Rigidity of the stable norm on tori

Given a closed, orientable Riemannian manifold, we study the stable norm on the real homology groups. In particular, for $n\geq 2$ we prove that a Riemannian $n$-torus, which has the same stable norms as a flat $n$-torus on the first and $n-1$ homology groups, is in fact isometric to the flat torus.

Autores:
Osuna, Osvaldo
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39796
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39796
http://bdigital.unal.edu.co/29893/
Palabra clave:
Stable norm
$p$-norm
Poincaré duality
53C23
53D25
53C24
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Given a closed, orientable Riemannian manifold, we study the stable norm on the real homology groups. In particular, for $n\geq 2$ we prove that a Riemannian $n$-torus, which has the same stable norms as a flat $n$-torus on the first and $n-1$ homology groups, is in fact isometric to the flat torus.