Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques

The purpose of this research is to apply a new approach to make a fast determination of earthquake depth using seismic records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support vector machine regression (SVMR). The algorithm was trained with descriptors obtained f...

Full description

Autores:
Ochoa Gutierrez, Luis Hernán
Niño Vasquez, Luis Fernando
Vargas Jimenez, Carlos Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67536
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67536
http://bdigital.unal.edu.co/68565/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Earthquake Early Warning
Rapid Response
Earthquake Depth
Seismic Event
Bogota – Colombia
Support Vector Machine Regression (SVMR)
Seismology
Earthquakes.
Alerta Temprana de Terremoto
Respuesta Rápida
Profundidad de un Terremoto
Evento Sísmico
Bogotá - Colombia
Máquinas de Soporte Vectorial (MSV)
Sismología
Terremotos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_93104d7e0d8a627784636b1eace16e5f
oai_identifier_str oai:repositorio.unal.edu.co:unal/67536
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
title Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
spellingShingle Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
62 Ingeniería y operaciones afines / Engineering
Earthquake Early Warning
Rapid Response
Earthquake Depth
Seismic Event
Bogota – Colombia
Support Vector Machine Regression (SVMR)
Seismology
Earthquakes.
Alerta Temprana de Terremoto
Respuesta Rápida
Profundidad de un Terremoto
Evento Sísmico
Bogotá - Colombia
Máquinas de Soporte Vectorial (MSV)
Sismología
Terremotos
title_short Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
title_full Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
title_fullStr Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
title_full_unstemmed Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
title_sort Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques
dc.creator.fl_str_mv Ochoa Gutierrez, Luis Hernán
Niño Vasquez, Luis Fernando
Vargas Jimenez, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Ochoa Gutierrez, Luis Hernán
Niño Vasquez, Luis Fernando
Vargas Jimenez, Carlos Alberto
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Earthquake Early Warning
Rapid Response
Earthquake Depth
Seismic Event
Bogota – Colombia
Support Vector Machine Regression (SVMR)
Seismology
Earthquakes.
Alerta Temprana de Terremoto
Respuesta Rápida
Profundidad de un Terremoto
Evento Sísmico
Bogotá - Colombia
Máquinas de Soporte Vectorial (MSV)
Sismología
Terremotos
dc.subject.proposal.spa.fl_str_mv Earthquake Early Warning
Rapid Response
Earthquake Depth
Seismic Event
Bogota – Colombia
Support Vector Machine Regression (SVMR)
Seismology
Earthquakes.
Alerta Temprana de Terremoto
Respuesta Rápida
Profundidad de un Terremoto
Evento Sísmico
Bogotá - Colombia
Máquinas de Soporte Vectorial (MSV)
Sismología
Terremotos
description The purpose of this research is to apply a new approach to make a fast determination of earthquake depth using seismic records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support vector machine regression (SVMR). The algorithm was trained with descriptors obtained from time signals of 863 seismic events acquired between January 1998 and October 2008; only earthquakes with magnitude ≥ 2 were contemplated, filtering its signals to remove diverse kind of noises not related to earth tremors. During training stages of SVMR several combinations of kernel function exponent and complexity factor were considered for time signals of 5, 10 and 15 seconds along with earthquake magnitudes of 2.0, 2.5, 3.0 and 3.5 (Ml). The best classification of SVMR was obtained using time signals of 15 seconds and earthquake magnitudes of 3.5 with kernel exponent of 10 and complexity factor of 2, showing accuracy of 0.6 ± 16.5 kilometers, which is good enough to be used in an early warning system for the city of Bogota. It is recommended to provide this model with a previous phase of deep-shallow classification.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-05-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T04:29:14Z
dc.date.available.spa.fl_str_mv 2019-07-03T04:29:14Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/67536
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/68565/
identifier_str_mv ISSN: 2248-8723
url https://repositorio.unal.edu.co/handle/unal/67536
http://bdigital.unal.edu.co/68565/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/68407
