roles of local land use and the surrounding landscape on dung beetle assemblages. Journal of Applied Ecology, 60(8), 1647–1658.
Chao, A., Hsieh, T. C., & Colwell, R. K. (2014). Rarefaction and extrapolation with Hill numbers : A framework for sampling and estimation in species diversity studies Rarefaction and extrapolation with Hill numbers : a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67.
Cook, R. N., Ramirez-Parada, T., Browne, L., Ellis, M., & Karubian, J. (2020). Environmental correlates of richness, community composition, and functional traits of terrestrial birds and mammals in a fragmented tropical landscape. Landscape Ecology, 35(12), 2825–2841.
Córdova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78–87.
Correa, C. M. A., Braga, R. F., Puker, A., & Korasaki, V. (2019). Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. Journal of Insect Conservation, 23(1), 89–99.
Costa, M. S., Silva, R. J., Paulino-Neto, H. F., & Pereira, M. J. B. (2017). Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators. PLoS ONE, 12(2), 1–14.
Creighton, J. C. (2005). Population density, body size, and phenotypic plasticity of brood size in a burying beetle. Behavioral Ecology, 16(6), 1031–1036.
Davies, R. W., Edwards, D. P., & Edwards, F. A. (2020). Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation.
de Bello, F., Carmona, C. P., Dias, A. T. C., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of Trait-Based Ecology. Handbook of Trait-Based Ecology, March, 2021–2023.
de Lima Filho, J. A., Vieira, R. J. A. G., de Souza, C. A. M., Ferreira, F. F., & de Oliveira, V. M. (2021). Effects of habitat fragmentation on biodiversity patterns of ecosystems with resource competition. Physica A: Statistical Mechanics and Its Applications, 564, 125497.
deCastro-Arrazola, I., Andrew, N. R., Berg, M. P., Curtsdotter, A., Lumaret, J. P., Menéndez, R., Moretti, M., Nervo, B., Nichols, E. S., Sánchez-Piñero, F., Santos, A. M. C., Sheldon, K. S., Slade, E. M., & Hortal, J. (2023). A trait-based framework for dung beetle functional ecology. Journal of Animal Ecology, 92(1), 44–65.
Deloya, C. (1998). Cyclocephala lunulata Burmeister, 1847 (Coleoptera: Melolonthidae, Dynastinae) asociada al cultivo de maíz (Zea mays) en Pueblo Nuevo, Morelos, México. In M.A Morón & A. Aragón (Eds.), Avances en el Estudio de la Diversidad, Importancia y Manejo de los Coleópteros Edafícolas Americanos (pp. 121–130). Publicación especial de la Benemérita Universidad Autónoma de Puebla y la Sociedad Mexicana de Entomología, A. C.
Deloya, C., & Gasca-Álvarez, H. (2018). Escarabajos del neotrópico (Insecta: Coleoptera) (S. y G. Editores (ed.); Primera Ed, Issue December).
Deloya, C., Morón, M. ., & Lobo, J. M. (1995). Coleoptera Lamellicornia (Mcleay, 18919) del sur del Estado de Morelos, México. Acta Zoológica Mexicana (Nueva Serie), 65, 1–42.
Deppe, F., & Fischer, K. (2023). Landscape type affects the functional diversity of carabid beetles in agricultural landscapes. Insect Conservation and Diversity, 16(4), 441–450.
Di Iorio, O. (2014). A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa, 3790(2), 281–318.
Dias, T. C., Bello, F. De, Altermatt, F., Moretti, M., Bell, J. R., Fournier, B., Chown, S. L., Azc, F. M., Sousa, P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. 558–567.
Díaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4(8), 1300–1305.
Duflot, R., Georges, R., Ernoult, A., Aviron, S., & Burel, F. (2014). Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica, 56, 19–26.
Eberle, J., Myburgh, R., & Ahrens, D. (2014). The evolution of morphospace in phytophagous scarab chafers: No competition - No divergence? PLoS ONE, 9(5).
Endrödi, S. (1985). Dynastinae of the world. Dr W. Junk Publishers.
Estupiñan-Mojica, A., Portela-Salomão, R., Liberal, C. N., Santos, B. A., Machado, C. C. C., de Araujo, H. F. P., Von Thaden, J., & Alvarado, F. (2022). Landscape attributes shape dung beetle diversity at multiple spatial scales in agricultural drylands. Basic and Applied Ecology, 63, 139–151.
Fahrig, L. (1998). When does fragmentation of breeding habitat affect population survival? Ecological Modelling, 105(2–3), 273–292.
Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.
Fahrig, L. (2003a). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.
Fahrig, L. (2003b). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515.
Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112.
FAO. (2017). Carbono orgánico del suelo: el potencial oculto (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas (eds.)).
Feng, L., Arvidsson, F., Smith, H. G., & Birkhofer, K. (2021). Fallows and permanent grasslands conserve the species composition and functional diversity of carabid beetles and linyphiid spiders in agricultural landscapes. Insect Conservation and Diversity, 14(6), 825–836.
Filgueiras, B. K. C., Melo, D. H. A., Andersen, A. N., Tabarelli, M., & Leal, I. R. (2019). Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98(November 2018), 523–530.
Fountain-Jones, N. M., Baker, S. C., & Jordan, G. J. (2015). Moving beyond the guild concept: Developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40(1), 1–13.
Gallé, R., Geppert, C., Földesi, R., Tscharntke, T., & Batáry, P. (2020). Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 48, 102–111.
García-Atencia, S., & Amat-García, G. (2021). Variación espacio-temporal de los gremios alimenticios de escarabajos fitófagos (Coleoptera : Scarabaeidae) en el Caribe colombiano. Sociedad Colombiana de Entomología, 47(2), 1–11.
García-Atencia, Sandy, Bonilla-Gómez, M. A., & Moreno, C. E. (2024). Ecosystem functions and functional traits for the study of phytophagous scarab beetles (Coleoptera: Scarabaeidae). Ecological Entomology, 1–13.
García-Robledo, C., Kattan, G., Murcia, C., & Quintero-Marín, P. (2004). Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology, 20(4), 459–469.
Gasca-Álvarez, H. J. (2013). New Records of Cyclocephala Dejean (Coleoptera : Scarabaeidae: Dynastinae) Associated with Caladium bicolor (Aiton) Vent. (Araceae). The Coleopterists Bulletin, 67(4), 416–418.
Giménez, V. (2019). Efecto del cambio de uso del suelo en la diversidad funcional de coleópteros copro-necrófagos del Bosque Atlántico: patrones y mecanismos propuestos. Universidad Nacional de Cuyo.
Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H. Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 9–14.
Gottsberger, G., & Webber, A. C. (2018). Nutritious tissue in petals of annonaceae and its function in pollination by scarab beetles. Acta Botanica Brasilica, 32(2), 279–286.
Granados-Sánchez, D., Ruíz-Puga, P., & Barrera-Escorcia, H. (2008). Ecología de la herbivoria. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 14(1), 51–63.
Griffiths, H. M., Louzada, J., Bardgett, R. D., Beiroz, W., FrançA, F., Tregidgo, D., & Barlow, J. (2015). Biodiversity and environmental context predict dung beetle-mediated seed dispersal in a tropical forest field experiment. Ecology, 96(6), 1607–1619.
Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., Martínez-Ramos, M., Morales, H., Nigh, R., Soto-Pinto, L., Van Breugel, M., & Wishnie, M. (2008). Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology, 22(1), 8–15.
Hesselbarth, M., Sciaini, M., Nowosad, J., & Hanss, S. (2020). Package ‘ landscapemetrics ’ R topics documented : Ecography, 42, 1648–1657.
Hodecek, J., Kuras, T., Sipos, J., & Dolny, A. (2015). Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640.
Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and extrapolation for species diversity. R package version 3.0.0. http://chao.stat.nthu.edu.tw/wordpress/software-download/
Hubbell, S. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press. http://www.jstor.org/stable/j.ctt7rj8w.
Ibarra, M., & Damborsky, M. (2017). Changes in the structure of Melolonthidae (Coleoptera: Scarabaeoidea) assemblages along a temporal gradient in a natural reserve in Chaco, Argentina. Austral Entomology.
IDEAM. (2010). Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Metereología y Estudios Ambientales. http://siatac.co/c/document_library/get_file?uuid=a64629ad-2dbe-4e1e-a561-fc16b8037522&groupId=762.
Jeanneret, P., Aviron, S., Alignier, A., Lavigne, C., Helfenstein, J., Herzog, F., Kay, S., & Petit, S. (2021). Agroecology landscapes. Landscape Ecology, 36(8), 2235–2257.
Jost, L. (2006). Entropy and diversity. Oikos, 2(113), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Kędzior, R., & Kosewska, A. (2022). Landscape Heterogeneity Determines the Diversity and Life History Traits of Ground Beetles (Coleoptera: Carabidae). Sustainability (Switzerland), 14(21).
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(January), 299–305.
Leandro, C., Jones, M., Perrin, W., Jay-Robert, P., & Ovaskainen, O. (2023). Dung beetle community patterns in Western Europe: responses of Scarabaeinae to landscape and environmental filtering. Landscape Ecology, 38(9), 2323–2338.
Legendre, P., & Legendre, L. (1998). Numerical Ecology (Second Edi). Elsevier Science B.V.
Lindenmayer, D. (2019). Small patches make critical contributions to biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 717–719.
Lovell, S. T., Bentrup, G., & Stanek, E. (2022). Agroforestry at the Landscape Level. North American Agroforestry: Third Edition, 417–435.
Lovett, G. ., Jones, C. ., Turner, M. ., & Weathers, K. . (2005). Ecosystem Function in Heterogeneous Landscapes. Springer-Verlag.
Lugo-Garcia, A., Morón, M. ., Aragón-Sánchez, M., Reyes-Olivas, A., Sánchez-Soto, H., & Sauceda-Acosta, P. (2017). Especies de “gallina ciega” (Coleoptera: Melolonthidae) en el cultivo de ajonjolí (Sesamum indicum L.) en Sinaola, México. Agrociencia, 51(7), 799–811.
Macarthur, R., & Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. Source: The American Naturalist, 101(921), 377–385.
Maia, A. C. D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., do Amaral Ferraz Navarro, D. M., Schlindwein, C., & Gottsberger, G. (2012). The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: A Unique Olfactory Floral Signal Shared by Annonaceae and Araceae. Journal of Chemical Ecology, 38(9), 1072–1080.
Marquez-Peña, J., & Domínguez-Haydar, Y. (2023). Riqueza y diversidad de hormigas (Hymenoptera: Formicidae) según uso de suelo en dos paisajes agroforestales de Colombia. Revista de Biología Tropical, 71(1), e52087.
Matsuki, Y., Tateno, R., Shibata, M., & Isagi, Y. (2008). Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. American Journal of Botany, 95(8), 925–930.
Mayfield, M. ., Bonser, P., Morgan, J. ., Aubin, I., McNamar, S., & Vesk, P. . (2010). What does species richness tell us about functional trait diversity ? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19, 423–431.
McCleve, S. (2007). Killer Phileurini -or- How come some diplos are hairy? Scarabs, 20, 1–20.
Mcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. 21(4).
Mcintyre, S., & Hobbs, R. (1999). A Framework for Conceptualizing Human Effectson Landscapes an its relevance to Management and Research models. Conservation Biology, 13(6), 1282–1292.
Micó, E., Juárez, M., Sánchez, A., & Galante, E. (2011). Action of the saproxylic scarab larva cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. Journal of Natural History, 45(41–42), 2527–2542.
Micó, Estefanía, Ramilo, P., Thorn, S., Müller, J., Galante, E., & Carmona, C. P. (2020). Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 10(1), 1–11.
Milet-Pinheiro, P., Gomes Gonçalves, E., do Amaral Ferraz Navarro, D. M., Nuñez-Avellaneda, L. A., & Maia, A. C. D. (2017). Floral scent chemistry and pollination in the Neotropical aroid genus Xanthosoma (Araceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 231, 1–10.
Moore, M. R., & Jameson, M. L. (2013). Floral associations of cyclocephaline scarab beetles. Journal of Insect Science, 13.
Moreno, C. . (2019). La Biodiversidad en un mundo cambiante (C. . Moreno (ed.)). Universidad Autónoma del Estado de Hidalgo/Libermex.
Moretti, M., De Cáceres, M., Pradella, C., Obrist, M. K., Wermelinger, B., Legendre, P., & Duelli, P. (2010). Fire-induced taxonomic and functional changes in saproxylic beetle communities in fire sensitive regions. Ecography, 33(4), 760–771.
Moretti, M., Dias, T. C., Bello, F. De, Altermatt, F., Bell, J. R., Fournier, B., Chown, S. L., Azcárate, F. M., Bell, J., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. ., Eller, J., & Berg, M. . (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31, 558–567.
Morón, M. (1985). Los insectos degradadores, un factor poco estudiado en los bosques de México. Folia Entomológica Mexicana, 65(January 1985), 131–137. https://biblat.unam.mx/es/revista/folia-entomologica-mexicana/25
Morón, M.A., Ratcliffe, B., & Deloya, C. (1997). Atlas de los escarabajos de México. Coleoptera Lamellicornia. Vol I Familia Melolonthidae. Subfamilias Rutelinae, Dynastinae, Cetoniinae, Trichiinae, Valginae y Melolonthinae. (1st ed.). Sociedad mexicana de entomología, A.C.
Morón, Miguel Angel, & Deloya, C. (2002). Observaciones Sobre El Ciclo De Vida De Pelidnota (Pelidnota) Virescens Burmeister, 1844 (Coleoptera: Melolonthidae; Rutelinae). Acta Zoológica Mexicana (N.S.), 1844(85), 109–118.
Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876.
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., & Thuiller, W. (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLOS Biology, 11(5), 1–11.
Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, 10(2), 58–62.
Nanni, A. S., Krug, P., Cicchino, A. C., & Quintana, R. D. (2021). Effects of intensive human management on the taxonomic and functional diversity of ground beetles in a planted forest landscape. Biodiversity and Conservation, 30(12), 3717–3735.
Navarrete-Heredia, J. L. (2001). Beetles associated with Atta and Acromyrmex Ants (Hymenoptera: Formicidae: Attini). Transaction of the American Entomological Society, 127(3), 381–429. http://www.jstor.org/stable/25078753
Neita-Moreno, J. C., Orozco, J., & Ratcliffe, B. (2006). Escarabajos (Scarabaeidae:Pleurosticti) de la selva baja del Bosque Pluvial Tropical “BP-T”, Chocó, Colombia. Acta Zoológica Mexicana (Nueva Serie), 22, 1–32.
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., & Favila, M. E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461–1474.
Nichols, Elizabeth, Uriarte, M., Bunker, D. E., Favila, M. E., Slade, E. M., Vulinec, K., Larsen, T., Vaz-De-Mello, F. Z., Louzada, J., Naeem, S., & Spector, S. H. (2013). Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, 94(1), 180–189.
O’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E., & Duncan, R. P. (2016). Landscape Effects on the Spread of Invasive Species. Current Landscape Ecology Reports, 1(3), 107–114.
Orozco, J. (2012). Monographic Revision of the American Genus Euphoria Burmeister , 1842 ( Coleoptera : Scarabaeidae : Cetoniinae ) Author ( s ): Jesús Orozco. BioOne, 1842(11), 1–182.
