Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)

Las rizobacterias entomopatógenas presentan factores de virulencia como la producción de compuestos antimicrobianos, enzimas degradadoras y toxinas que han sido poco explorados. Mediante genómica se han realizado acercamientos para entender la interacción entre rizobacterias e insectos plaga. El obj...

Full description

Autores:
Boyacá Vásquez, Vivian Johanna
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77948
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77948
Palabra clave:
630 - Agricultura y tecnologías relacionadas
550 - Ciencias de la tierra
540 - Química y ciencias afines
genómica
secuenciación masiva
rizobacterias
biocontro
actividad entomopatógena
insecto-plaga
tecia solanivora
genomics
massive sequencing
rhizobacteria
biocontrol
entomopathogenic activity
insect-pest
tecia solanivora
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_93712c0203d13e1fcf6af904f9446e1c
oai_identifier_str oai:repositorio.unal.edu.co:unal/77948
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
title Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
spellingShingle Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
630 - Agricultura y tecnologías relacionadas
550 - Ciencias de la tierra
540 - Química y ciencias afines
genómica
secuenciación masiva
rizobacterias
biocontro
actividad entomopatógena
insecto-plaga
tecia solanivora
genomics
massive sequencing
rhizobacteria
biocontrol
entomopathogenic activity
insect-pest
tecia solanivora
title_short Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
title_full Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
title_fullStr Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
title_full_unstemmed Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
title_sort Genómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
dc.creator.fl_str_mv Boyacá Vásquez, Vivian Johanna
dc.contributor.advisor.spa.fl_str_mv de Brito Brandão, Pedro Filipe
Vanegas Guerrero, Javier
dc.contributor.author.spa.fl_str_mv Boyacá Vásquez, Vivian Johanna
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia
Universidad Antonio Nariño
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
550 - Ciencias de la tierra
540 - Química y ciencias afines
topic 630 - Agricultura y tecnologías relacionadas
550 - Ciencias de la tierra
540 - Química y ciencias afines
genómica
secuenciación masiva
rizobacterias
biocontro
actividad entomopatógena
insecto-plaga
tecia solanivora
genomics
massive sequencing
rhizobacteria
biocontrol
entomopathogenic activity
insect-pest
tecia solanivora
dc.subject.proposal.spa.fl_str_mv genómica
secuenciación masiva
rizobacterias
biocontro
actividad entomopatógena
insecto-plaga
tecia solanivora
dc.subject.proposal.eng.fl_str_mv genomics
massive sequencing
rhizobacteria
biocontrol
entomopathogenic activity
insect-pest
tecia solanivora
description Las rizobacterias entomopatógenas presentan factores de virulencia como la producción de compuestos antimicrobianos, enzimas degradadoras y toxinas que han sido poco explorados. Mediante genómica se han realizado acercamientos para entender la interacción entre rizobacterias e insectos plaga. El objetivo de este trabajo fue determinar los factores de virulencia de rizobacterias entomopatógenas de Tecia solanivora mediante un acercamiento genómico. Para esto, se caracterizó el genoma de dos rizobacterias entomopatógenas que causaron una mortalidad superior al 75% en T. solanivora, y se compararon los factores de virulencia con genomas reportados de rizobacterias entomopatógenas. Se realizó extracción de ADN genómico, secuenciación masiva utilizando HiSeq 4000 (Illumina), ensamblaje y anotación y se determinó el porcentaje de similitud. Las lecturas de Raoultella C47 y Enterobacter TN152 fueron ensambladas en 58 y 121 contigs, respectivamente, con un tamaño de genoma medio de 5,4 kb, sin presencia de plásmidos. Se encontró que las categorías más relevantes fueron metabolismo, procesamiento de proteínas y respuesta a estrés, defensa y virulencia. Raoultella C47 mostró alta diversidad de compuestos volátiles incluyendo el ácido cianhídrico y presentó un gen para ramnolípidos. Enterobacter TN152 presentó dos toxinas entomopatógenas homólogas a toxinas Tc. Se detectaron enzimas degradadoras en ambos genomas. Al comparar con otras 14 rizobacterias, se encontró un 55% de similitud, y el perfil entomopatógeno más cercano para Raoultella C47 y Enterobacter TN152 fue Yersinia entomophaga MH96. Este estudio contribuye a entender los mecanismos de patogenicidad de rizobacterias, extendiendo el limitado grupo de rizobacterias entomopatógenas que se conocen y su respectiva secuenciación.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-04-21
dc.date.accessioned.spa.fl_str_mv 2020-08-05T23:30:11Z
dc.date.available.spa.fl_str_mv 2020-08-05T23:30:11Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Boyacá-Vásquez V.
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77948
identifier_str_mv Boyacá-Vásquez V.
url https://repositorio.unal.edu.co/handle/unal/77948
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abby, S. S., & Rocha, E. P. C. (2017). Identification of protein secretion systems in bacterial genomes using MacSyFinder. Methods in Molecular Biology, 1615(March), 1–21. https://doi.org/10.1007/978-1-4939-7033-9_1
Abebe-Akele, F., Tisa, L. S., Cooper, V. S., Hatcher, P. J., Abebe, E., & Thomas, W. K. (2015). Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-1697-8
Abraham, J., & Silambarasan, S. (2015). Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan. Applied Biochemistry and Biotechnology, 175(7), 3336–3348. https://doi.org/10.1007/s12010-015-1504-7
Adnan, M., Patel, M., Reddy, M. N., Khan, S., Alshammari, E., Abdelkareem, A. M., & Hadi, S. (2016). ARPN Journal of Agricultural and Biological Science ISOLATION AND CHARACTERIZATION OF EFFECTIVE AND EFFICIENT PLANT GROWTH-PROMOTING RHIZOBACTERIA FROM RICE RHIZOSPHERE OF DIVERSE PADDY FIELDS OF INDIAN SOIL. 11(9), 373–379.
Aleti, G., Nikolić, B., Brader, G., Pandey, R. V., Antonielli, L., Pfeiffer, S., … Sessitsch, A. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02314-x
Assefa, S., Keane, T. M., Otto, T. D., Newbold, C., & Berriman, M. (2009). ABACAS: Algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968–1969. https://doi.org/10.1093/bioinformatics/btp347
Ávila, E. (2015). MANUAL PAPA del Programa De Apoyo Agrícola Y Agroindustrial Vicepresidencia De Fortalecimiento Empresarial Cámara De Comercio De Bogotá. In Cámara de Comercio de Bogotá.
Aziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 1–15. https://doi.org/10.1186/1471-2164-9-75
Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559–1570. https://doi.org/10.1007/s10529-010-0347-0
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). and Its Applications to Single-Cell Sequencing. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. 41(November 2012), 36–42. https://doi.org/10.1093/nar/gks1195
Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336
Biggs, M. B., & Papin, J. A. (2013). Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation. 8(10), 1–8. https://doi.org/10.1371/journal.pone.0078011
Bisch, G., Ogier, J. C., Médigue, C., Rouy, Z., Vincent, S., Tailliez, P., … Gaudriault, S. (2016). Comparative genomics between two xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution, 8(1), 148–160. https://doi.org/10.1093/gbe/evv248
Blackburn, M., Golubeva, E., Bowen, D., & Ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environmental Microbiology, 64(8), 3036–3041.
Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13(2), 224–230. https://doi.org/10.1016/j.cbpa.2009.02.037
Bosa, C. F., & Cotes, A. M. (2004). Effect of culture conditions on the enzymatic activity of Serratia marcescens against Tecia solanivora (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 30(1), 79–85. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882004000100012&lng=en&nrm=iso&tlng=es
Brady, S., Kai, M., Daniel, R., Gottschalk, G., Weise, T., Th, A., & Piechulla, B. (2018). VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. (September), 45–53. https://doi.org/10.1111/1574-6968.12359
Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk : A modular and extensible implementation of the RAST algorithm for annotating batches of genomes. https://doi.org/10.1038/srep08365
Broderick, K. E., Chan, A., Balasubramanian, M., Feala, J., Reed, S. L., Panda, M., … Boss, G. R. (2008). Cyanide Produced by Human Isolates of Pseudomonas aeruginosa Contributes to Lethality in Drosophila melanogaster . The Journal of Infectious Diseases, 197(3), 457–464. https://doi.org/10.1086/525282
Busby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural Analysis of Chi1 Chitinase from Yen-Tc : The Multisubunit Insecticidal ABC Toxin Complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018
Cabanás, C. G. L., Legarda, G., Ruano-Rosa, D., Pizarro-Tobías, P., Valverde-Corredor, A., Niqui, J. L., … Mercado-Blanco, J. (2018). Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00277
Cabral, C. M., Cherqui, A., Pereira, A., & Simões, N. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and Environmental Microbiology, 70(7), 3831–3838. https://doi.org/10.1128/AEM.70.7.3831-3838.2004
Castagnola, A., & Stock, S. P. (2014). Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects, 5(1), 139–166. https://doi.org/10.3390/insects5010139
Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., … Goodrich-Blair, H. (2011). The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0027909
Chen, W. J., Hsieh, F. C., Hsu, F. C., Tasy, Y. F., Liu, J. R., & Shih, M. C. (2014). Characterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects. PLoS Pathogens, 10(8). https://doi.org/10.1371/journal.ppat.1004288
Chen, Y., Shen, X., Peng, H., Hu, H., Wang, W., & Zhang, X. (2015). Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data, 4, 33–42. https://doi.org/10.1016/j.gdata.2015.01.006
CIP. (2017). Hechos y cifras sobre la papa. 2. Retrieved from www.cipotato.org
Cowles, K. N., & Goodrich-Blair, H. (2005). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology, 7(2), 209–219. https://doi.org/10.1111/j.1462-5822.2004.00448.x
Criscuolo, A., & Brisse, S. (2013). AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics, 102(5–6), 500–506. https://doi.org/10.1016/j.ygeno.2013.07.011
DANE. (2014). Polilla guatemalteca (Tecia solanivora), plaga de gran impacto económico en el cultivo de la papa. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_jul_2014.pdf
Davis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., … Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6(May), 1–12. https://doi.org/10.1038/srep27930
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), 465–469. https://doi.org/10.1093/nar/gkn180
Desjardins, P. R., & Conklin, D. S. (2011). Microvolume quantitation of nucleic acids. Current Protocols in Molecular Biology, (SUPPL.93), 1–5. https://doi.org/10.1002/0471142727.mba03js93
Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300(2), 195–200. https://doi.org/10.1111/j.1574-6968.2009.01782.x
E. Özgül Inceoglu. (2012). Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere. 63(2), 460–470.
Easom, C. A., & Clarke, D. J. (2008). Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. BMC Microbiology, 8, 1–11. https://doi.org/10.1186/1471-2180-8-168
Egami, I., Iiyama, K., Zhang, P., Chieda, Y., Ino, N., Hasegawa, K., … Shimizu, S. (2009). Insecticidal bacterium isolated from an ant lion larva from Munakata, Japan. Journal of Applied Entomology, 133(2), 117–124. https://doi.org/10.1111/j.1439-0418.2008.01329.x
Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15. https://doi.org/10.1038/hdy.2010.152
Ekblom, Robert, & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary Applications, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178
Endrullat, C., Glökler, J., Franke, P., & Frohme, M. (2016). Applied & Translational Genomics Standardization and quality management in next-generation sequencing. ATG, 10, 2–9. https://doi.org/10.1016/j.atg.2016.06.001
FAOSTAT. (2018). WORLD FOOD AND AGRICULTURE 2018: STATISTICAL POCKETBOOK. In Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#home%0Ahttp://www.fao.org/faostat/en/#rankings
Fedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P., … Nielsen-LeRoux, C. (2010). Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Journal of Invertebrate Pathology, 103(1), 24–29. https://doi.org/10.1016/j.jip.2009.09.005
Flury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., … Maurhofer, M. (2016). Insect pathogenicity in plant-beneficial pseudomonads: Phylogenetic distribution and comparative genomics. ISME Journal, 10(10). https://doi.org/10.1038/ismej.2016.5
Flury, P., Vesga, P., Péchy-tarr, M., Aellen, N., & Dennert, F. (2017). Antimicrobial and Insecticidal : Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0 , CMR12a , and PCL1391 Contribute to Insect Killing. Frontiers in Microbiology, 8(February). https://doi.org/10.3389/fmicb.2017.00100
García Ventocilla, D., Gamarra, G. M., Cabello, N. R., Salas, L. S., Marín, A. C., & Jauregui, J. M. (2011). Efecto de la adición de materia orgánica sobre la dinámica poblacional bacteriana del suelo en cultivos de papa y maíz. Revista Peruana de Biologia, 18(3), 355–360. https://doi.org/10.15381/rpb.v18i3.452
Garrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183
Gillespie, J. J., Wattam, A. R., Cammer, S. A., Gabbard, J. L., Shukla, M. P., Dalay, O., … Sobral, B. W. (2011). Patric: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infection and Immunity, 79(11), 4286–4298. https://doi.org/10.1128/IAI.00207-11
Glick, B. R. (2012). Plant Growth-Promoting Bacteria : Mechanisms and Applications. 2012.
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). BIOINFORMATICS APPLICATIONS NOTE Genome analysis QUAST : quality assessment tool for genome assemblies. 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Haas, D., Keel, C., & Reimmann, C. (2002). Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 385–395. https://doi.org/10.1023/A:1020549019981
Harrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 1–5. https://doi.org/10.1186/1741-7007-4-21
Heermann, R., & Fuchs, T. M. (2008). Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes : uncovering candidate genes involved in insect pathogenicity. 21, 1–21. https://doi.org/10.1186/1471-2164-9-40
Henson, J., Tischler, G., & Ning, Z. (2012). Next-generation sequencing and large genome assemblies. Pharmacogenomics, 13(8), 901–915. https://doi.org/10.2217/pgs.12.72
Heroven, A. K., Nuss, A. M., Dersch, P., Kathrin, A., Nuss, A. M., Rna-based, P. D., … Dersch, P. (2017). RNA-based mechanisms of virulence control in Enterobacteriaceae RNA-based mechanisms of virulence control in Enterobacteriaceae. RNA Biology, 14(5), 471–487. https://doi.org/10.1080/15476286.2016.1201617
Hurst, Mark R.H., Beattie, A., Altermann, E., Moraga, R. M., Harper, L. A., Calder, J., & Laugraud, A. (2016). The draft genome sequence of the yersinia entomophaga entomopathogenic type strain MH96T. Toxins, 8(5). https://doi.org/10.3390/toxins8050143
Hurst, Mark R.H., Beattie, A., Jones, S. A., Laugraud, A., van Koten, C., & Harper, L. (2018). Characterization of Serratia proteamaculans strain AGR96X encoding an 2 anti-feeding prophage (tailocin) with activity against grass grub 3 (Costelytra giveni) and manuka beetle (Pyronota spp.) larvae. Applied and Environmental Microbiology, 84(10), 1–54. https://doi.org/10.1128/AEM.02739-17
Hurst, Mark R.H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R. (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966–1980. https://doi.org/10.1128/JB.01044-10
Hurst, Mark R.H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160–167. https://doi.org/10.1111/j.1574-6968.2007.00886.x
Hurst, Mark Robin Holmes, Jones, S. A., Beattie, A., van Koten, C., Shelton, A. M., Collins, H. L., & Brownbridge, M. (2019). Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. Journal of Invertebrate Pathology, 162(February), 19–25. https://doi.org/10.1016/j.jip.2019.02.002
