Analysis of the forecasting performance of the threshold autoregressive model
Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model wi...
- Autores:
-
Vaca González, Paola Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/64780
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/64780
http://bdigital.unal.edu.co/65786/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
Bayesian predictive distributions
Forecasts comparison
Threshold autoregressive model
Linear model
Nonlinear model
Distribuciones predictivas Bayesianas
Comparación de pronósticos
Modelo autorregresivo de umbrales
Modelo lineal
Modelo no lineal
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_938da9088bccbfe1b0bc65caba15ff47 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/64780 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis of the forecasting performance of the threshold autoregressive model |
title |
Analysis of the forecasting performance of the threshold autoregressive model |
spellingShingle |
Analysis of the forecasting performance of the threshold autoregressive model 5 Ciencias naturales y matemáticas / Science 51 Matemáticas / Mathematics Bayesian predictive distributions Forecasts comparison Threshold autoregressive model Linear model Nonlinear model Distribuciones predictivas Bayesianas Comparación de pronósticos Modelo autorregresivo de umbrales Modelo lineal Modelo no lineal |
title_short |
Analysis of the forecasting performance of the threshold autoregressive model |
title_full |
Analysis of the forecasting performance of the threshold autoregressive model |
title_fullStr |
Analysis of the forecasting performance of the threshold autoregressive model |
title_full_unstemmed |
Analysis of the forecasting performance of the threshold autoregressive model |
title_sort |
Analysis of the forecasting performance of the threshold autoregressive model |
dc.creator.fl_str_mv |
Vaca González, Paola Andrea |
dc.contributor.author.spa.fl_str_mv |
Vaca González, Paola Andrea |
dc.contributor.spa.fl_str_mv |
Nieto Sánchez, Fabio Humberto |
dc.subject.ddc.spa.fl_str_mv |
5 Ciencias naturales y matemáticas / Science 51 Matemáticas / Mathematics |
topic |
5 Ciencias naturales y matemáticas / Science 51 Matemáticas / Mathematics Bayesian predictive distributions Forecasts comparison Threshold autoregressive model Linear model Nonlinear model Distribuciones predictivas Bayesianas Comparación de pronósticos Modelo autorregresivo de umbrales Modelo lineal Modelo no lineal |
dc.subject.proposal.spa.fl_str_mv |
Bayesian predictive distributions Forecasts comparison Threshold autoregressive model Linear model Nonlinear model Distribuciones predictivas Bayesianas Comparación de pronósticos Modelo autorregresivo de umbrales Modelo lineal Modelo no lineal |
description |
Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model with those from a linear model and nonlinear smooth transition autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP, unemployment rate, industrial production index and inflation time series, which lead us to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests that are mostly employed in literature. We also compare the in-sample properties of the estimated models. For the overall comparison, we find a satisfactory performance of the TAR model in forecasting the chosen economic time series, and a shape changing characteristic in the Bayesian predictive distributions of this model that may capture the cycles in the economic time series. This gives important signals about the forecasting ability of the TAR model in the economic field. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-04-23 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T23:22:09Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T23:22:09Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/64780 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/65786/ |
url |
https://repositorio.unal.edu.co/handle/unal/64780 http://bdigital.unal.edu.co/65786/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Estadística Estadística |
dc.relation.references.spa.fl_str_mv |
Vaca González, Paola Andrea (2018) Analysis of the forecasting performance of the threshold autoregressive model. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/64780/1/1013597742.2018.pdf https://repositorio.unal.edu.co/bitstream/unal/64780/2/1013597742.2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
c5f4e641be025297e0df6ea395cc19ec 56f3574b3d1f25950a152f18c2f473e5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089673654403072 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nieto Sánchez, Fabio HumbertoVaca González, Paola Andrea465ccd54-c27d-42df-880c-d78a1d8b4e173002019-07-02T23:22:09Z2019-07-02T23:22:09Z2018-04-23https://repositorio.unal.edu.co/handle/unal/64780http://bdigital.unal.edu.co/65786/Abstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model with those from a linear model and nonlinear smooth transition autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP, unemployment rate, industrial production index and inflation time series, which lead us to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests that are mostly employed in literature. We also compare the in-sample properties of the estimated models. For the overall comparison, we find a satisfactory performance of the TAR model in forecasting the chosen economic time series, and a shape changing characteristic in the Bayesian predictive distributions of this model that may capture the cycles in the economic time series. This gives important signals about the forecasting ability of the TAR model in the economic field.Resumen: En esta investigación, se analiza la capacidad de pronóstico del modelo Autorregresivo de Umbrales (TAR). Para esta finalidad, se encuentra la distribución predictiva Bayesiana, y luego, se conduce un ejercicio de pronóstico fuera de la muestra, donde se comparan los pronósticos del modelo TAR con auqellos de un modelo lineal y de los modelos no lineales Autorregresivo de Transición Suave, Autorregresivo de Umbrales Auto-Excitado y Autorregresivo de Cambio de Régimen. Para esta evaluación de pronósticos empírica, i) se utilizan las series del PIB, el desempleo, el índice de producción industrial y la inflación de Estados Unidos y Colombia, lo cual lleva a estimar y pronosticar cuarenta modelos; y, ii) se utilizan criterios y test estadísticos los cuales on ampliamente aplicados en la literatura. De igual manera, se comparan las propiedades dentro de la muestra de los modelos estimados. Para todo el ejercicio de comparación, se encuentra un comportamiento satisfactorio del modelo TAR para pronosticar las distintas series económicas, y se encuentra una característica de cambio de forma en la distribución predictiva del modelo TAR que puede capturar los ciclos presentados en las series económicas. Esto arroja importantes indicios sobre la capacidad de pronóstico del modelo TAR en el campo económico.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística EstadísticaEstadísticaVaca González, Paola Andrea (2018) Analysis of the forecasting performance of the threshold autoregressive model. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.5 Ciencias naturales y matemáticas / Science51 Matemáticas / MathematicsBayesian predictive distributionsForecasts comparisonThreshold autoregressive modelLinear modelNonlinear modelDistribuciones predictivas BayesianasComparación de pronósticosModelo autorregresivo de umbralesModelo linealModelo no linealAnalysis of the forecasting performance of the threshold autoregressive modelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1013597742.2018.pdfapplication/pdf2766325https://repositorio.unal.edu.co/bitstream/unal/64780/1/1013597742.2018.pdfc5f4e641be025297e0df6ea395cc19ecMD51THUMBNAIL1013597742.2018.pdf.jpg1013597742.2018.pdf.jpgGenerated Thumbnailimage/jpeg3718https://repositorio.unal.edu.co/bitstream/unal/64780/2/1013597742.2018.pdf.jpg56f3574b3d1f25950a152f18c2f473e5MD52unal/64780oai:repositorio.unal.edu.co:unal/647802023-04-28 23:04:58.661Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |