Analysis of the forecasting performance of the threshold autoregressive model

Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model wi...

Full description

Autores:
Vaca González, Paola Andrea
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/64780
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/64780
http://bdigital.unal.edu.co/65786/
Palabra clave:
5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Bayesian predictive distributions
Forecasts comparison
Threshold autoregressive model
Linear model
Nonlinear model
Distribuciones predictivas Bayesianas
Comparación de pronósticos
Modelo autorregresivo de umbrales
Modelo lineal
Modelo no lineal
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_938da9088bccbfe1b0bc65caba15ff47
oai_identifier_str oai:repositorio.unal.edu.co:unal/64780
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Analysis of the forecasting performance of the threshold autoregressive model
title Analysis of the forecasting performance of the threshold autoregressive model
spellingShingle Analysis of the forecasting performance of the threshold autoregressive model
5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Bayesian predictive distributions
Forecasts comparison
Threshold autoregressive model
Linear model
Nonlinear model
Distribuciones predictivas Bayesianas
Comparación de pronósticos
Modelo autorregresivo de umbrales
Modelo lineal
Modelo no lineal
title_short Analysis of the forecasting performance of the threshold autoregressive model
title_full Analysis of the forecasting performance of the threshold autoregressive model
title_fullStr Analysis of the forecasting performance of the threshold autoregressive model
title_full_unstemmed Analysis of the forecasting performance of the threshold autoregressive model
title_sort Analysis of the forecasting performance of the threshold autoregressive model
dc.creator.fl_str_mv Vaca González, Paola Andrea
dc.contributor.author.spa.fl_str_mv Vaca González, Paola Andrea
dc.contributor.spa.fl_str_mv Nieto Sánchez, Fabio Humberto
dc.subject.ddc.spa.fl_str_mv 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
topic 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Bayesian predictive distributions
Forecasts comparison
Threshold autoregressive model
Linear model
Nonlinear model
Distribuciones predictivas Bayesianas
Comparación de pronósticos
Modelo autorregresivo de umbrales
Modelo lineal
Modelo no lineal
dc.subject.proposal.spa.fl_str_mv Bayesian predictive distributions
Forecasts comparison
Threshold autoregressive model
Linear model
Nonlinear model
Distribuciones predictivas Bayesianas
Comparación de pronósticos
Modelo autorregresivo de umbrales
Modelo lineal
Modelo no lineal
description Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model with those from a linear model and nonlinear smooth transition autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP, unemployment rate, industrial production index and inflation time series, which lead us to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests that are mostly employed in literature. We also compare the in-sample properties of the estimated models. For the overall comparison, we find a satisfactory performance of the TAR model in forecasting the chosen economic time series, and a shape changing characteristic in the Bayesian predictive distributions of this model that may capture the cycles in the economic time series. This gives important signals about the forecasting ability of the TAR model in the economic field.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-04-23
dc.date.accessioned.spa.fl_str_mv 2019-07-02T23:22:09Z
dc.date.available.spa.fl_str_mv 2019-07-02T23:22:09Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/64780
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/65786/
url https://repositorio.unal.edu.co/handle/unal/64780
http://bdigital.unal.edu.co/65786/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Estadística
Estadística
dc.relation.references.spa.fl_str_mv Vaca González, Paola Andrea (2018) Analysis of the forecasting performance of the threshold autoregressive model. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/64780/1/1013597742.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/64780/2/1013597742.2018.pdf.jpg
bitstream.checksum.fl_str_mv c5f4e641be025297e0df6ea395cc19ec
56f3574b3d1f25950a152f18c2f473e5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089673654403072
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nieto Sánchez, Fabio HumbertoVaca González, Paola Andrea465ccd54-c27d-42df-880c-d78a1d8b4e173002019-07-02T23:22:09Z2019-07-02T23:22:09Z2018-04-23https://repositorio.unal.edu.co/handle/unal/64780http://bdigital.unal.edu.co/65786/Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model with those from a linear model and nonlinear smooth transition autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP, unemployment rate, industrial production index and inflation time series, which lead us to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests that are mostly employed in literature. We also compare the in-sample properties of the estimated models. For the overall comparison, we find a satisfactory performance of the TAR model in forecasting the chosen economic time series, and a shape changing characteristic in the Bayesian predictive distributions of this model that may capture the cycles in the economic time series. This gives important signals about the forecasting ability of the TAR model in the economic field.Resumen: En esta investigación, se analiza la capacidad de pronóstico del modelo Autorregresivo de Umbrales (TAR). Para esta finalidad, se encuentra la distribución predictiva Bayesiana, y luego, se conduce un ejercicio de pronóstico fuera de la muestra, donde se comparan los pronósticos del modelo TAR con auqellos de un modelo lineal y de los modelos no lineales Autorregresivo de Transición Suave, Autorregresivo de Umbrales Auto-Excitado y Autorregresivo de Cambio de Régimen. Para esta evaluación de pronósticos empírica, i) se utilizan las series del PIB, el desempleo, el índice de producción industrial y la inflación de Estados Unidos y Colombia, lo cual lleva a estimar y pronosticar cuarenta modelos; y, ii) se utilizan criterios y test estadísticos los cuales on ampliamente aplicados en la literatura. De igual manera, se comparan las propiedades dentro de la muestra de los modelos estimados. Para todo el ejercicio de comparación, se encuentra un comportamiento satisfactorio del modelo TAR para pronosticar las distintas series económicas, y se encuentra una característica de cambio de forma en la distribución predictiva del modelo TAR que puede capturar los ciclos presentados en las series económicas. Esto arroja importantes indicios sobre la capacidad de pronóstico del modelo TAR en el campo económico.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística EstadísticaEstadísticaVaca González, Paola Andrea (2018) Analysis of the forecasting performance of the threshold autoregressive model. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.5 Ciencias naturales y matemáticas / Science51 Matemáticas / MathematicsBayesian predictive distributionsForecasts comparisonThreshold autoregressive modelLinear modelNonlinear modelDistribuciones predictivas BayesianasComparación de pronósticosModelo autorregresivo de umbralesModelo linealModelo no linealAnalysis of the forecasting performance of the threshold autoregressive modelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1013597742.2018.pdfapplication/pdf2766325https://repositorio.unal.edu.co/bitstream/unal/64780/1/1013597742.2018.pdfc5f4e641be025297e0df6ea395cc19ecMD51THUMBNAIL1013597742.2018.pdf.jpg1013597742.2018.pdf.jpgGenerated Thumbnailimage/jpeg3718https://repositorio.unal.edu.co/bitstream/unal/64780/2/1013597742.2018.pdf.jpg56f3574b3d1f25950a152f18c2f473e5MD52unal/64780oai:repositorio.unal.edu.co:unal/647802023-04-28 23:04:58.661Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co