I. B. Gross. (2007). Automatic Emotion Regulation. Soc. Personal. Psychol. Compass, 1(1), 146–167.
Instituto Colombiano Agropecuario. (2011). Manejo Fitosanitario del Cultivo de la Papa. Línea Agrícola ICA, 112(483), 211–212. https://doi.org/10.1192/bjp.112.483.211-a
Instituto Colombiano Agropecuario. (2016). Informe especial: Polilla Guatemalteca o Polilla de la Papa. Retrieved from http://www.boyacaradio.com/noticia.php?id=10187
Ishii, K., Adachi, T., Hara, T., Hamamoto, H., & Sekimizu, K. (2014). Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 117(1), 61–67. https://doi.org/10.1016/j.jip.2014.02.001
Izzo, V. M., Chen, Y. H., Schoville, S. D., Wang, C., & Hawthorne, D. J. (2018). Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 111(2), 868–878. https://doi.org/10.1093/jee/tox367
Jeong, H. U., Mun, H. Y., Oh, H. K., Kim, S. B., Yang, K. Y., Kim, I., & Lee, H. B. (2010). Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth. Journal of Microbiology, 48(4), 541–545. https://doi.org/10.1007/s12275-010-0221-9
Jones, P., Binns, D., Chang, H., Fraser, M., Li, W., Mcanulla, C., … Hunter, S. (2014). Sequence analysis InterProScan 5 : genome-scale protein function classification. 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
Joshi, M. C., Sharma, A., Kant, S., Birah, A., Gupta, G. P., Khan, S. R., … Banerjee, N. (2008). An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. Journal of Biological Chemistry, 283(42), 28287–28296. https://doi.org/10.1074/jbc.M804416200
Kamal, A., Shaik, A. B., Ganesh Kumar, C., Mongolla, P., Usha Rani, P., Rama Krishna, K. V. S., … Joseph, J. (2012). Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 22(1), 69–79. https://doi.org/10.4014/jmb.1105.05008
Khan, A. R., Park, G., Asaf, S., Hong, S., Jung, K., & Shin, J. (2017). Complete genome analysis of Serratia marcescens RSC-14 : A plant growth-promoting bacterium that alleviates cadmium stress in host plants. 1–17. https://doi.org/10.1371/journal.pone.0171534
Kievit, T. R. De. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11, 279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.x
Kim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., & Kim, I. S. (2011). Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). Journal of Agricultural and Food Chemistry, 59(3), 934–938. https://doi.org/10.1021/jf104027x
Koroney, A. S., Plasson, C., Pawlak, B., Sidikou, R., Driouich, A., Menu-Bouaouiche, L., & Vicré-Gibouin, M. (2016). Root exudate of solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Annals of Botany, 118(4), 797–808. https://doi.org/10.1093/aob/mcw128
Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4(July), 1–18. https://doi.org/10.3389/fpls.2013.00287
Kwak, Y. S., Bonsall, R. F., Okubara, P. A., Paulitz, T. C., Thomashow, L. S., & Weller, D. M. (2012). Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biology and Biochemistry, 54, 48–56. https://doi.org/10.1016/j.soilbio.2012.05.012
L. M.-B. M. V.-G. Koroney Abdoul Salam. (2016). Root exudate of Solanum tuberosum is enriched in galactose- containing molecules and impacts the growth of Pectobacterium atrosepticum. 118(4), 797–808.
Landsberg, M. J., Jones, S. A., Rothnagel, R., Busby, J. N., Marshall, S. D. G., Simpson, R. M., … Hurst, M. R. H. (2011). 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences, 108(51), 20544–20549. https://doi.org/10.1073/pnas.1111155108
Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. https://doi.org/10.1007/s11103-015-0417-8
Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., & Davey, R. P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in Genetics, 4(DEC), 1–5. https://doi.org/10.3389/fgene.2013.00288
Liu, K., McInroy, J. A., Hu, C.-H., & Kloepper, J. W. (2017). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease, 102(1), 67–72. https://doi.org/10.1094/pdis-04-17-0478-re
Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2014). Comparison of next-generation sequencing systems. The Role of Bioinformatics in Agriculture, 2012, 1–25. https://doi.org/10.1201/b16568
Liu, X., Jia, J., Atkinson, S., Cámara, M., Gao, K., Li, H., & Cao, J. (2010). Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World Journal of Microbiology and Biotechnology, 26(8), 1465–1471. https://doi.org/10.1007/s11274-010-0321-y
Loper, Joyce E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research, 265–278. https://doi.org/10.1007/978-1-4020-6776-1_4
Loper, Joyce E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T., … Paulsen, I. T. (2012). Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7). https://doi.org/10.1371/journal.pgen.1002784
Loper, Joyce Elizabeth, Stockwell, V. O., Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., … Hesse, C. N. (2016). Rhizoxin , orfamide a , and chitinase production contribute to the toxicity of pseudomonas protegens strain pf-5 to drosophila ... Rhizoxin analogs , orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Dr. Environmental Microbiology, 00(April). https://doi.org/10.1111/1462-2920.13369
López-Pazos SA, Rojas A, & Chaparro-Giraldo A. (2013). Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Revista Mutis. Vol, 3(2), 31–42.
M. H. Olcott. (2010). Lethality and developmental delay in drosophila melanogaster larvae after ingestion of selected pseudomonas fluorescens strains. PLOS ONE, 5(9), 1–12.
M. L. Metzker. (2010). Sequencing technologies — the next generation. Genet. V, 11, 31–46.
Ma, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C., & Höfte, M. (2016). Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Frontiers in Microbiology, 7(MAR), 1–16. https://doi.org/10.3389/fmicb.2016.00382
MAHARJAN, R., KWON, M., KIM, J., & JUNG, C. (2010). Mass production of Diglyphus isaea (Hymenoptera: Eulophidae), a biological control agent of aKorean population of potato leaf miner Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). 48, 18–26. https://doi.org/10.1111/1748-5967
Majeed, A., Kaleem Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6(MAR), 1–10. https://doi.org/10.3389/fmicb.2015.00198
Manter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. (2010). Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. 157–166. https://doi.org/10.1007/s00248-010-9658-x
Matthijs, S., Laus, G., Meyer, J. M., Abbaspour-Tehrani, K., Schäfer, M., Budzikiewicz, H., & Cornelis, P. (2009). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. BioMetals, 22(6), 951–964. https://doi.org/10.1007/s10534-009-9247-y
McQuade, R., & Stock, S. P. (2018, June 19). Secretion systems and secreted proteins in gram-negative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects, Vol. 9. https://doi.org/10.3390/insects9020068
Meca, A., Sepúlveda, B., Ogoña, J. C., Grados, N., Moret, A., Moret, A., … Tume, P. (2013). In vitro pathogenicity of Northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantiifolia Swingle and white rats. Spanish Journal of Agricultural Research, 7(1), 137. https://doi.org/10.5424/sjar/2009071-406
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
Meng, S., Brown, D. E., Ebbole, D. J., Torto-Alalibo, T., Oh, Y. Y., Deng, J., … Dean, R. A. (2009). Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiology, 9(SUPPL. 1), 1–6. https://doi.org/10.1186/1471-2180-9-S1-S8
MinAgricultura. (2018). MinAgricultura analiza estrategias para fortalecer el sector de la papa en Colombia. Retrieved from https://www.minagricultura.gov.co/noticias/Paginas/minagricultura-analiza-estrategias-para-fortalecer-el-sector-de-la-papa-en-Colombia.aspx
Mohan, M., Selvakumar, G., Sushil, S. N., Bhatt, J. C., & Gupta, H. S. (2011). Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27(11), 2545–2551. https://doi.org/10.1007/s11274-011-0724-4
Molina-Santiago, C., Udaondo, Z., & Ramos, J. L. (2015). Draft whole-genome sequence of the antibiotic-producing soil isolate Pseudomonas sp. strain 250J. Environmental Microbiology Reports, 7(2), 288–292. https://doi.org/10.1111/1758-2229.12245
MUNIF, A., HALLMANN, J., & A. SIKORA, R. (2013). Isolation of Endophytic Bacteria from Tomato and Their Biocontrol Activities against Fungal Diseases. Microbiology Indonesia, 6(4), 148–156. https://doi.org/10.5454/mi.6.4.2
Nalini, S., & Parthasarathi, R. (2017). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 1–8. https://doi.org/10.1016/j.aasci.2017.11.002
Naqqash, T., Hameed, S., Imran, A., & Hanif, M. K. (2016). Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. 7(February), 1–12. https://doi.org/10.3389/fpls.2016.00144
Nyambura Ngamau, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/ajmr12.1170
Osman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb, D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports, 5(December), 18067. https://doi.org/10.1038/srep18067
Pantoja, L. (2018). Efecto de moléculas señal tipo N-acil homoserina lactonas ( AHLs ) de aislamientos provenientes de cultivos de papa en el control de Tecia solanivora ( Lepidóptera : Gelechiidae ) homoserina lactonas ( AHLs ) de aislamientos Gelechiidae ). Universidad Nacional de Colombia.
Park, S. J., Kim, S. K., So, Y. I., Park, H. Y., Li, X. H., Yeom, D. H., … Lee, J. H. (2014). Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Molecular Microbiology, 94(6), 1298–1314. https://doi.org/10.1111/mmi.12830
Patel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030619
Pati, A., Ivanova, N. N., Mikhailova, N., Ovchinnikova, G., Hooper, S. D., Lykidis, A., & Kyrpides, N. C. (2010). GenePRIMP: A gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 7(6), 455–457. https://doi.org/10.1038/nmeth.1457
Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V, … Loper, J. E. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23(7), 873–878. https://doi.org/10.1038/nbt1110
Péchy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736–750. https://doi.org/10.1111/1462-2920.12050
Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., … Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368–2386. https://doi.org/10.1111/j.1462-2920.2008.01662.x
Pétriacq, P., Williams, A., Cotton, A., McFarlane, A. E., Rolfe, S. A., & Ton, J. (2017). Metabolite profiling of non-sterile rhizosphere soil. Plant Journal, 92(1), 147–162. https://doi.org/10.1111/tpj.13639
Pineda-Castellanos, M., Rodríguez-Segura, Z., Villalobos, F., Hernández, L., Lina, L., & Nuñez-Valdez, M. (2015). Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens, 4(2), 210–228. https://doi.org/10.3390/pathogens4020210
Pinheiro, V. B., & Ellar, D. J. (2007). Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 9(10), 2372–2380. https://doi.org/10.1111/j.1462-5822.2007.00966.x
Piro, V. C., Faoro, H., Weiss, V. A., Steffens, M. B. R., Pedrosa, F. O., Souza, E. M., & Raittz, R. T. (2014). Open Access FGAP : an automated gap closing tool. 1–5.
