Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI

ilustraciones, gráficas, tablas

Autores:
Múnera Garzón, Nicolás
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80526
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80526
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Procesamiento de Imagen Asistido por Computador
Trastorno Autístico
Transtorno Autístico
Inteligencia Artificial
Image Processing, Computer-Assisted
Artificial Intelligence
Radiómica
Cáncer de próstata
Dominio de la frecuencia
Trastorno del espectro autista
Resonancia magnética
Transformada Curvelet
Momentos de Zernike
Transformada de Fourier
Redes neuronales convolucionales
Radiomics
Prostate cancer
Autism spectrum disorder
Convolutional neural networks
Frequency domain
Curvelet transform
Fourier transform
Deep learning
Zernike moments
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_92a2b264bddc522385a7dfa330551961
oai_identifier_str oai:repositorio.unal.edu.co:unal/80526
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
dc.title.translated.spa.fl_str_mv Radiómica utilizando representaciones frecuenciales, casos de estudio: caracterización de trastorno del espectro autista y cáncer de próstata utilizando MRI
title Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
spellingShingle Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
620 - Ingeniería y operaciones afines
Procesamiento de Imagen Asistido por Computador
Trastorno Autístico
Transtorno Autístico
Inteligencia Artificial
Image Processing, Computer-Assisted
Artificial Intelligence
Radiómica
Cáncer de próstata
Dominio de la frecuencia
Trastorno del espectro autista
Resonancia magnética
Transformada Curvelet
Momentos de Zernike
Transformada de Fourier
Redes neuronales convolucionales
Radiomics
Prostate cancer
Autism spectrum disorder
Convolutional neural networks
Frequency domain
Curvelet transform
Fourier transform
Deep learning
Zernike moments
title_short Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
title_full Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
title_fullStr Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
title_full_unstemmed Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
title_sort Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI
dc.creator.fl_str_mv Múnera Garzón, Nicolás
dc.contributor.advisor.none.fl_str_mv Romero Castro, Edgar Eduardo
dc.contributor.author.none.fl_str_mv Múnera Garzón, Nicolás
dc.contributor.researchgroup.spa.fl_str_mv CIM@LAB
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Procesamiento de Imagen Asistido por Computador
Trastorno Autístico
Transtorno Autístico
Inteligencia Artificial
Image Processing, Computer-Assisted
Artificial Intelligence
Radiómica
Cáncer de próstata
Dominio de la frecuencia
Trastorno del espectro autista
Resonancia magnética
Transformada Curvelet
Momentos de Zernike
Transformada de Fourier
Redes neuronales convolucionales
Radiomics
Prostate cancer
Autism spectrum disorder
Convolutional neural networks
Frequency domain
Curvelet transform
Fourier transform
Deep learning
Zernike moments
dc.subject.decs.spa.fl_str_mv Procesamiento de Imagen Asistido por Computador
Trastorno Autístico
Transtorno Autístico
Inteligencia Artificial
dc.subject.decs.eng.fl_str_mv Image Processing, Computer-Assisted
Artificial Intelligence
dc.subject.proposal.spa.fl_str_mv Radiómica
Cáncer de próstata
Dominio de la frecuencia
Trastorno del espectro autista
Resonancia magnética
Transformada Curvelet
Momentos de Zernike
Transformada de Fourier
Redes neuronales convolucionales
dc.subject.proposal.eng.fl_str_mv Radiomics
Prostate cancer
Autism spectrum disorder
Convolutional neural networks
Frequency domain
Curvelet transform
Fourier transform
Deep learning
Zernike moments
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T21:57:18Z
dc.date.available.none.fl_str_mv 2021-10-12T21:57:18Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80526
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80526
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.eng.fl_str_mv 9287, S. (Ed.). (2015). Morphometry-based comparison of relevant brain regions for Alzheimer’s disease detection (Vol. 928706).
Afshar, P., Mohammadi, A., Plataniotis, K. N., Oikonomou, A., & Benali, H. (2019). From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 36(4), 132–160. https://doi.org/10.1109/MSP.2019.2900993
Aggarwal, S., & Angus, B. (2015). Misdiagnosis versus missed diagnosis: diagnosing autism spectrum disorder in adolescents. Australasian Psychiatry, 23(2), 120–123.
Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2018). Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. Journal of Digital Imaging, 31(6), 895–903. https://doi.org/10.1007/s10278-018-0093-8
Alexeeff, S. E., Yau, V., Qian, Y., Davignon, M., Lynch, F., Crawford, P., Davis, R., & Croen, L. A. (2017). Medical Conditions in the First Years of Life Associated with Future Diagnosis of ASD in Children. Journal of Autism and Developmental Disorders, 47(7), 2067–2079.
