Global Polynomial Kernel Hazard Estimation
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically reduces...
- Autores:
-
Hiabu, Munir
Martínez-Miranda, María Dolores
Nielsen, Jens Perch
Spreeuw, Jaap
Tanggaard, Carsten
Villegas, Andrés M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66533
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66533
http://bdigital.unal.edu.co/67561/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Kernel Estimation
Hazard Function
Local Linear Estimation
Boundary Kernels
Polynomial Correction
Estimación kernel
Funciones de riesgo
Estimación local lineal
Kernels de frontera
Corrección polinomial.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically reduces bias with unchanged variance. A simulation study investigates the finite-sample properties of GPA. The method is tested on local constant and local linear estimators. From the simulation experiment we conclude that the global estimator improves the goodness-of-fit. An especially encouraging result is that the bias-correction works well for small samples, where traditional bias reduction methods have a tendency to fail. |
---|