Pop, M. (2009). Genome assembly reborn: Recent computational challenges. Briefings in Bioinformatics, 10(4), 354–366. https://doi.org/10.1093/bib/bbp026
Popova, A. A., Koksharova, O. A., Lipasova, V. A., Zaitseva, J. V., Katkova-Zhukotskaya, O. A., Eremina, S. I., … Khmel, I. A. (2014). Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans , and Drosophila melanogaster . BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/125704
R. L. Berendsen. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci., 17(8), 478–486.
Rangel, L. I., Henkels, M. D., Shaffer, B. T., Walker, F. L., Davis, E. W., Stockwell, V. O., … Loper, J. E. (2016). Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of pseudomonas fluorescens. PLoS ONE, 11(8), 1–22. https://doi.org/10.1371/journal.pone.0161120
Roesch, L. F. W., Camargo, F. A. O., Bento, F. M., & Triplett, E. W. (2008). Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 302(1–2), 91–104. https://doi.org/10.1007/s11104-007-9458-3
Rohini, S., Aswani, R., Kannan, M., Sylas, V. P., & Radhakrishnan, E. K. (2018). Culturable Endophytic Bacteria of Ginger Rhizome and their Remarkable Multi-trait Plant Growth-Promoting Features. Current Microbiology, 75(4), 505–511. https://doi.org/10.1007/s00284-017-1410-z
Roongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 12(1), 141–172. https://doi.org/10.3390/ijms12010141
Rosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas : Regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.
Ruffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C., & Maurhofer, M. (2015). Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics, 16(1), 1–14. https://doi.org/10.1186/s12864-015-1763-2
Ruffner, B., Péchy-tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2012). Oral insecticidal activity of plant-associated Pseudomonads Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(September 2012), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
Ruffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2013). Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(3), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
S. A. Aleti Gajender. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. View Issue TOC, 16(8), 2389–2407.
S. Pfeiffer. (2017). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol, 93.
S. SHOKRALLA. (2012). Next-generation sequencing technologies for environmental DNA research. 21(8), 1794–1805.
Sandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165
Santa, J. D., Berdugo-Cely, J., Cely-Pardo, L., Soto-Suárez, M., Mosquera, T., & Galeano, C. H. M. (2018). QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199716
Santoyo, G., del Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872. https://doi.org/10.1080/09583157.2012.694413
Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl, 54(2), 273–286. https://doi.org/10.1007/s10526-008-9166-9
Schnider-Keel, U., & Seematter, a. (2000). 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescensCHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of …, 182(5), 1215–1225.
Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
Seo, S., Lee, S., Hong, Y., & Kim, Y. (2012). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. Temperata. Applied and Environmental Microbiology, 78(11), 3816–3823. https://doi.org/10.1128/AEM.00301-12
Sharaby, A. M. F., & Fallatah, S. B. (2019). Protection of stored potatoes from infestation with the potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae) using plant powders. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0119-5
Sheets, J. J., Hey, T. D., Fencil, K. J., Burton, S. L., Ni, W., Lang, A. E., … Aktories, K. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus: Structure and pore formation. Journal of Biological Chemistry, 286(26), 22742–22749. https://doi.org/10.1074/jbc.M111.227009
Shi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48(4), 706–714. https://doi.org/10.1016/j.bjm.2017.03.002
Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93–103. https://doi.org/10.1007/s12298-011-0062-x
Singh, P., Kumar, V., & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology, 2014. https://doi.org/10.1155/2014/426483
Singh, V., Ram, B., Prakash, J., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria ( KSR ): Isolation , identi fi cation , and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065
Snyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., & Shukla, M. (2007). PATRIC : The VBI PathoSystems Resource Integration Center. 35(December 2006), 401–406. https://doi.org/10.1093/nar/gkl858
Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2), 465–467. https://doi.org/10.1093/nar/gki458
Stavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75(7), 2230–2235. https://doi.org/10.1128/AEM.02860-08
Sugio, A., Dubreuil, G., Giron, D., & Simon, J. C. (2015). Plant-insect interactions under bacterial influence: Ecological implications and underlying mechanisms. Journal of Experimental Botany, 66(2), 467–478. https://doi.org/10.1093/jxb/eru435
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003
T. S. Walker. (2003). Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem, 51(9), 2548–2554.
Tatusova, T. A., & Madden, T. L. (1999). BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174(2), 247–250. https://doi.org/10.1016/S0378-1097(99)00149-4
Taylor, P., Otsu, Y., Matsuda, Y., Mori, H., Ueki, H., & Nakajima, T. (2010). Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of Phytophagous ladybird beetles Epilachna vigintioctopunctata ( Coleoptera : Coccinellidae ). Biocontrol Science and Technology, 14(5, 427–439), 427–439. https://doi.org/10.1080/09583150410001683538
Thakur, D., Kaur, M., & Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp . and Pseudomonas spp . and their effect on growth , rhizospheric population and phosphorous concentration of Aloe vera. 5(1), 187–192.
Thokchom, E., Thakuria, D., Kalita, M. C., Sharma, C. K., & Talukdar, N. C. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79, 48–56. https://doi.org/10.1016/j.ejsobi.2017.02.003
Toribio-Jiménez, J., Aradillas, J. C. V., Romero Ramírez, Y., Rodríguez Barrera, M. Á., González, J. D. C., Luna, J. G., & Noyola, J. L. A. (2014). Pseudomonas sp productoras de biosurfactantes. Tlamati, 5(2), 66–82.