Alred, G. J., Brusaw, C. T., & Oliu, W. E. (2015 (eleventh edition)). Handbook of Technical Writing. St. Martin’s.
Alvarez-Jimenez, C., Barrera, C., Munera, N., Viswanath, S. E., & Romero, E. (2019). Differentiating Cancerous and Non-cancerous Prostate Tissue Using Multi-scale Texture Analysis on MRI. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2695–2698.
Alvarez-Jimenez, C., Múnera-Garzón, N., Zuluaga, M. A., Velasco, N. F., & Romero, E. (2020). Autism spectrum disorder characterization in children by capturing local-regional brain changes in MRI. Medical Physics, 47(1), 119–131.
Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.
American Psychiatric Association, & others. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Pub.
Andersson, J. L., Jenkinson, M., Smith, S., & others. (2007). Non-linear registration, aka Spatial Normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2, 1–21.
Armato, S. G., Huisman, H., Drukker, K., Hadjiiski, L., Kirby, J. S., Petrick, N., Redmond, G., Giger, M. L., Cha, K., Mamonov, A., & others. (2018). PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of Medical Imaging, 5(4), 044501.
Auzias, G., Viellard, M., Takerkart, S., Villeneuve, N., Poinso, F., Fonséca, D. D., Girard, N., & Deruelle, C. (2014). Atypical sulcal anatomy in young children with autism spectrum disorder. NeuroImage: Clinical, 4, 593–603. https://doi.org/10.1016/j.nicl.2014.03.008
Babaian, R. J., Toi, A., Kamoi, K., Troncoso, P., Sweet, J., Evans, R., Johnston, D., & Chen, M. (2000). A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. The Journal of Urology, 163(1), 152–157.
Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C. R., White, T., & others. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1.
Bastiaansen, J. A., Thioux, M., Nanetti, L., van der Gaag, C., Ketelaars, C., Minderaa, R., & Keysers, C. (2011). Age-Related Increase in Inferior Frontal Gyrus Activity and Social Functioning in Autism Spectrum Disorder. Biological Psychiatry, 69(9), 832–838. https://doi.org/10.1016/j.biopsych.2010.11.007
Bauman, M. L., & Kemper, T. L. (2005a). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2), 183–187. https://doi.org/https://doi.org/10.1016/j.ijdevneu.2004.09.006
Bauman, M. L., & Kemper, T. L. (2005b). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183–187. https://doi.org/10.1016/j.ijdevneu.2004.09.006
Beig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., & et al. (2019). Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology, 290(3), 783–792. https://doi.org/10.1148/radiol.2018180910
Bigler, E. D., Mortensen, S., Neeley, E. S., Ozonoff, S., Krasny, L., Johnson, M., Lu, J., Provencal, S. L., McMahon, W., & Lainhart, J. E. (2007). Superior Temporal Gyrus, Language Function, and Autism. Developmental Neuropsychology, 31(2), 217–238. https://doi.org/10.1080/87565640701190841
Blatt, G. J., & Fatemi, S. H. (2011). Alterations in GABAergic Biomarkers in the Autism Brain: Research Findings and Clinical Implications. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(10), 1646–1652. https://doi.org/10.1002/ar.21252
Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.
Bray, F., Ferlay, J., Soerjomataram, I., & others. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.
Cameron, A., Khalvati, F., Haider, M. A., & Wong, A. (2016). MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Transactions on Biomedical Engineering, 63(6), 1145–1156.
Candes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast Discrete Curvelet Transforms. Multiscale Modeling & Simulation, 5(3), 861–899. https://doi.org/10.1137/05064182x
Candes, E. J., & Donoho, D. L. (2000). Curvelets: A surprisingly effective nonadaptive representation for objects with edges [Techreport]. Stanford Univ Ca Dept of Statistics.
Casanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F., Elnakib, A., Soliman, A., Allison-McNutt, A., & Switala, A. E. (2013). Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathologica Communications, 1(1), 67. https://doi.org/10.1186/2051-5960-1-67
Castillo T, J. M., Arif, M., Niessen, W. J., Schoots, I. G., Veenland, J. F., & others. (2020). Automated classification of significant prostate cancer on MRI: A systematic review on the performance of machine learning applications. Cancers, 12(6), 1606.
Chaddad, A., Daniel, P., & Niazi, T. (2018). Radiomics evaluation of histological heterogeneity using multiscale textures derived from 3D wavelet transformation of multispectral images. Frontiers in Oncology, 8, 96.
Chaddad, A., Desrosiers, C., Hassan, L., & Tanougast, C. (2017). Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neuroscience, 18(1), 1–12.
Chaddad, A., Desrosiers, C., & Toews, M. (2017a). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1), 1–17.