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Ochoa Gutierrez, Luis Hernán and Niño Vasquez, Luis Fernando and Vargas Jimenez, Carlos Alberto (2018) Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques. Ingeniería e Investigación, 38 (2). pp. 91-103. ISSN 2248-8723
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/67536/1/68407-393153-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/67536/2/68407-393153-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 44ad89c71a4e18f252c1e6024bf1d4e6
71b97f0363696975db2aa2cbae1a8827
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089724764094464
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa Gutierrez, Luis Hernán294c1675-bfc7-4900-9f22-e05288f15bcd300Niño Vasquez, Luis Fernando6335a811-aa46-47b5-9e67-5f63e6e25b14300Vargas Jimenez, Carlos Albertoc5cb462f-7dab-464b-9234-270906198d9e3002019-07-03T04:29:14Z2019-07-03T04:29:14Z2018-05-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67536http://bdigital.unal.edu.co/68565/The purpose of this research is to apply a new approach to make a fast determination of earthquake depth using seismic records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support vector machine regression (SVMR). The algorithm was trained with descriptors obtained from time signals of 863 seismic events acquired between January 1998 and October 2008; only earthquakes with magnitude ≥ 2 were contemplated, filtering its signals to remove diverse kind of noises not related to earth tremors. During training stages of SVMR several combinations of kernel function exponent and complexity factor were considered for time signals of 5, 10 and 15 seconds along with earthquake magnitudes of 2.0, 2.5, 3.0 and 3.5 (Ml). The best classification of SVMR was obtained using time signals of 15 seconds and earthquake magnitudes of 3.5 with kernel exponent of 10 and complexity factor of 2, showing accuracy of 0.6 ± 16.5 kilometers, which is good enough to be used in an early warning system for the city of Bogota. It is recommended to provide this model with a previous phase of deep-shallow classification.El propósito de esta investigación es aplicar métodos de máquinas de vector de soporte (MVS) para determinar rápidamente las profundidades de terremotos utilizando registros sísmicos de la estación El Rosal, cerca de la ciudad de Bogotá – Colombia. El algoritmo fue entrenado con descriptores de señales de tiempo de 863 eventos sísmicos adquiridos entre enero de 1998 y octubre de 2008; solo se contemplaron terremotos de magnitudes ≥ 2 M_L, filtrando sus señales para remover diversos tipos de ruidos no relacionados con temblores terrestres. Durante las etapas de entrenamiento de la MVS varias combinaciones del exponente de la función kernel y factor de complejidad fueron considerados para señales de tiempo de 5, 10 y 15 segundos junto con terremotos de magnitudes 2.0, 2.5, 3.0 y 3.5 M_L. La mejor clasificación de la MVS fue obtenida utilizando señales de tiempo de 15 segundos y terremotos de magnitudes 3.5 M_L con exponente kernel de 10 y factor de complejidad de 2, mostrando precisión de 0,6 ± 16,5 kilómetros, lo cual es suficientemente bueno para ser utilizado en un sistema de alerta temprana para la ciudad de Bogotá. Se recomienda proveer este modelo con eventos sísmicos recientes, con la finalidad de mejorar su precisión.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/68407Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónOchoa Gutierrez, Luis Hernán and Niño Vasquez, Luis Fernando and Vargas Jimenez, Carlos Alberto (2018) Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques. Ingeniería e Investigación, 38 (2). pp. 91-103. ISSN 2248-872362 Ingeniería y operaciones afines / EngineeringEarthquake Early WarningRapid ResponseEarthquake DepthSeismic EventBogota – ColombiaSupport Vector Machine Regression (SVMR)SeismologyEarthquakes.Alerta Temprana de TerremotoRespuesta RápidaProfundidad de un TerremotoEvento SísmicoBogotá - ColombiaMáquinas de Soporte Vectorial (MSV)SismologíaTerremotosFast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning TechniquesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL68407-393153-1-PB.pdfapplication/pdf705769https://repositorio.unal.edu.co/bitstream/unal/67536/1/68407-393153-1-PB.pdf44ad89c71a4e18f252c1e6024bf1d4e6MD51THUMBNAIL68407-393153-1-PB.pdf.jpg68407-393153-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8335https://repositorio.unal.edu.co/bitstream/unal/67536/2/68407-393153-1-PB.pdf.jpg71b97f0363696975db2aa2cbae1a8827MD52unal/67536oai:repositorio.unal.edu.co:unal/675362023-05-30 23:03:02.535Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co