Ullah, I., Khan, A. L., Ali, L., Khan, A. R., Waqas, M., Hussain, J., … Shin, J. H. (2015). Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. Journal of Microbiology, 53(2), 127–133. https://doi.org/10.1007/s12275-015-4632-4
Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., … Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4(September), 356. https://doi.org/10.3389/fpls.2013.00356
Vallet-Gely, I., Lemaitre, B., & Boccard, F. (2008, April). Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, Vol. 6, pp. 302–313. https://doi.org/10.1038/nrmicro1870
van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 21(3), 256–265. https://doi.org/10.1016/j.tplants.2016.01.008
Van Der Voort, M., Meijer, H. J. G., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R., … Raaijmakers, J. M. (2015). Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 6(JUL), 1–14. https://doi.org/10.3389/fmicb.2015.00693
Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24(6), 673–679. https://doi.org/10.1038/nbt1212
Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11414–11419. https://doi.org/10.1073/pnas.0502240102
Wang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., & Shen, F. (2016). Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data in Brief, 9, 345–348. https://doi.org/10.1016/j.dib.2016.05.025
Wattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., … Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 42(D1), 581–591. https://doi.org/10.1093/nar/gkt1099
Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., … Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017
Xiong, Z., Niu, J., Liu, H., Xu, Z., Li, J., & Wu, Q. (2017). Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Bioorganic and Medicinal Chemistry Letters, 27(9), 2010–2013. https://doi.org/10.1016/j.bmcl.2017.03.011
York, L. M., Carminati, A., Mooney, S. J., Ritz, K., & Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67(12), 3629–3643. https://doi.org/10.1093/jxb/erw108
Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., … Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 86
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77948/1/TESIS_MAESTR%c3%8dA%20CIENCIAS%20BIOQU%c3%8dMICA_1010181650.pdf
https://repositorio.unal.edu.co/bitstream/unal/77948/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77948/3/TESIS_MAESTR%c3%8dA%20CIENCIAS%20BIOQU%c3%8dMICA_1010181650.pdf.jpg
bitstream.checksum.fl_str_mv 728c75f3c6fdf00cd1ce34764f2c7229
e2f63a891b6ceb28c3078128251851bf
0c117d2d523c88233e35b2061254f6a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089296513073152
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2de Brito Brandão, Pedro Filipe7f0aca2c-f3c4-4c39-97da-986d429c0e87-1Vanegas Guerrero, Javier278718c2-aa57-46f7-aec5-7f6734531e3e-1Boyacá Vásquez, Vivian Johanna027e41a3-3ccf-4fb2-a4c6-a0f9aa49354dUniversidad Nacional de ColombiaUniversidad Antonio NariñoGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA2020-08-05T23:30:11Z2020-08-05T23:30:11Z2019-04-21Boyacá-Vásquez V.https://repositorio.unal.edu.co/handle/unal/77948Las rizobacterias entomopatógenas presentan factores de virulencia como la producción de compuestos antimicrobianos, enzimas degradadoras y toxinas que han sido poco explorados. Mediante genómica se han realizado acercamientos para entender la interacción entre rizobacterias e insectos plaga. El objetivo de este trabajo fue determinar los factores de virulencia de rizobacterias entomopatógenas de Tecia solanivora mediante un acercamiento genómico. Para esto, se caracterizó el genoma de dos rizobacterias entomopatógenas que causaron una mortalidad superior al 75% en T. solanivora, y se compararon los factores de virulencia con genomas reportados de rizobacterias entomopatógenas. Se realizó extracción de ADN genómico, secuenciación masiva utilizando HiSeq 4000 (Illumina), ensamblaje y anotación y se determinó el porcentaje de similitud. Las lecturas de Raoultella C47 y Enterobacter TN152 fueron ensambladas en 58 y 121 contigs, respectivamente, con un tamaño de genoma medio de 5,4 kb, sin presencia de plásmidos. Se encontró que las categorías más relevantes fueron metabolismo, procesamiento de proteínas y respuesta a estrés, defensa y virulencia. Raoultella C47 mostró alta diversidad de compuestos volátiles incluyendo el ácido cianhídrico y presentó un gen para ramnolípidos. Enterobacter TN152 presentó dos toxinas entomopatógenas homólogas a toxinas Tc. Se detectaron enzimas degradadoras en ambos genomas. Al comparar con otras 14 rizobacterias, se encontró un 55% de similitud, y el perfil entomopatógeno más cercano para Raoultella C47 y Enterobacter TN152 fue Yersinia entomophaga MH96. Este estudio contribuye a entender los mecanismos de patogenicidad de rizobacterias, extendiendo el limitado grupo de rizobacterias entomopatógenas que se conocen y su respectiva secuenciación.Entomopathogenic rhizobacteria present virulence factors such as the production of antimicrobial compounds, degrading enzymes and toxins, which have been little explored. By genomic methods, approaches have been made to understand the interaction between rhizobacteria and pest insects. The objective of this work was to determine the virulence factors of entomopathogenic rhizobacteria of Tecia solanivora using a genomic approach. The genome of two entomopathogenic rhizobacteria causing a mortality greater than 75% on T. Solanivora was characterized and virulence factors were compared with reported genomes of entomopathogenic rhizobacteria. Genomic DNA was extracted and massive sequencing was performed using HiSeq 4000 (Illumina). Assembly and annotation and the percentage of similarity was determined. The Raoultella C47 and Enterobacter TN152 readings were assembled in 58 and 121 contigs, respectively, with an average genome size of 5.4 kb without the presence of plasmids. The most relevant categories were metabolism, protein processing and response to stress, defense and virulence. Raoultella C47 showed high diversity of volatile compounds including hydrocyanic acid; a gene for ramnolipids was also found. Enterobacter TN152 showed two entomopathogenic toxins homologous to Tc toxins. Degrading enzymes were detected in both genomes. When comparing against other 14 rhizobacteria, a similarity of 55% was found, and the closest entomopathogenic profile for Raoultella C47 and Enterobacter TN152 was Yersinia entomophaga MH96. This study helps to understand the mechanisms of pathogenicity of rhizobacteria, extending the limited group of entomopathogenic rhizobacteria that are known and their respective sequencing.COLCIENCIAS, LA GOBERNACIÓN DE BOYACÁ, LA UNIVERSIDAD ANTONIO NARIÑOInteracciones entre Tecia solanivora, rizobacterias con actividad entomopatógena y plantas de papa para favorecer la competitividad de la cadena papera en el Departamento de BoyacáLínea de Investigación Micro biología Ambiental y Aplicada.Maestría86application/pdfspa630 - Agricultura y tecnologías relacionadas550 - Ciencias de la tierra540 - Química y ciencias afinesgenómicasecuenciación masivarizobacteriasbiocontroactividad entomopatógenainsecto-plagatecia solanivoragenomicsmassive sequencingrhizobacteriabiocontrolentomopathogenic activityinsect-pesttecia solanivoraGenómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)Documento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáAbby, S. S., & Rocha, E. P. C. (2017). Identification of protein secretion systems in bacterial genomes using MacSyFinder. Methods in Molecular Biology, 1615(March), 1–21. https://doi.org/10.1007/978-1-4939-7033-9_1Abebe-Akele, F., Tisa, L. S., Cooper, V. S., Hatcher, P. J., Abebe, E., & Thomas, W. K. (2015). Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-1697-8Abraham, J., & Silambarasan, S. (2015). Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan. Applied Biochemistry and Biotechnology, 175(7), 3336–3348. https://doi.org/10.1007/s12010-015-1504-7Adnan, M., Patel, M., Reddy, M. N., Khan, S., Alshammari, E., Abdelkareem, A. M., & Hadi, S. (2016). ARPN Journal of Agricultural and Biological Science ISOLATION AND CHARACTERIZATION OF EFFECTIVE AND EFFICIENT PLANT GROWTH-PROMOTING RHIZOBACTERIA FROM RICE RHIZOSPHERE OF DIVERSE PADDY FIELDS OF INDIAN SOIL. 11(9), 373–379.Aleti, G., Nikolić, B., Brader, G., Pandey, R. V., Antonielli, L., Pfeiffer, S., … Sessitsch, A. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02314-xAssefa, S., Keane, T. M., Otto, T. D., Newbold, C., & Berriman, M. (2009). ABACAS: Algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968–1969. https://doi.org/10.1093/bioinformatics/btp347Ávila, E. (2015). MANUAL PAPA del Programa De Apoyo Agrícola Y Agroindustrial Vicepresidencia De Fortalecimiento Empresarial Cámara De Comercio De Bogotá. In Cámara de Comercio de Bogotá.Aziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 1–15. https://doi.org/10.1186/1471-2164-9-75Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559–1570. https://doi.org/10.1007/s10529-010-0347-0Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). and Its Applications to Single-Cell Sequencing. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021Benson, D. A., Cavanaugh, M., Clark, K., Karsch-mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. 41(November 2012), 36–42. https://doi.org/10.1093/nar/gks1195Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336Biggs, M. B., & Papin, J. A. (2013). Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation. 