Ortega-Martínez, I. J., Moreno, C. E., Rios-Díaz, C. L., Arellano, L., Rosas, F., & Castellanos, I. (2020). Assembly mechanisms of dung beetles in temperate forests and grazing pastures. Scientific Reports, 10(1), 1–10.
Ospina-Garcés, S. M., Escobar, F., Baena, M. L., Davis, A. L. V., & Scholtz, C. H. (2018). Do dung beetles show interrelated evolutionary trends in wing morphology, flight biomechanics and habitat preference? Evolutionary Ecology, 32(6), 663–682.
Pardo-Locarno, L. C., Montoya-Lerma, J., Bellotti, A. C., & Van Schoonhoven, A. (2005). Structure and composition of the white grub complex (Coleoptera: Scarabaeidae) in agroecological systems of northern Cauca, Colombia. Florida Entomologist, 88(4), 355–363.
Pardo-Locarno, L., González, J., Rafael Pérez, C., Yepes, F., & Fernández, C. (2012). Escarabajos de importancia agrícola (Coleoptera: Melolonthidae) en la Región Caribe colombiana: Registros y propuestas de manejo. Boletin Del Museo Entomológico Francisco Luis Gallego, 4(2), 7–24.
Perović, D., Gámez-Virués, S., Börschig, C., Klein, A. M., Krauss, J., Steckel, J., Rothenwöhrer, C., Erasmi, S., Tscharntke, T., & Westphal, C. (2015). Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 52(2), 505–513.
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758.
Peter, C. I., & Johnson, S. D. (2009). Pollination by flower chafer beetles in Eulophia ensata and Eulophia welwitschii (Orchidaceae). South African Journal of Botany, 75(4), 762–770.
Peter, Craig I., & Johnson, S. D. (2014). A pollinator shift explains floral divergence in an orchid species complex in South Africa. Annals of Botany, 113(2), 277–288.
Portela Salomão, R., González-Tokman, D., Dáttilo, W., López-Acosta, J. C., & Favila, M. E. (2018). Landscape structure and composition define the body condition of dung beetles (Coleoptera: Scarabaeinae) in a fragmented tropical rainforest. Ecological Indicators, 88(August 2017), 144–151.
Puker, A., Lopes-Andrade, C., Rosa, C. S., & Grossi, P. C. (2012). New records of termite hosts for two species of hoplopyga, with notes on the life cycle of hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Annals of the Entomological Society of America, 105(6), 872–878.
Raine, E. H., Gray, C. L., Mann, D. J., & Slade, E. M. (2018). Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecology and Evolution, 8(17), 8686–8696.
Ratcliffe, B. (2003). The Dynastine Scarab beetles of Costa Rica and Panama. Bulletin of the University of Nebraska State Museum, 16, 506.
Ratcliffe, B. ., & Cave, R. D. (2006). The Dynastine Scarab beetles of Honduras, Nicaragua and El Salvador Bulletin of the University of Nebraska State Museum. University of Nebraska State Museum.
Ratcliffe, B. C., Cave, R. D., & Paucar-Cabrera, A. (2020). The Dynastine Scarab Beetles of Ecuador: (Coleoptera: Scarabaeidae: Dynastinae). University of Nebraska State Museum.
Ratoni, B., Ahuatzin, D., Corro, E. J., Salomão, R. P., Escobar, F., López-Acosta, J. C., & Dáttilo, W. (2023). Landscape composition shapes biomass, taxonomic and functional diversity of dung beetles within human-modified tropical rainforests. Journal of Insect Conservation, 27(5), 717–728.
Ribera, I., Doledec, S., Downie, I. S., Foster, G. N., & Apr, N. (2001). Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Society, 82(4), 1112–1129.
Ribera, I., McCracken, D. I., Foster, G. N., Downie, I. S., & Abernethy, V. J. (1999). Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land. Journal of Zoology, 247(1), 1–18.
Riva, F., & Fahrig, L. (2022). The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 15(3), 1–7.
Rivera, J. D., da Silva, P. G., & Favila, M. E. (2021). Landscape effects on taxonomic and functional diversity of dung beetle assemblages in a highly fragmented tropical forest. Forest Ecology and Management, 496(May).
Rivera, J. D., de los Monteros, A., da Silva, P. G., & Favila, M. E. (2022). Dung beetles maintain phylogenetic divergence but functional convergence across a highly fragmented tropical landscape. Journal of Applied Ecology, 59(7), 1781–1791.
Romero-López, A. A., Morón, M. A., Aragón, A., & Villalobos, F. J. (2010). La “gallina Ciega” (Coleoptera: Scarabaeoidea: Melolonthidae) vista Como Un “ingeniero del Suelo.” Southwestern Entomologist, 35(3), 331–343.
Salgado-Negret, B. (2016). La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Salomão, R. P., Favila, M. E., & González-Tokman, D. (2020). Spatial and temporal changes in the dung beetle diversity of a protected, but fragmented, landscape of the northernmost Neotropical rainforest. Ecological Indicators, 111(June 2019), 105968.
Sánchez-de-Jesús, H. A., Arroyo-Rodríguez, V., Andresen, E., & Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31(4), 843–854.
Saravy, F. P., Marques, M. I., & Schuchmann, K. L. (2022). Life history patterns of coleopteran pollinators of Annona crassiflora Mart. in the Brazilian Cerrado. Journal of Natural History, 56(9–12), 743–767.
Sipos, J., Hodecek, J., Kuras, T., & Dolny, A. (2017). Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bulletin of Entomological Research, 107(04), 466–477.
Soula, M. (2010). Les Coléoptères du Nouveau Monde. Bulletin de Liaison de l’Association Entomologique Pour La Connaissance de La Faune Tropicale, 4.
Stokland, J. N., Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). The saproxylic food web. In Biodiversity in Dead Wood (pp. 29–57). Cambridge University Press.
Suárez, G., & Amat-García, G. (2007). Lista de especies de los escarabajos fruteros (Melolonthidae: Cetoniinae) de Colombia. Biota Colombiana, 8((1)), 69–76. https://www.redalyc.org/articulo.oa?id=491/49180104
Sugiura, N., Matsumura, S., & Yokota, M. (2021). Beetle pollination of Luisia teres (Orchidaceae) and implications of a geographic divergence in the pollination system. Plant Species Biology, 36(1), 52–59.
Swenson, N. G. (2014). Functional and Phylogenetic Ecology in R. In Functional and Phylogenetic Ecology in R. Springer.
Tapia-Rojas, A., Aragón G, A., & López-Olguín, J. . (2013). Importancia escarabajos Puebla. In M.A Morón, A. Aragón, & H. Carrillo (Eds.), Fauna de Escarabajos del estado de Puebla. (pp. 365–408). Fauna de Escarabajos del estado de Puebla. Publicación de Escarabajos Mesoamericanos.
Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews, 87(3), 661–685.
Útima, O., & Vallejo, L. F. (2008). Escarabajos Melolonthidae (Scarabaeidae-Pleurosticti) de La Montaña Cafetera, departamento de Risaralda, Colombia. Agronómica, 16(2), 31–44.
Valencia Arias, C., Martínez Osorio, A., Morales Osorio, J. G., & Ramírez-Gil, J. G. (2019). Spatial Analysis of Presence, Injury, and Economic Impact of the Melolonthidae (Coleoptera: Scarabaeoidea) Complex in Avocado Crops. Neotropical Entomology, 48(4), 583–593.
Vanbergen, A. J., Aizen, M. A., Cordeau, S., Garibaldi, L. A., Garratt, M. P. D., Kovács-Hostyánszki, A., Lecuyer, L., Ngo, H. T., Potts, S. G., Settele, J., Skrimizea, E., & Young, J. C. (2020). Transformation of agricultural landscapes in the Anthropocene: Nature’s contributions to people, agriculture and food security. In Advances in Ecological Research (1st ed., Vol. 63). Elsevier Ltd.