Chaddad, A., Desrosiers, C., & Toews, M. (2017b). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1). https://doi.org/10.1038/srep45639
Chang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199
Chung, A. G., Khalvati, F., Shafiee, M. J., Haider, M. A., & Wong, A. (2015). Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. Ieee Access, 3, 2531–2541.
Corino, V. D., Montin, E., Messina, A., Casali, P. G., Gronchi, A., Marchianò, A., & Mainardi, L. T. (2018). Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. Journal of Magnetic Resonance Imaging, 47(3), 829–840.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Research, 1380, 138–145.
Courchesne, E., Karns, C., Davis, H., Ziccardi, R., Carper, R., Tigue, Z., Chisum, H., Moses, P., Pierce, K., Lord, C., & others. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245–254.
Cuocolo, R., Stanzione, A., Castaldo, A., De Lucia, D. R., & Imbriaco, M. (2021). Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset. European Journal of Radiology, 109647.
Cuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., La Rocca, R., Longo, N., Pace, L., & Imbriaco, M. (2019). Clinically significant prostate cancer detection on MRI: A radiomic shape features study. European Journal of Radiology, 116, 144–149. https://doi.org/https://doi.org/10.1016/j.ejrad.2019.05.006
Dager, S. R., Wang, L., Friedman, S., Shaw, D., Constantino, J., Artru, A., Dawson, G., & Csernansky, J. (2007). Shape mapping of the hippocampus in young children with autism spectrum disorder. American Journal of Neuroradiology, 28(4), 672–677.
Davis, P. J. (1959). Leonhard Euler’s integral: A historical profile of the Gamma function: In memoriam: Milton Abramowitz. The American Mathematical Monthly, 66(10), 849–869.
De Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., McGrath, L., Steele, S., Ziegler, D. A., Herbert, M. R., Frazier, J. A., & others. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757–766.
de la Salud, O. M. (2013). Medidas integrales y coordinadas para gestionar los trastornos del espectro autista. Organización Mundial de la Salud. http://apps.who.int/gb/ebwha/pdf_files/EB133/B133_4-sp.pdf
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., & others. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Despotović, I., Goossens, B., & Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Computational and Mathematical Methods in Medicine, 2015.
Di Martino, A., O’connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1), 1–15.
Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4, 170010.
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014a). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014b). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.
Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.
Dichter, G. S., Felder, J. N., & Bodfish, J. W. (2009). Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Social Cognitive and Affective Neuroscience, 4(3), 215–226.
Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11(2), 146–158. https://doi.org/10.1109/83.982822
Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., Maltezos, S., Murphy, C. M., Robertson, D., Williams, S. C., & others. (2010). Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of Neuroscience, 30(32), 10612–10623.
Eichler, K., Hempel, S., Wilby, J., & others. (2006). Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 175(5), 1605–1612.
Epstein, J. I. (2010). An update of the Gleason grading system. J Urol, 183(2), 433–440.
Epstein, J. I., Zelefsky, M. J., Sjoberg, D. D., & others. (2016). A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol, 69(3), 428–435.
Falkmer T., F. M., Anderson K., & C., H. (2013). Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur Child Adolesc Psychiatry, 22(10), 329–340.
Fang, Y., Wang, J., Narwaria, M., Le Callet, P., & Lin, W. (2014). Saliency detection for stereoscopic images. IEEE Transactions on Image Processing, 23(6), 2625–2636.
Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cellular and Molecular Neurobiology, 22(2), 171–175.
Fehr, D., Veeraraghavan, H., Wibmer, A., & others. (2015). Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences, 112(46), E6265–E6273.
Fei, B. (2017). Computer-aided diagnosis of prostate cancer with MRI. Current Opinion in Biomedical Engineering, 3, 20–27.
Fischl, B. (2004). Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex, 14(1), 11–22. https://doi.org/10.1093/cercor/bhg087
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797
for Cancer (UK, N. C. C., & others. (2008). Prostate cancer: diagnosis and treatment.
Fu, H., Cao, X., & Tu, Z. (2013). Cluster-based co-saliency detection. IEEE Transactions on Image Processing, 22(10), 3766–3778.
Garzón, N. M., Alvarez-Jimenez, C., Gonzalez, F., & Romero, E. (2020). Adaptive frequency saliency model based on convolutional neural networks: a case study for prostate cancer MRI. 15th International Symposium on Medical Information Processing and Analysis, 11330, 113300B.
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021(1), 77–85.
Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169
Ginn, N. C., Clionsky, L. N., Eyberg, S. M., Warner-Metzger, C., & Abner, J.-P. (2017). Child-directed interaction training for young children with autism spectrum disorders: Parent and child outcomes. Journal of Clinical Child & Adolescent Psychology, 46(1), 101–109.