8(10), 1–8. https://doi.org/10.1371/journal.pone.0078011Bisch, G., Ogier, J. C., Médigue, C., Rouy, Z., Vincent, S., Tailliez, P., … Gaudriault, S. (2016). Comparative genomics between two xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution, 8(1), 148–160. https://doi.org/10.1093/gbe/evv248Blackburn, M., Golubeva, E., Bowen, D., & Ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environmental Microbiology, 64(8), 3036–3041.Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13(2), 224–230. https://doi.org/10.1016/j.cbpa.2009.02.037Bosa, C. F., & Cotes, A. M. (2004). Effect of culture conditions on the enzymatic activity of Serratia marcescens against Tecia solanivora (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 30(1), 79–85. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882004000100012&lng=en&nrm=iso&tlng=esBrady, S., Kai, M., Daniel, R., Gottschalk, G., Weise, T., Th, A., & Piechulla, B. (2018). VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. (September), 45–53. https://doi.org/10.1111/1574-6968.12359Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk : A modular and extensible implementation of the RAST algorithm for annotating batches of genomes. https://doi.org/10.1038/srep08365Broderick, K. E., Chan, A., Balasubramanian, M., Feala, J., Reed, S. L., Panda, M., … Boss, G. R. (2008). Cyanide Produced by Human Isolates of Pseudomonas aeruginosa Contributes to Lethality in Drosophila melanogaster . The Journal of Infectious Diseases, 197(3), 457–464. https://doi.org/10.1086/525282Busby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural Analysis of Chi1 Chitinase from Yen-Tc : The Multisubunit Insecticidal ABC Toxin Complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018Cabanás, C. G. L., Legarda, G., Ruano-Rosa, D., Pizarro-Tobías, P., Valverde-Corredor, A., Niqui, J. L., … Mercado-Blanco, J. (2018). Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00277Cabral, C. M., Cherqui, A., Pereira, A., & Simões, N. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and Environmental Microbiology, 70(7), 3831–3838. https://doi.org/10.1128/AEM.70.7.3831-3838.2004Castagnola, A., & Stock, S. P. (2014). Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects, 5(1), 139–166. https://doi.org/10.3390/insects5010139Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., … Goodrich-Blair, H. (2011). The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0027909Chen, W. J., Hsieh, F. C., Hsu, F. C., Tasy, Y. F., Liu, J. R., & Shih, M. C. (2014). Characterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects. PLoS Pathogens, 10(8). https://doi.org/10.1371/journal.ppat.1004288Chen, Y., Shen, X., Peng, H., Hu, H., Wang, W., & Zhang, X. (2015). Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data, 4, 33–42. https://doi.org/10.1016/j.gdata.2015.01.006CIP. (2017). Hechos y cifras sobre la papa. 2. Retrieved from www.cipotato.orgCowles, K. N., & Goodrich-Blair, H. (2005). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology, 7(2), 209–219. https://doi.org/10.1111/j.1462-5822.2004.00448.xCriscuolo, A., & Brisse, S. (2013). AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics, 102(5–6), 500–506. https://doi.org/10.1016/j.ygeno.2013.07.011DANE. (2014). Polilla guatemalteca (Tecia solanivora), plaga de gran impacto económico en el cultivo de la papa. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_jul_2014.pdfDavis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., … Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6(May), 1–12. https://doi.org/10.1038/srep27930Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), 465–469. https://doi.org/10.1093/nar/gkn180Desjardins, P. R., & Conklin, D. S. (2011). Microvolume quantitation of nucleic acids. Current Protocols in Molecular Biology, (SUPPL.93), 1–5. https://doi.org/10.1002/0471142727.mba03js93Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300(2), 195–200. https://doi.org/10.1111/j.1574-6968.2009.01782.xE. Özgül Inceoglu. (2012). Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere. 63(2), 460–470.Easom, C. A., & Clarke, D. J. (2008). Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. BMC Microbiology, 8, 1–11. https://doi.org/10.1186/1471-2180-8-168Egami, I., Iiyama, K., Zhang, P., Chieda, Y., Ino, N., Hasegawa, K., … Shimizu, S. (2009). Insecticidal bacterium isolated from an ant lion larva from Munakata, Japan. Journal of Applied Entomology, 133(2), 117–124. https://doi.org/10.1111/j.1439-0418.2008.01329.xEkblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15. https://doi.org/10.1038/hdy.2010.152Ekblom, Robert, & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary Applications, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178Endrullat, C., Glökler, J., Franke, P., & Frohme, M. (2016). Applied & Translational Genomics Standardization and quality management in next-generation sequencing. ATG, 10, 2–9. https://doi.org/10.1016/j.atg.2016.06.001FAOSTAT. (2018). WORLD FOOD AND AGRICULTURE 2018: STATISTICAL POCKETBOOK. In Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#home%0Ahttp://www.fao.org/faostat/en/#rankingsFedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P., … Nielsen-LeRoux, C. (2010). Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Journal of Invertebrate Pathology, 103(1), 24–29. https://doi.org/10.1016/j.jip.2009.09.005Flury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., … Maurhofer, M. (2016). Insect pathogenicity in plant-beneficial pseudomonads: Phylogenetic distribution and comparative genomics. ISME Journal, 10(10). https://doi.org/10.1038/ismej.2016.5Flury, P., Vesga, P., Péchy-tarr, M., Aellen, N., & Dennert, F. (2017). Antimicrobial and Insecticidal : Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0 , CMR12a , and PCL1391 Contribute to Insect Killing. Frontiers in Microbiology, 8(February). https://doi.org/10.3389/fmicb.2017.00100García Ventocilla, D., Gamarra, G. M., Cabello, N. R., Salas, L. S., Marín, A. C., & Jauregui, J. M. (2011). Efecto de la adición de materia orgánica sobre la dinámica poblacional bacteriana del suelo en cultivos de papa y maíz. Revista Peruana de Biologia, 18(3), 355–360. https://doi.org/10.15381/rpb.v18i3.452Garrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183Gillespie, J. J., Wattam, A. R., Cammer, S. A., Gabbard, J. L., Shukla, M. P., Dalay, O., … Sobral, B. W. (2011). Patric: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infection and Immunity, 79(11), 4286–4298. https://doi.org/10.1128/IAI.00207-11Glick, B. R. (2012). Plant Growth-Promoting Bacteria : Mechanisms and Applications. 2012.Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). BIOINFORMATICS APPLICATIONS NOTE Genome analysis QUAST : quality assessment tool for genome assemblies. 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086Haas, D., Keel, C., & Reimmann, C. (2002). Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 385–395. https://doi.org/10.1023/A:1020549019981Harrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 1–5. https://doi.org/10.1186/1741-7007-4-21Heermann, R., & Fuchs, T. M. (2008). Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes : uncovering candidate genes involved in insect pathogenicity. 21, 1–21. https://doi.org/10.1186/1471-2164-9-40Henson, J., Tischler, G., & Ning, Z. (2012). Next-generation sequencing and large genome assemblies. Pharmacogenomics, 13(8), 901–915. https://doi.org/10.2217/pgs.12.72Heroven, A. K., Nuss, A. M., Dersch, P., Kathrin, A., Nuss, A. M., Rna-based, P. D., … Dersch, P. (2017). RNA-based mechanisms of virulence control in Enterobacteriaceae RNA-based mechanisms of virulence control in Enterobacteriaceae. RNA Biology, 14(5), 471–487. https://doi.org/10.1080/15476286.2016.1201617Hurst, Mark R.H., Beattie, A., Altermann, E., Moraga, R. M., Harper, L. A., Calder, J., & Laugraud, A. (2016). The draft genome sequence of the yersinia entomophaga entomopathogenic type strain MH96T. Toxins, 8(5). https://doi.org/10.3390/toxins8050143Hurst, Mark R.H., Beattie, A., Jones, S. A., Laugraud, A., van Koten, C., & Harper, L. (2018). Characterization of Serratia proteamaculans strain AGR96X encoding an 2 anti-feeding prophage (tailocin) with activity against grass grub 3 (Costelytra giveni) and manuka beetle (Pyronota spp.) larvae. Applied and Environmental Microbiology, 84(10), 1–54. https://doi.org/10.1128/AEM.02739-17Hurst, Mark R.H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R. (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966–1980. https://doi.org/10.1128/JB.01044-10Hurst, Mark R.H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160–167. https://doi.org/10.1111/j.1574-6968.2007.00886.xHurst, Mark Robin Holmes, Jones, S. A., Beattie, A., van Koten, C., Shelton, A. M., Collins, H. L., & Brownbridge, M. (2019). Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. Journal of Invertebrate Pathology, 162(February), 19–25. https://doi.org/10.1016/j.jip.2019.02.002I. B. Gross. (2007). Automatic Emotion Regulation. Soc. Personal. Psychol. Compass, 1(1), 146–167.Instituto Colombiano Agropecuario. (2011). Manejo Fitosanitario del Cultivo de la Papa. Línea Agrícola ICA, 112(483), 211–212. https://doi.org/10.1192/bjp.112.483.211-aInstituto Colombiano Agropecuario. (2016). Informe especial: Polilla Guatemalteca o Polilla de la Papa. Retrieved from http://www.boyacaradio.com/noticia.php?id=10187Ishii, K., Adachi, T., Hara, T., Hamamoto, H., & Sekimizu, K. (2014). Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 117(1), 61–67. https://doi.org/10.1016/j.jip.2014.02.001Izzo, V. M., Chen, Y. H., Schoville, S. D., Wang, C., & Hawthorne, D. J. (2018). Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 111(2), 868–878. https://doi.org/10.1093/jee/tox367Jeong, H. U., Mun, H. Y., Oh, H. K., Kim, S. B., Yang, K. Y., Kim, I., & Lee, H. B. (2010). Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth. Journal of Microbiology, 48(4), 541–545. https://doi.org/10.1007/s12275-010-0221-9Jones, P., Binns, D., Chang, H., Fraser, M., Li, W., Mcanulla, C., … Hunter, S. (2014). Sequence analysis InterProScan 5 : genome-scale protein function classification. 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031Joshi, M. C., Sharma, A., Kant, S., Birah, A., Gupta, G. P., Khan, S. R., … Banerjee, N. (2008). An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. Journal of Biological Chemistry, 283(42), 28287–28296. https://doi.org/10.1074/jbc.M804416200Kamal, A., Shaik, A. B., Ganesh Kumar, C., Mongolla, P., Usha Rani, P., Rama Krishna, K. V. S., … Joseph, J. (2012). Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 22(1), 69–79. https://doi.org/10.4014/jmb.1105.05008Khan, A. R., Park, G., Asaf, S., Hong, S., Jung, K., & Shin, J. (2017). Complete genome analysis of Serratia marcescens RSC-14 : A plant growth-promoting bacterium that alleviates cadmium stress in host plants. 1–17. https://doi.org/10.1371/journal.pone.0171534Kievit, T. R. De. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11, 279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.xKim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., & Kim, I. S. (2011). Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). Journal of Agricultural and Food Chemistry, 59(3), 934–938. https://doi.org/10.1021/jf104027xKoroney, A. S., Plasson, C., Pawlak, B., Sidikou, R., Driouich, A., Menu-Bouaouiche, L., & Vicré-Gibouin, M. (2016). Root exudate of solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Annals of Botany, 118(4), 797–808. https://doi.org/10.1093/aob/mcw128Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4(July), 1–18. https://doi.org/10.3389/fpls.2013.00287Kwak, Y. S., Bonsall, R. F., Okubara, P. A., Paulitz, T. C., Thomashow, L. S., & Weller, D. M. (2012). Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biology and Biochemistry, 54, 48–56. https://doi.org/10.1016/j.soilbio.2012.05.012L. M.-B. M. V.-G. Koroney Abdoul Salam. (2016). Root exudate of Solanum tuberosum is enriched in galactose- containing molecules and impacts the growth of Pectobacterium atrosepticum. 118(4), 797–808.Landsberg, M. J., Jones, S. A., Rothnagel, R., Busby, J. N., Marshall, S. D. G., Simpson, R. M., … Hurst, M. R. H. (2011). 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences, 108(51), 20544–20549. https://doi.org/10.1073/pnas.1111155108Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. https://doi.org/10.1007/s11103-015-0417-8Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., & Davey, R. P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in Genetics, 4(DEC), 1–5. https://doi.org/10.3389/fgene.2013.00288Liu, K., McInroy, J. A., Hu, C.-H., & Kloepper, J. W. (2017). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease, 102(1), 67–72. https://doi.org/10.1094/pdis-04-17-0478-reLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2014). Comparison of next-generation sequencing systems. The Role of Bioinformatics in Agriculture, 2012, 1–25. https://doi.org/10.1201/b16568Liu, X., Jia, J., Atkinson, S., Cámara, M., Gao, K., Li, H., & Cao, J. (2010). Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World Journal of Microbiology and Biotechnology, 26(8), 1465–1471. https://doi.org/10.1007/s11274-010-0321-yLoper, Joyce E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research, 265–278. https://doi.org/10.1007/978-1-4020-6776-1_4Loper, Joyce E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T., … Paulsen, I. T. (2012). Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7). https://doi.org/10.1371/journal.pgen.1002784Loper, Joyce Elizabeth, Stockwell, V. O., Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., … Hesse, C. N. (2016). Rhizoxin , orfamide a , and chitinase production contribute to the toxicity of pseudomonas protegens strain pf-5 to drosophila ... Rhizoxin analogs , orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Dr. Environmental Microbiology, 00(April). https://doi.org/10.1111/1462-2920.13369López-Pazos SA, Rojas A, & Chaparro-Giraldo A. (2013). Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Revista Mutis. Vol, 3(2), 31–42.M. H. Olcott. (2010). Lethality and developmental delay in drosophila melanogaster larvae after ingestion of selected pseudomonas fluorescens strains. PLOS ONE, 5(9), 1–12.M. L. Metzker. (2010). Sequencing technologies — the next generation. Genet. V, 11, 31–46.Ma, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C., & Höfte, M. (2016). Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Frontiers in Microbiology, 7(MAR), 1–16. https://doi.org/10.3389/fmicb.2016.00382MAHARJAN, R., KWON, M., KIM, J., & JUNG, C. (2010). Mass production of Diglyphus isaea (Hymenoptera: Eulophidae), a biological control agent of aKorean population of potato leaf miner Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). 48, 18–26. https://doi.org/10.1111/1748-5967Majeed, A., Kaleem Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6(MAR), 1–10. https://doi.org/10.3389/fmicb.2015.00198Manter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. (2010). Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. 157–166. https://doi.org/10.1007/s00248-010-9658-xMatthijs, S., Laus, G., Meyer, J. M., Abbaspour-Tehrani, K., Schäfer, M., Budzikiewicz, H., & Cornelis, P. (2009). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. BioMetals, 22(6), 951–964. https://doi.org/10.1007/s10534-009-9247-yMcQuade, R., & Stock, S. P. (2018, June 19). Secretion systems and secreted proteins in gram-negative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects, Vol. 9. https://doi.org/10.3390/insects9020068Meca, A., Sepúlveda, B., Ogoña, J. C., Grados, N., Moret, A., Moret, A., … Tume, P. (2013). In vitro pathogenicity of Northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantiifolia Swingle and white rats. Spanish Journal of Agricultural Research, 7(1), 137. https://doi.org/10.5424/sjar/2009071-406Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028Meng, S., Brown, D. E., Ebbole, D. J., Torto-Alalibo, T., Oh, Y. Y., Deng, J., … Dean, R. A. (2009). Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiology, 9(SUPPL. 1), 1–6. https://doi.org/10.1186/1471-2180-9-S1-S8MinAgricultura. (2018). MinAgricultura analiza estrategias para fortalecer el sector de la papa en Colombia. Retrieved from https://www.minagricultura.gov.co/noticias/Paginas/minagricultura-analiza-estrategias-para-fortalecer-el-sector-de-la-papa-en-Colombia.aspxMohan, M., Selvakumar, G., Sushil, S. N., Bhatt, J. C., & Gupta, H. S. (2011). Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27(11), 2545–2551. https://doi.org/10.1007/s11274-011-0724-4Molina-Santiago, C., Udaondo, Z., & Ramos, J. L. (2015). Draft whole-genome sequence of the antibiotic-producing soil isolate Pseudomonas sp. strain 250J. Environmental Microbiology Reports, 7(2), 288–292. https://doi.org/10.1111/1758-2229.12245MUNIF, A., HALLMANN, J., & A. SIKORA, R. (2013). Isolation of Endophytic Bacteria from Tomato and Their Biocontrol Activities against Fungal Diseases. Microbiology Indonesia, 6(4), 148–156. https://doi.org/10.5454/mi.6.4.2Nalini, S., & Parthasarathi, R. (2017). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 1–8. https://doi.org/10.1016/j.aasci.2017.11.002Naqqash, T., Hameed, S., Imran, A., & Hanif, M. K. (2016). Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. 7(February), 1–12. https://doi.org/10.3389/fpls.2016.00144Nyambura Ngamau, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/ajmr12.1170Osman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb, D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports, 5(December), 18067. https://doi.org/10.1038/srep18067Pantoja, L. (2018). Efecto de moléculas señal tipo N-acil homoserina lactonas ( AHLs ) de aislamientos provenientes de cultivos de papa en el control de Tecia solanivora ( Lepidóptera : Gelechiidae ) homoserina lactonas ( AHLs ) de aislamientos Gelechiidae ). Universidad Nacional de Colombia.Park, S. J., Kim, S. K., So, Y. I., Park, H. Y., Li, X. H., Yeom, D. H., … Lee, J. H. (2014). Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Molecular Microbiology, 94(6), 1298–1314. https://doi.org/10.1111/mmi.12830Patel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030619Pati, A., Ivanova, N. N., Mikhailova, N., Ovchinnikova, G., Hooper, S. D., Lykidis, A., & Kyrpides, N. C. (2010). GenePRIMP: A gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 7(6), 455–457. https://doi.org/10.1038/nmeth.1457Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V, … Loper, J. E. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23(7), 873–878. https://doi.org/10.1038/nbt1110Péchy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736–750. https://doi.org/10.1111/1462-2920.12050Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., … Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368–2386. https://doi.org/10.1111/j.1462-2920.2008.01662.xPétriacq, P., Williams, A., Cotton, A., McFarlane, A. E., Rolfe, S. A., & Ton, J. (2017). Metabolite profiling of non-sterile rhizosphere soil. Plant Journal, 92(1), 147–162. https://doi.org/10.1111/tpj.13639Pineda-Castellanos, M., Rodríguez-Segura, Z., Villalobos, F., Hernández, L., Lina, L., & Nuñez-Valdez, M. (2015). Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens, 4(2), 210–228. https://doi.org/10.3390/pathogens4020210Pinheiro, V. B., & Ellar, D. J. (2007). Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 9(10), 2372–2380. https://doi.org/10.1111/j.1462-5822.2007.00966.xPiro, V. C., Faoro, H., Weiss, V. A., Steffens, M. B. R., Pedrosa, F. O., Souza, E. M., & Raittz, R. T. (2014). Open Access FGAP : an automated gap closing tool. 1–5.Pop, M. (2009). Genome assembly reborn: Recent computational challenges. Briefings in Bioinformatics, 10(4), 354–366. https://doi.org/10.1093/bib/bbp026Popova, A. A., Koksharova, O. A., Lipasova, V. A., Zaitseva, J. V., Katkova-Zhukotskaya, O. A., Eremina, S. I., … Khmel, I. A. (2014). Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans , and Drosophila melanogaster . BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/125704R. L. Berendsen. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci., 17(8), 478–486.Rangel, L. I., Henkels, M. D., Shaffer, B. T., Walker, F. L., Davis, E. W., Stockwell, V. O., … Loper, J. E. (2016). Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of pseudomonas fluorescens. PLoS ONE, 11(8), 1–22. https://doi.org/10.1371/journal.pone.0161120Roesch, L. F. W., Camargo, F. A. O., Bento, F. M., & Triplett, E. W. (2008). Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 302(1–2), 91–104. https://doi.org/10.1007/s11104-007-9458-3Rohini, S., Aswani, R., Kannan, M., Sylas, V. P., & Radhakrishnan, E. K. (2018). Culturable Endophytic Bacteria of Ginger Rhizome and their Remarkable Multi-trait Plant Growth-Promoting Features. Current Microbiology, 75(4), 505–511. https://doi.org/10.1007/s00284-017-1410-zRoongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 12(1), 141–172. https://doi.org/10.3390/ijms12010141Rosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas : Regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.Ruffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C., & Maurhofer, M. (2015). Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics, 16(1), 1–14. https://doi.org/10.1186/s12864-015-1763-2Ruffner, B., Péchy-tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2012). Oral insecticidal activity of plant-associated Pseudomonads Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(September 2012), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.xRuffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2013). Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(3), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.xS. A. Aleti Gajender. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. View Issue TOC, 16(8), 2389–2407.S. Pfeiffer. (2017). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol, 93.S. SHOKRALLA. (2012). Next-generation sequencing technologies for environmental DNA research. 21(8), 1794–1805.Sandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165Santa, J. D., Berdugo-Cely, J., Cely-Pardo, L., Soto-Suárez, M., Mosquera, T., & Galeano, C. H. M. (2018). QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199716Santoyo, G., del Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872. https://doi.org/10.1080/09583157.2012.694413Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl, 54(2), 273–286. https://doi.org/10.1007/s10526-008-9166-9Schnider-Keel, U., & Seematter, a. (2000). 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescensCHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of …, 182(5), 1215–1225.Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520Seo, S., Lee, S., Hong, Y., & Kim, Y. (2012). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. Temperata. Applied and Environmental Microbiology, 78(11), 3816–3823. https://doi.org/10.1128/AEM.00301-12Sharaby, A. M. F., & Fallatah, S. B. (2019). Protection of stored potatoes from infestation with the potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae) using plant powders. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0119-5Sheets, J. J., Hey, T. D., Fencil, K. J., Burton, S. L., Ni, W., Lang, A. E., … Aktories, K. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus: Structure and pore formation. Journal of Biological Chemistry, 286(26), 22742–22749. https://doi.org/10.1074/jbc.M111.227009Shi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48(4), 706–714. https://doi.org/10.1016/j.bjm.2017.03.002Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.xSilby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.xSingh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93–103. https://doi.org/10.1007/s12298-011-0062-xSingh, P., Kumar, V., & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology, 2014. https://doi.org/10.1155/2014/426483Singh, V., Ram, B., Prakash, J., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria ( KSR ): Isolation , identi fi cation , and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065Snyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., & Shukla, M. (2007). PATRIC : The VBI PathoSystems Resource Integration Center. 35(December 2006), 401–406. https://doi.org/10.1093/nar/gkl858Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2), 465–467. https://doi.org/10.1093/nar/gki458Stavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75(7), 2230–2235. https://doi.org/10.1128/AEM.02860-08Sugio, A., Dubreuil, G., Giron, D., & Simon, J. C. (2015). Plant-insect interactions under bacterial influence: Ecological implications and underlying mechanisms. Journal of Experimental Botany, 66(2), 467–478. https://doi.org/10.1093/jxb/eru435Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003T. S. Walker. (2003). Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem, 51(9), 2548–2554.Tatusova, T. A., & Madden, T. L. (1999). BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174(2), 247–250. https://doi.org/10.1016/S0378-1097(99)00149-4Taylor, P., Otsu, Y., Matsuda, Y., Mori, H., Ueki, H., & Nakajima, T. (2010). Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of Phytophagous ladybird beetles Epilachna vigintioctopunctata ( Coleoptera : Coccinellidae ). Biocontrol Science and Technology, 14(5, 427–439), 427–439. https://doi.org/10.1080/09583150410001683538Thakur, D., Kaur, M., & Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp . and Pseudomonas spp . and their effect on growth , rhizospheric population and phosphorous concentration of Aloe vera. 5(1), 187–192.Thokchom, E., Thakuria, D., Kalita, M. C., Sharma, C. K., & Talukdar, N. C. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79, 48–56. https://doi.org/10.1016/j.ejsobi.2017.02.003Toribio-Jiménez, J., Aradillas, J. C. V., Romero Ramírez, Y., Rodríguez Barrera, M. Á., González, J. D. C., Luna, J. G., & Noyola, J. L. A. (2014). Pseudomonas sp productoras de biosurfactantes. Tlamati, 5(2), 66–82.Ullah, I., Khan, A. L., Ali, L., Khan, A. R., Waqas, M., Hussain, J., … Shin, J. H. (2015). Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. Journal of Microbiology, 53(2), 127–133. https://doi.org/10.1007/s12275-015-4632-4Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., … Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4(September), 356. https://doi.org/10.3389/fpls.2013.00356Vallet-Gely, I., Lemaitre, B., & Boccard, F. (2008, April). Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, Vol. 6, pp. 302–313. https://doi.org/10.1038/nrmicro1870van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 21(3), 256–265. https://doi.org/10.1016/j.tplants.2016.01.008Van Der Voort, M., Meijer, H. J. G., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R., … Raaijmakers, J. M. (2015). Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 6(JUL), 1–14. https://doi.org/10.3389/fmicb.2015.00693Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24(6), 673–679. https://doi.org/10.1038/nbt1212Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11414–11419. https://doi.org/10.1073/pnas.0502240102Wang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., & Shen, F. (2016). Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data in Brief, 9, 345–348. https://doi.org/10.1016/j.dib.2016.05.025Wattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., … Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 42(D1), 581–591. https://doi.org/10.1093/nar/gkt1099Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., … Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017Xiong, Z., Niu, J., Liu, H., Xu, Z., Li, J., & Wu, Q. (2017). Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Bioorganic and Medicinal Chemistry Letters, 27(9), 2010–2013. https://doi.org/10.1016/j.bmcl.2017.03.011York, L. M., Carminati, A., Mooney, S. J., Ritz, K., & Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67(12), 3629–3643. https://doi.org/10.1093/jxb/erw108Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., … Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004ORIGINALTESIS_MAESTRÍA CIENCIAS BIOQUÍMICA_1010181650.pdfTESIS_MAESTRÍA CIENCIAS BIOQUÍMICA_1010181650.pdfapplication/pdf2880663https://repositorio.unal.edu.co/bitstream/unal/77948/1/TESIS_MAESTR%c3%8dA%20CIENCIAS%20BIOQU%c3%8dMICA_1010181650.pdf728c75f3c6fdf00cd1ce34764f2c7229MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/77948/2/license.txte2f63a891b6ceb28c3078128251851bfMD52THUMBNAILTESIS_MAESTRÍA CIENCIAS BIOQUÍMICA_1010181650.pdf.jpgTESIS_MAESTRÍA CIENCIAS BIOQUÍMICA_1010181650.pdf.jpgGenerated Thumbnailimage/jpeg4998https://repositorio.unal.edu.co/bitstream/unal/77948/3/TESIS_MAESTR%c3%8dA%20CIENCIAS%20BIOQU%c3%8dMICA_1010181650.pdf.jpg0c117d2d523c88233e35b2061254f6a0MD53unal/77948oai:repositorio.unal.edu.co:unal/779482023-07-19 23:04:08.244Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==