Villalobos-Moreno, A., Pardo-Locarno, L. C., & Cabrero-Sañudo, F. J. (2018). Estacionalidad de escarabajos fitófagos (Coleoptera: Melolonthidae) en un Robledal del Nororiente de los Andes colombianos. Bol. Cient. Mus. Hist. Nat., 22(1), 163–178.
Villéger, S., Grenouillet, G., & Brosse, S. (2013). Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22(6), 671–681.
Villéger, S., Novack-Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561–568.
Villéger, S., Ramos Miranda, J., Flores Hernández, D., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522.
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007a). Let the concept of trait be functional! Oikos, 116(5), 882–892.
Weiher, E., & Keddy, P. (1995). Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos, 74(1), 159–164.
Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2 ed.). CRC Press.
Zambrano, J., Garzon-Lopez, C. X., Yeager, L., Fortunel, C., Cordeiro, N. J., & Beckman, N. G. (2019). The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia, 191(3), 505–518.
Zhang, M., Ruan, Y., Wan, X., Tong, Y., Yang, X., & Bai, M. (2019). Geometric morphometric analysis of the pronotum and elytron in stag beetles: Insight into its diversity and evolution. ZooKeys, 2019(833), 21–40.
Zobel, M. (1997). The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology & Evolution, 12(7), 266–269.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 129 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Serranía del Perijá
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Cesar
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1109474
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86411/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86411/2/1140831312.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86411/3/1140831312.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2332b561d0b590e0a142890ecf413fbe
1cd691c5ca6f562f3e4cf9146a084cfb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089920768114688
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bonilla Gómez, Maria Argenis13fcc2c12b091fc266f33da52f088910600Moreno Ortega, Claudia Elizabeth4ddee7ebf4fc3724e81d414e8c2c7599Garcia Atencia, Sandy Paola7e54e6e5408dc6392bcc09e1e2ab18c9600Biología de Organismos Tropicales (Biotun)García Atencia, Sandy [https://orcid.org/0000-0002-5782-4049]Serranía del PerijáColombiaCesarhttp://vocab.getty.edu/page/tgn/11094742024-07-05T20:49:15Z2024-07-05T20:49:15Z2023-07-03https://repositorio.unal.edu.co/handle/unal/86411Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn la Serranía del Perijá, Norte de Colombia, el cambio constante del paisaje, bien sea por implementación de estrategias de manejo o por desarrollo de las comunidades para el aprovechamiento del territorio, generan diferencias en la organización de los mismos. Esta investigación, tuvo como objetivo evaluar los cambios de la estructura funcional de escarabajos fitófagos (Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá. Teniendo en cuenta que los escarabajos fitófagos explotan variedad de recursos alimenticios, y están relacionados a procesos como la degradación de la materia orgánica, polinización y control biológico, se anticipó que la estructuración funcional de sus comunidades, reflejada en la variación de sus rasgos funcionales y en las métricas de la diversidad funcional, cambiaría en función a los cambios en las características de los ecosistemas y su entorno. Se ubicaron cuatro ventanas de 4 km2 cada una, y se realizó la recolecta de escarabajos en las coberturas de bosque, cultivo, y regeneración. Para cada cobertura se obtuvieron datos de altitud, cobertura del dosel, porcentaje del área de cada cobertura (PLAND), distancia entre fragmentos de la misma cobertura y forma de los fragmentos. Se estimó la variación de los rasgos funcionales mediante el cálculo de CWM para cada rasgo funcional y se evaluó su relación con las variables del paisaje por medio de modelos aditivos generalizados (GAMM). Además, se analizaron las variaciones multiescalares de las métricas de diversidad taxonómica (0D, 1D y 2D) y de diversidad funcional (FRicSES, FEveSES y FDisSES), así como también la diversidad beta taxonómica y funcional con sus componentes de recambio y anidamiento. Para analizar la influencia de las variables del paisaje sobre las diversidades alfa taxonómica y funcional, se construyeron GAMMs. Para analizar esa misma influencia en la diversidad beta, se realizaron análisis de redundancia con matrices de distancia (dbRDA). Como resultados se recolectaron 3713 escarabajos fitófagos de 50 especies agrupadas en las subfamilias Melolonthinae, Dynastinae, Rutelinae y Cetoniinae. Los rasgos funcionales responden a las variables del paisaje con asociaciones significativas. Se evidenciaron relaciones entre rasgos relacionados a la complejidad de los ambientes con el porcentaje de área de los bosques; los cultivos con mayor altitud y distancia estuvieron representados por rasgos vinculados con la capacidad de dispersión; y la longitud de las patas posteriores; en las coberturas de regeneraciones dependían de la cobertura del dosel, la forma y la distancia. En cuanto a la diversidad taxonómica y funcional, no presentaron diferencias entre coberturas a nivel regional, pero si dentro de algunas ventanas. La diversidad beta taxonómica se debe principalmente al recambio, mientras que la diversidad beta funcional se debe al anidamiento. Tanto la altitud como la distancia entre fragmentos se relacionaron con la riqueza en las tres coberturas; así como 1D, 2D y FRicSES en cultivos. Por su parte la altitud y la forma de los fragmentos explicaron la variación de 0D en regeneración, 1D y 2D en bosques y FEveSES y FDisSES en las tres coberturas. La altitud, la cobertura del dosel y la forma, fueron las variables que mayormente influenciaron la diversidad beta taxonómica y funcional, y en sus componentes de recambio y anidamiento. En general, estos resultados muestran que la estructura del paisaje juega un papel importante para el mantenimiento de diferentes dimensiones de la diversidad. Por lo tanto, garantizar un arreglo espacial que garantice la composición y la conectividad, favorecerá la persistencia de comunidades con especies vinculadas a variadas funciones ecosistémicas. (Texto tomado de la fuente).In the Serranía del Perijá, Northern of Colombia, landscape changes, whether due to the implementation of management strategies or community development for territorial utilization, generate differences in their organization. This research aimed to assess changes in the functional structure of phytophagous scarab beetles (Scarabaeidae) in agroforestry landscapes of the Serranía del Perijá. Considering that phytophagous scarab beetles exploit a variety of food resources and are related to ecological processes as organic matter degradation, pollination, and biological control, it is predicted that the functional structuring of their communities, reflected in the variation of their functional traits and functional diversity metrics, will be sensitive to changes in ecosystems characteristics and their surroundings. Four windows of 4 Km2 each were selected, and scarab beetles were collected in forest, crops, and regeneration coverages. For each coverage data on altitude, canopy cover and class level metrics PLAND, Shape and Euclidean distance, were obtained. The variation of functional traits was estimated by calculating Community Weighted Mean index (CWM) for each functional trait and its relationship with landscapes variables was evaluated using Generalized Additive Mixed Models (GAMMs). Aditionally, multiscale variations of taxonomic (0D, 1D and 2D) and functional diversity (FRicSES, FEveSES and FDisSES), as well as taxonomic and functional beta diversity with their turnover and nestedness components were analyzed. To assess the influence of landscape variables on alpha taxonomic and functional diversities, GAMMs were constructed, and redundancy analysis with distance matrices (dbRDA) were c to analyze the same influence on beta diversity. The results included the collections of 3713 phytophagous beetles from 50 species grouped in the subfamilies Melolonthidae, Dynastinae, Rutelinae and Cetoniinae. Functional traits responded to landscape variables with significant associations. Relationships were evident between traits related to environmental complexity and the percentage of forest area; crops at higher altitude and distances were represented by traits linked to dispersal capability, and the length of hind legs in regenerations depended on canopy cover, shape, and distance. Regarding taxonomic and functional diversity there were no differences between coverages at regional level but were observed within some windows. Taxonomic beta diversity was mainly due to turnover, while functional beta diversity was attributed to nestedness. Both altitude and distances between fragments were related to richness in all three coverages, as well as to 1D, 2D and FRicSES in crops. Altitude and fragment shape explained the variation 0D in regeneration, 1D and 2D in forests, and FEveSES and FDisSES in all three coverages. Altitude, canopy cover and shape were the variables that most influenced taxonomic and functional beta diversity and their turnover and nestedness components. Overall, these results demonstrate that landscape structure plays a crucial role in maintaining different dimensions of diversity. Therefore, ensuring a spatial arrangement that promotes composition and connectivity will favor the persistence of communities with species linked to various ecosystems functions.MINCIENCIASDoctoradoDoctor en Ciencias - BiologíaEcologíaxix, 129 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá590 - Animales::595 - ArtrópodosDiversidad funcionalScarabaeidaeSistema agroforestalfunctional diversityScarabaeidaesistema agroflorestalRasgos funcionalesDiversidad taxonómicaDiversidad funcionalColeopteraPaisajes agroforestalesFunctional traitsAssembly mechanismsTaxonomic diversityFunctional diversityColeopteraAgroforestry landscapesDiversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)Functional diversity of phytophagous scarab beetles (Coleoptera: Scarabaeidae) in agroforestry landscapes of Serrania del Perija (Cesar, Colombia)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgrosaviaAgrovocAguilera, M. (2016). Serranía del Perijá: Geografía, capital humano, economía y medio ambiente. Banco de La República, 249, 1–134.Arnold, P. A., Cassey, P., & White, C. R. (2017). Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Functional Ecology, 31(3), 653–661.Arroyo-Rodríguez, V., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S. J., Galán-Acevedo, C., Hernández-Ruedas, M. A., Rito, K. F., & San-José, M. (2019). Determinantes de la biodiversidad en paisajes antrópicos : Una revisión teórica. In La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. (pp. 65–112).Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420.Arroyo-Rodríguez, V., Moreno, C. E., & Galán-Acedo, C. (2017). La ecología del paisaje en México: logros, desafíos y oportunidades en las ciencias biológicas. Revista Mexicana de Biodiversidad, 88, 42–51.Arroyo-Rodríguez, V., Rös, M., Escobar, F., Melo, F. P. L., Santos, B. A., Tabarelli, M., & Chazdon, R. (2013). Plant β-diversity in fragmented rain forests: Testing floristic homogenization and differentiation hypotheses. Journal of Ecology, 101(6), 1449–1458.Auber, A., Waldock, C., Maire, A., Goberville, E., Albouy, C., Algar, A. C., McLean, M., Brind’Amour, A., Green, A. L., Tupper, M., Vigliola, L., Kaschner, K., Kesner-Reyes, K., Beger, M., Tjiputra, J., Toussaint, A., Violle, C., Mouquet, N., Thuiller, W., & Mouillot, D. (2022). A functional vulnerability framework for biodiversity conservation. Nature Communications, 13(1), 1–13.Audino, L. D., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation, 169, 248–257.Audino, L., Murphy, S., Zambaldi, L., Louzada, J., & Comita, L. (2017). Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape and space. Ecological Applications, 27(6), 1731–1745.Ávila, F., Quintero, J., Gusmán, A., Ulian, T., Doria, G., & Diazgranados, M. (2022). Guía de plantas útiles de la Serranía del Perijá, Corregimientos de La Victoria de San Isidro y Estados Unidos, Cesar (Vol. 1). Royal Botanic Gardens, Kew; E3- Ecología, Economía y Ética, Rutas Turísticas por los Bosques y la Paz.Bai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., Hu, X. Y., & Yang, X. K. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure and Development, 41(5), 505–513.Barragán, F., Moreno, C. E., Escobar, F., Halffter, G., & Navarrete, D. (2011). Negative impacts of human land use on dung beetle functional diversity. PLoS ONE, 6(3), e17976.Barton, P. S., Gibb, H., Manning, A. D., Lindenmayer, D. B., & Cunningham, S. A. (2011). Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 102(2), 301–310.Baselga, A., Orme, D., Villéger, S., De Bortoli, J., Leprieur, F., Logez, M., Martinez-Santalla, S., Martin-Devasa, R., Gomez-Rodriguez, C., & Crujeiras, R. (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.6. https://cran.r-project.org/package=betapartBaselga, Andrés. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143.Basset, Y., Blažek, P., Souto-Vilarós, D., Vargas, G., Ramírez Silva, J. A., Barrios, H., Perez, F., Bobadilla, R., Lopez, Y., Ctvrtecka, R., Šípek, P., Solís, A., Segar, S. T., & Lamarre, G. P. A. (2023). Towards a functional classification of poorly known tropical insects: The case of rhinoceros beetles (Coleoptera, Dynastinae) in Panama. Insect Conservation and Diversity, 16(1), 147–163.Begon, M., Towsend, C., & Harper, J. (2006). Ecology from Individuals to Ecosystems (4th ed.). Blackwell publishing.Beiroz, W., Sayer, E., Slade, E. M., Audino, L., Braga, R. F., Louzada, J., & Barlow, J. (2018). Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecological Indicators, 95(May), 518–526.Blondel, J. (2003). Guilds or functional groups: does it matter? Oikos, 100(2), 223–231.Brown, J., Gillooly, J., Allen, A., Savage, V., & West, G. (2004). Toward a Metabolic Theory of Ecology. Ecology, 85(7), 1771–1789Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087.Carvalho, R. L., Andresen, E., Arroyo-Rodríguez, V., Anjos, D. V, Resende, A. F., de Mello, F., & Vasconcelos, H. L. (2023). Biodiversity in landscape mosaics: The roles of local land use and the surrounding landscape on dung beetle assemblages. Journal of Applied Ecology, 60(8), 1647–1658.Chao, A., Hsieh, T. C., & Colwell, R. K. (2014). Rarefaction and extrapolation with Hill numbers : A framework for sampling and estimation in species diversity studies Rarefaction and extrapolation with Hill numbers : a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67.Cook, R. N., Ramirez-Parada, T., Browne, L., Ellis, M., & Karubian, J. (2020). Environmental correlates of richness, community composition, and functional traits of terrestrial birds and mammals in a fragmented tropical landscape. Landscape Ecology, 35(12), 2825–2841.Córdova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78–87.Correa, C. M. A., Braga, R. F., Puker, A., & Korasaki, V. (2019). Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. Journal of Insect Conservation, 23(1), 89–99.Costa, M. S., Silva, R. J., Paulino-Neto, H. F., & Pereira, M. J. B. (2017). Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators. PLoS ONE, 12(2), 1–14.Creighton, J. C. (2005). Population density, body size, and phenotypic plasticity of brood size in a burying beetle. Behavioral Ecology, 16(6), 1031–1036.Davies, R. W., Edwards, D. P., & Edwards, F. A. (2020). Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation.de Bello, F., Carmona, C. P., Dias, A. T. C., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of Trait-Based Ecology. Handbook of Trait-Based Ecology, March, 2021–2023.de Lima Filho, J. A., Vieira, R. J. A. G., de Souza, C. A. M., Ferreira, F. F., & de Oliveira, V. M. (2021). Effects of habitat fragmentation on biodiversity patterns of ecosystems with resource competition. Physica A: Statistical Mechanics and Its Applications, 564, 125497.deCastro-Arrazola, I., Andrew, N. R., Berg, M. P., Curtsdotter, A., Lumaret, J. P., Menéndez, R., Moretti, M., Nervo, B., Nichols, E. S., Sánchez-Piñero, F., Santos, A. M. C., Sheldon, K. S., Slade, E. M., & Hortal, J. (2023). A trait-based framework for dung beetle functional ecology. Journal of Animal Ecology, 92(1), 44–65.Deloya, C. (1998). Cyclocephala lunulata Burmeister, 1847 (Coleoptera: Melolonthidae, Dynastinae) asociada al cultivo de maíz (Zea mays) en Pueblo Nuevo, Morelos, México. In M.A Morón & A. Aragón (Eds.), Avances en el Estudio de la Diversidad, Importancia y Manejo de los Coleópteros Edafícolas Americanos (pp. 121–130). Publicación especial de la Benemérita Universidad Autónoma de Puebla y la Sociedad Mexicana de Entomología, A. C.Deloya, C., & Gasca-Álvarez, H. (2018). Escarabajos del neotrópico (Insecta: Coleoptera) (S. y G. Editores (ed.); Primera Ed, Issue December).Deloya, C., Morón, M. ., & Lobo, J. M. (1995). Coleoptera Lamellicornia (Mcleay, 18919) del sur del Estado de Morelos, México. Acta Zoológica Mexicana (Nueva Serie), 65, 1–42.Deppe, F., & Fischer, K. (2023). Landscape type affects the functional diversity of carabid beetles in agricultural landscapes. Insect Conservation and Diversity, 16(4), 441–450.Di Iorio, O. (2014). A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa, 3790(2), 281–318.Dias, T. C., Bello, F. De, Altermatt, F., Moretti, M., Bell, J. R., Fournier, B., Chown, S. L., Azc, F. M., Sousa, P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. 558–567.Díaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4(8), 1300–1305.Duflot, R., Georges, R., Ernoult, A., Aviron, S., & Burel, F. (2014). Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica, 56, 19–26.Eberle, J., Myburgh, R., & Ahrens, D. (2014). The evolution of morphospace in phytophagous scarab chafers: No competition - No divergence? PLoS ONE, 9(5).Endrödi, S. (1985). Dynastinae of the world. Dr W. Junk Publishers.Estupiñan-Mojica, A., Portela-Salomão, R., Liberal, C. N., Santos, B. A., Machado, C. C. C., de Araujo, H. F. P., Von Thaden, J., & Alvarado, F. (2022). Landscape attributes shape dung beetle diversity at multiple spatial scales in agricultural drylands. Basic and Applied Ecology, 63, 139–151.Fahrig, L. (1998). When does fragmentation of breeding habitat affect population survival? Ecological Modelling, 105(2–3), 273–292.Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.Fahrig, L. (2003a). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.Fahrig, L. (2003b). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515.Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112.FAO. (2017). Carbono orgánico del suelo: el potencial oculto (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas (eds.)).Feng, L., Arvidsson, F., Smith, H. G., & Birkhofer, K. (2021). Fallows and permanent grasslands conserve the species composition and functional diversity of carabid beetles and linyphiid spiders in agricultural landscapes. Insect Conservation and Diversity, 14(6), 825–836.Filgueiras, B. K. C., Melo, D. H. A., Andersen, A. N., Tabarelli, M., & Leal, I. R. (2019). Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98(November 2018), 523–530.Fountain-Jones, N. M., Baker, S. C., & Jordan, G. J. (2015). Moving beyond the guild concept: Developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40(1), 1–13.Gallé, R., Geppert, C., Földesi, R., Tscharntke, T., & Batáry, P. (2020). Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 48, 102–111.García-Atencia, S., & Amat-García, G. (2021). Variación espacio-temporal de los gremios alimenticios de escarabajos fitófagos (Coleoptera : Scarabaeidae) en el Caribe colombiano. Sociedad Colombiana de Entomología, 47(2), 1–11.García-Atencia, Sandy, Bonilla-Gómez, M. A., & Moreno, C. E. (2024). Ecosystem functions and functional traits for the study of phytophagous scarab beetles (Coleoptera: Scarabaeidae). Ecological Entomology, 1–13.García-Robledo, C., Kattan, G., Murcia, C., & Quintero-Marín, P. (2004). Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology, 20(4), 459–469.Gasca-Álvarez, H. J. (2013). New Records of Cyclocephala Dejean (Coleoptera : Scarabaeidae: Dynastinae) Associated with Caladium bicolor (Aiton) Vent. (Araceae). The Coleopterists Bulletin, 67(4), 416–418.Giménez, V. (2019). Efecto del cambio de uso del suelo en la diversidad funcional de coleópteros copro-necrófagos del Bosque Atlántico: patrones y mecanismos propuestos. Universidad Nacional de Cuyo.Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H. Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 9–14.Gottsberger, G., & Webber, A. C. (2018). Nutritious tissue in petals of annonaceae and its function in pollination by scarab beetles. Acta Botanica Brasilica, 32(2), 279–286.Granados-Sánchez, D., Ruíz-Puga, P., & Barrera-Escorcia, H. (2008). Ecología de la herbivoria. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 14(1), 51–63.Griffiths, H. M., Louzada, J., Bardgett, R. D., Beiroz, W., FrançA, F., Tregidgo, D., & Barlow, J. (2015). Biodiversity and environmental context predict dung beetle-mediated seed dispersal in a tropical forest field experiment. Ecology, 96(6), 1607–1619.Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., Martínez-Ramos, M., Morales, H., Nigh, R., Soto-Pinto, L., Van Breugel, M., & Wishnie, M. (2008). Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology, 22(1), 8–15.Hesselbarth, M., Sciaini, M., Nowosad, J., & Hanss, S. (2020). Package ‘ landscapemetrics ’ R topics documented : Ecography, 42, 1648–1657.Hodecek, J., Kuras, T., Sipos, J., & Dolny, A. (2015). Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640.Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and extrapolation for species diversity. R package version 3.0.0. http://chao.stat.nthu.edu.tw/wordpress/software-download/Hubbell, S. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press. http://www.jstor.org/stable/j.ctt7rj8w.Ibarra, M., & Damborsky, M. (2017). Changes in the structure of Melolonthidae (Coleoptera: Scarabaeoidea) assemblages along a temporal gradient in a natural reserve in Chaco, Argentina. Austral Entomology.IDEAM. (2010). Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Metereología y Estudios Ambientales. http://siatac.co/c/document_library/get_file?uuid=a64629ad-2dbe-4e1e-a561-fc16b8037522&groupId=762.Jeanneret, P., Aviron, S., Alignier, A., Lavigne, C., Helfenstein, J., Herzog, F., Kay, S., & Petit, S. (2021). Agroecology landscapes. Landscape Ecology, 36(8), 2235–2257.Jost, L. (2006). Entropy and diversity. Oikos, 2(113), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.xKędzior, R., & Kosewska, A. (2022). Landscape Heterogeneity Determines the Diversity and Life History Traits of Ground Beetles (Coleoptera: Carabidae). Sustainability (Switzerland), 14(21).Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(January), 299–305.Leandro, C., Jones, M., Perrin, W., Jay-Robert, P., & Ovaskainen, O. (2023). Dung beetle community patterns in Western Europe: responses of Scarabaeinae to landscape and environmental filtering. Landscape Ecology, 38(9), 2323–2338.Legendre, P., & Legendre, L. (1998). Numerical Ecology (Second Edi). Elsevier Science B.V.Lindenmayer, D. (2019). Small patches make critical contributions to biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 717–719.Lovell, S. T., Bentrup, G., & Stanek, E. (2022). Agroforestry at the Landscape Level. North American Agroforestry: Third Edition, 417–435.Lovett, G. ., Jones, C. ., Turner, M. ., & Weathers, K. . (2005). Ecosystem Function in Heterogeneous Landscapes. Springer-Verlag.Lugo-Garcia, A., Morón, M. ., Aragón-Sánchez, M., Reyes-Olivas, A., Sánchez-Soto, H., & Sauceda-Acosta, P. (2017). Especies de “gallina ciega” (Coleoptera: Melolonthidae) en el cultivo de ajonjolí (Sesamum indicum L.) en Sinaola, México. Agrociencia, 51(7), 799–811.Macarthur, R., & Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. Source: The American Naturalist, 101(921), 377–385.Maia, A. C. D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., do Amaral Ferraz Navarro, D. M., Schlindwein, C., & Gottsberger, G. (2012). The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: A Unique Olfactory Floral Signal Shared by Annonaceae and Araceae. Journal of Chemical Ecology, 38(9), 1072–1080.Marquez-Peña, J., & Domínguez-Haydar, Y. (2023). Riqueza y diversidad de hormigas (Hymenoptera: Formicidae) según uso de suelo en dos paisajes agroforestales de Colombia. Revista de Biología Tropical, 71(1), e52087.Matsuki, Y., Tateno, R., Shibata, M., & Isagi, Y. (2008). Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. American Journal of Botany, 95(8), 925–930.Mayfield, M. ., Bonser, P., Morgan, J. ., Aubin, I., McNamar, S., & Vesk, P. . (2010). What does species richness tell us about functional trait diversity ? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19, 423–431.McCleve, S. (2007). Killer Phileurini -or- How come some diplos are hairy? Scarabs, 20, 1–20.Mcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. 21(4).Mcintyre, S., & Hobbs, R. (1999). A Framework for Conceptualizing Human Effectson Landscapes an its relevance to Management and Research models. Conservation Biology, 13(6), 1282–1292.Micó, E., Juárez, M., Sánchez, A., & Galante, E. (2011). Action of the saproxylic scarab larva cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. Journal of Natural History, 45(41–42), 2527–2542.Micó, Estefanía, Ramilo, P., Thorn, S., Müller, J., Galante, E., & Carmona, C. P. (2020). Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 10(1), 1–11.Milet-Pinheiro, P., Gomes Gonçalves, E., do Amaral Ferraz Navarro, D. M., Nuñez-Avellaneda, L. A., & Maia, A. C. D. (2017). Floral scent chemistry and pollination in the Neotropical aroid genus Xanthosoma (Araceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 231, 1–10.Moore, M. R., & Jameson, M. L. (2013). Floral associations of cyclocephaline scarab beetles. Journal of Insect Science, 13.Moreno, C. . (2019). La Biodiversidad en un mundo cambiante (C. . Moreno (ed.)). Universidad Autónoma del Estado de Hidalgo/Libermex.Moretti, M., De Cáceres, M., Pradella, C., Obrist, M. K., Wermelinger, B., Legendre, P., & Duelli, P. (2010). Fire-induced taxonomic and functional changes in saproxylic beetle communities in fire sensitive regions. Ecography, 33(4), 760–771.Moretti, M., Dias, T. C., Bello, F. De, Altermatt, F., Bell, J. R., Fournier, B., Chown, S. L., Azcárate, F. M., Bell, J., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. ., Eller, J., & Berg, M. . (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31, 558–567.Morón, M. (1985). Los insectos degradadores, un factor poco estudiado en los bosques de México. Folia Entomológica Mexicana, 65(January 1985), 131–137. https://biblat.unam.mx/es/revista/folia-entomologica-mexicana/25Morón, M.A., Ratcliffe, B., & Deloya, C. (1997). Atlas de los escarabajos de México. Coleoptera Lamellicornia. Vol I Familia Melolonthidae. Subfamilias Rutelinae, Dynastinae, Cetoniinae, Trichiinae, Valginae y Melolonthinae. (1st ed.). Sociedad mexicana de entomología, A.C.Morón, Miguel Angel, & Deloya, C. (2002). Observaciones Sobre El Ciclo De Vida De Pelidnota (Pelidnota) Virescens Burmeister, 1844 (Coleoptera: Melolonthidae; Rutelinae). Acta Zoológica Mexicana (N.S.), 1844(85), 109–118.Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876.Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., & Thuiller, W. (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLOS Biology, 11(5), 1–11.Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, 10(2), 58–62.Nanni, A. S., Krug, P., Cicchino, A. C., & Quintana, R. D. (2021). Effects of intensive human management on the taxonomic and functional diversity of ground beetles in a planted forest landscape. Biodiversity and Conservation, 30(12), 3717–3735.Navarrete-Heredia, J. L. (2001). Beetles associated with Atta and Acromyrmex Ants (Hymenoptera: Formicidae: Attini). Transaction of the American Entomological Society, 127(3), 381–429. http://www.jstor.org/stable/25078753Neita-Moreno, J. C., Orozco, J., & Ratcliffe, B. (2006). Escarabajos (Scarabaeidae:Pleurosticti) de la selva baja del Bosque Pluvial Tropical “BP-T”, Chocó, Colombia. Acta Zoológica Mexicana (Nueva Serie), 22, 1–32.Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., & Favila, M. E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461–1474.Nichols, Elizabeth, Uriarte, M., Bunker, D. E., Favila, M. E., Slade, E. M., Vulinec, K., Larsen, T., Vaz-De-Mello, F. Z., Louzada, J., Naeem, S., & Spector, S. H. (2013). Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, 94(1), 180–189.O’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E., & Duncan, R. P. (2016). Landscape Effects on the Spread of Invasive Species. Current Landscape Ecology Reports, 1(3), 107–114.Orozco, J. (2012). Monographic Revision of the American Genus Euphoria Burmeister , 1842 ( Coleoptera : Scarabaeidae : Cetoniinae ) Author ( s ): Jesús Orozco. BioOne, 1842(11), 1–182.Ortega-Martínez, I. J., Moreno, C. E., Rios-Díaz, C. L., Arellano, L., Rosas, F., & Castellanos, I. (2020). Assembly mechanisms of dung beetles in temperate forests and grazing pastures. Scientific Reports, 10(1), 1–10.Ospina-Garcés, S. M., Escobar, F., Baena, M. L., Davis, A. L. V., & Scholtz, C. H. (2018). Do dung beetles show interrelated evolutionary trends in wing morphology, flight biomechanics and habitat preference? Evolutionary Ecology, 32(6), 663–682.Pardo-Locarno, L. C., Montoya-Lerma, J., Bellotti, A. C., & Van Schoonhoven, A. (2005). Structure and composition of the white grub complex (Coleoptera: Scarabaeidae) in agroecological systems of northern Cauca, Colombia. Florida Entomologist, 88(4), 355–363.Pardo-Locarno, L., González, J., Rafael Pérez, C., Yepes, F., & Fernández, C. (2012). Escarabajos de importancia agrícola (Coleoptera: Melolonthidae) en la Región Caribe colombiana: Registros y propuestas de manejo. Boletin Del Museo Entomológico Francisco Luis Gallego, 4(2), 7–24.Perović, D., Gámez-Virués, S., Börschig, C., Klein, A. M., Krauss, J., Steckel, J., Rothenwöhrer, C., Erasmi, S., Tscharntke, T., & Westphal, C. (2015). Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 52(2), 505–513.Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758.Peter, C. I., & Johnson, S. D. (2009). Pollination by flower chafer beetles in Eulophia ensata and Eulophia welwitschii (Orchidaceae). South African Journal of Botany, 75(4), 762–770.Peter, Craig I., & Johnson, S. D. (2014). A pollinator shift explains floral divergence in an orchid species complex in South Africa. Annals of Botany, 113(2), 277–288.Portela Salomão, R., González-Tokman, D., Dáttilo, W., López-Acosta, J. C., & Favila, M. E. (2018). Landscape structure and composition define the body condition of dung beetles (Coleoptera: Scarabaeinae) in a fragmented tropical rainforest. Ecological Indicators, 88(August 2017), 144–151.Puker, A., Lopes-Andrade, C., Rosa, C. S., & Grossi, P. C. (2012). New records of termite hosts for two species of hoplopyga, with notes on the life cycle of hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Annals of the Entomological Society of America, 105(6), 872–878.Raine, E. H., Gray, C. L., Mann, D. J., & Slade, E. M. (2018). Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecology and Evolution, 8(17), 8686–8696.Ratcliffe, B. (2003). The Dynastine Scarab beetles of Costa Rica and Panama. Bulletin of the University of Nebraska State Museum, 16, 506.Ratcliffe, B. ., & Cave, R. D. (2006). The Dynastine Scarab beetles of Honduras, Nicaragua and El Salvador Bulletin of the University of Nebraska State Museum. University of Nebraska State Museum.Ratcliffe, B. C., Cave, R. D., & Paucar-Cabrera, A. (2020). The Dynastine Scarab Beetles of Ecuador: (Coleoptera: Scarabaeidae: Dynastinae). University of Nebraska State Museum.Ratoni, B., Ahuatzin, D., Corro, E. J., Salomão, R. P., Escobar, F., López-Acosta, J. C., & Dáttilo, W. (2023). Landscape composition shapes biomass, taxonomic and functional diversity of dung beetles within human-modified tropical rainforests. Journal of Insect Conservation, 27(5), 717–728.Ribera, I., Doledec, S., Downie, I. S., Foster, G. N., & Apr, N. (2001). Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Society, 82(4), 1112–1129.Ribera, I., McCracken, D. I., Foster, G. N., Downie, I. S., & Abernethy, V. J. (1999). Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land. Journal of Zoology, 247(1), 1–18.Riva, F., & Fahrig, L. (2022). The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 15(3), 1–7.Rivera, J. D., da Silva, P. G., & Favila, M. E. (2021). Landscape effects on taxonomic and functional diversity of dung beetle assemblages in a highly fragmented tropical forest. Forest Ecology and Management, 496(May).Rivera, J. D., de los Monteros, A., da Silva, P. G., & Favila, M. E. (2022). Dung beetles maintain phylogenetic divergence but functional convergence across a highly fragmented tropical landscape. Journal of Applied Ecology, 59(7), 1781–1791.Romero-López, A. A., Morón, M. A., Aragón, A., & Villalobos, F. J. (2010). La “gallina Ciega” (Coleoptera: Scarabaeoidea: Melolonthidae) vista Como Un “ingeniero del Suelo.” Southwestern Entomologist, 35(3), 331–343.Salgado-Negret, B. (2016). La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Salomão, R. P., Favila, M. E., & González-Tokman, D. (2020). Spatial and temporal changes in the dung beetle diversity of a protected, but fragmented, landscape of the northernmost Neotropical rainforest. Ecological Indicators, 111(June 2019), 105968.Sánchez-de-Jesús, H. A., Arroyo-Rodríguez, V., Andresen, E., & Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31(4), 843–854.Saravy, F. P., Marques, M. I., & Schuchmann, K. L. (2022). Life history patterns of coleopteran pollinators of Annona crassiflora Mart. in the Brazilian Cerrado. Journal of Natural History, 56(9–12), 743–767.Sipos, J., Hodecek, J., Kuras, T., & Dolny, A. (2017). Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bulletin of Entomological Research, 107(04), 466–477.Soula, M. (2010). Les Coléoptères du Nouveau Monde. Bulletin de Liaison de l’Association Entomologique Pour La Connaissance de La Faune Tropicale, 4.Stokland, J. N., Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). The saproxylic food web. In Biodiversity in Dead Wood (pp. 29–57). Cambridge University Press.Suárez, G., & Amat-García, G. (2007). Lista de especies de los escarabajos fruteros (Melolonthidae: Cetoniinae) de Colombia. Biota Colombiana, 8((1)), 69–76. https://www.redalyc.org/articulo.oa?id=491/49180104Sugiura, N., Matsumura, S., & Yokota, M. (2021). Beetle pollination of Luisia teres (Orchidaceae) and implications of a geographic divergence in the pollination system. Plant Species Biology, 36(1), 52–59.Swenson, N. G. (2014). Functional and Phylogenetic Ecology in R. In Functional and Phylogenetic Ecology in R. Springer.Tapia-Rojas, A., Aragón G, A., & López-Olguín, J. . (2013). Importancia escarabajos Puebla. In M.A Morón, A. Aragón, & H. Carrillo (Eds.), Fauna de Escarabajos del estado de Puebla. (pp. 365–408). Fauna de Escarabajos del estado de Puebla. Publicación de Escarabajos Mesoamericanos.Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews, 87(3), 661–685.Útima, O., & Vallejo, L. F. (2008). Escarabajos Melolonthidae (Scarabaeidae-Pleurosticti) de La Montaña Cafetera, departamento de Risaralda, Colombia. Agronómica, 16(2), 31–44.Valencia Arias, C., Martínez Osorio, A., Morales Osorio, J. G., & Ramírez-Gil, J. G. (2019). Spatial Analysis of Presence, Injury, and Economic Impact of the Melolonthidae (Coleoptera: Scarabaeoidea) Complex in Avocado Crops. Neotropical Entomology, 48(4), 583–593.Vanbergen, A. J., Aizen, M. A., Cordeau, S., Garibaldi, L. A., Garratt, M. P. D., Kovács-Hostyánszki, A., Lecuyer, L., Ngo, H. T., Potts, S. G., Settele, J., Skrimizea, E., & Young, J. C. (2020). Transformation of agricultural landscapes in the Anthropocene: Nature’s contributions to people, agriculture and food security. In Advances in Ecological Research (1st ed., Vol. 63). Elsevier Ltd.Villalobos-Moreno, A., Pardo-Locarno, L. C., & Cabrero-Sañudo, F. J. (2018). Estacionalidad de escarabajos fitófagos (Coleoptera: Melolonthidae) en un Robledal del Nororiente de los Andes colombianos. Bol. Cient. Mus. Hist. Nat., 22(1), 163–178.Villéger, S., Grenouillet, G., & Brosse, S. (2013). Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22(6), 671–681.Villéger, S., Novack-Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561–568.Villéger, S., Ramos Miranda, J., Flores Hernández, D., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522.Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007a). Let the concept of trait be functional! Oikos, 116(5), 882–892.Weiher, E., & Keddy, P. (1995). Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos, 74(1), 159–164.Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2 ed.). CRC Press.Zambrano, J., Garzon-Lopez, C. X., Yeager, L., Fortunel, C., Cordeiro, N. J., & Beckman, N. G. (2019). The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia, 191(3), 505–518.Zhang, M., Ruan, Y., Wan, X., Tong, Y., Yang, X., & Bai, M. (2019). Geometric morphometric analysis of the pronotum and elytron in stag beetles: Insight into its diversity and evolution. ZooKeys, 2019(833), 21–40.Zobel, M. (1997). The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology & Evolution, 12(7), 266–269.Evaluacion de servicios ecosistemicos y su relacion con perfiles socioeconomicos de las fincas incluidas en un programa de compensacion forestal en la cuenca Tucuy, departamento del Cesar, ColombiaMINCIENCIASEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86411/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1140831312.2024.pdf1140831312.2024.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf4561084https://repositorio.unal.edu.co/bitstream/unal/86411/2/1140831312.2024.pdf2332b561d0b590e0a142890ecf413fbeMD52THUMBNAIL1140831312.2024.pdf.jpg1140831312.2024.pdf.jpgGenerated Thumbnailimage/jpeg5787https://repositorio.unal.edu.co/bitstream/unal/86411/3/1140831312.2024.pdf.jpg1cd691c5ca6f562f3e4cf9146a084cfbMD53unal/86411oai:repositorio.unal.edu.co:unal/864112024-07-05 23:05:18.288Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=