Giuliano, A., Gori, I., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., Cosenza, A., Tosetti, M., Calderoni, S., & Retico, A. (2016). Machine learning techniques implemented ON structural MRI features at different spatial scales for preschoolers with autism spectrum disorders. Physica Medica, 32, 128. https://doi.org/10.1016/j.ejmp.2016.01.443
Gómez, F., & Romero, E. (2011). Rotation invariant texture characterization using a curvelet based descriptor. Pattern Recognition Letters, 32(16), 2178–2186. https://doi.org/10.1016/j.patrec.2011.09.029
Gonzalez, P. (2007). Neurobiología del autismo: estudio de neuropatología y neuroimagen. Actas Especialistas Psiquiatricas, 35(4), 271–276.
Goossens, M., Mittelbach, F., & Rahtz, S. (1997). The LaTeX Companion. Addison-Wesley.
Gull, S. F. (1989). Developments in maximum-entropy data analysis. In J. Skilling (Ed.), Maximum Entropy and Bayesian Methods (pp. 53–71). Kluwer Academic.
Guo, F., Wang, W., Shen, J., Shao, L., Yang, J., Tao, D., & Tang, Y. Y. (2017). Video saliency detection using object proposals. IEEE Transactions on Cybernetics, 48(11), 3159–3170.
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16(9), 1276–1282.
Haffner, J., Lemaitre, L., Puech, P., Haber, G.-P., Leroy, X., Jones, J. S., & Villers, A. (2011). Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU International, 108(8b), E171–E178.
Han, Y., Yang, Y., sheng Zhe-Shi, ding An-Zhang, feng Lin-Yan, chuan Yu-Hu, lan Lan-Feng, Ma, J., Wang, W., & bin Guang-Cui. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/https://doi.org/10.1016/j.ejrad.2020.109467
Hanson, K. M. (1993). Introduction to Bayesian image analysis. In M. \ H. Loew (Ed.), Medical Imaging:\ Image Processing (Vol. 1898, pp. 716–731).
Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. https://doi.org/10.1109/PROC.1979.11328
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., & others. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351.
Hectors, S. J., Wagner, M., Bane, O., Besa, C., Lewis, S., Remark, R., Chen, N., Fiel, M. I., Zhu, H., Gnjatic, S., & others. (2017). Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Scientific Reports, 7(1), 1–12.
Hedley, D., Brewer, N., Nevill, R., Uljarević, M., Butter, E., & Mulick, J. A. (2016). The relationship between clinicians’ confidence and accuracy, and the influence of child characteristics, in the screening of autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(7), 2340–2348.
Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., Lange, N. T., Chabris, C. F., Bakardjiev, A., Hodgson, J., & others. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52(5), 588–596.
Hirai, T., & Jones, E. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14(1), 1–34.
Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. ArXiv Preprint ArXiv:1404.1869.
Ismail, M. M. T., Keynton, R. S., Mostapha, M. M. M. O., ElTanboly, A. H., Casanova, M. F., Gimel’farb, G. L., & El-Baz, A. (2016). Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00211
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 11, 1254–1259.
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002a). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002b). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790.
Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., & Herskovits, E. H. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage, 50(2), 589–599. https://doi.org/10.1016/j.neuroimage.2009.12.047
Jiao Y, Z. L., Kangkang Chu. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage., 50(2)(10.1016), 589–599.
Jin, J., Zhang, L., Leng, E., & others. (2018). Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Statis Med, 37(22), 3214–3229. https://doi.org/10.1002/sim.7810
Karthik, R., Menaka, R., & Chellamuthu, C. (2015). A comprehensive framework for classification of brain tumour images using SVM and curvelet transform. International Journal of Biomedical Engineering and Technology, 17(2), 168–177.
Katuwal, G. J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273. https://doi.org/10.1109/EMBC.2015.7319338
Katuwal, Gajendra J., Baum, S. A., Cahill, N. D., & Michael, A. M. (2016). Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry. PLOS ONE, 11(4), e0153331. https://doi.org/10.1371/journal.pone.0153331
Katuwal, Gajendra J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015, August). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2015.7319338
Katuwal, Gajendra J, Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273.
Kemper, T. L., & Bauman, M. L. (1993). The contribution of neuropathologic studies to the understanding of autism. Neurologic Clinics, 11(1), 175–187.
Kim, H. L., Puymon, M. R., Qin, M., & others. (2013). NCCN Clinical practice guidelines in oncology™.
KNAUS, T. A., SILVER, A. M., LINDGREN, K. A., HADJIKHANI, N., & TAGER-FLUSBERG, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14(6), 967–979. https://doi.org/10.1017/s1355617708081216
Knopf, A. (2020). Autism prevalence increases from 1 in 60 to 1 in 54: CDC. The Brown University Child and Adolescent Behavior Letter, 36(6), 4–4.
Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., & Liu, J. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63–68.
Koshy, S. M., Anil Prahladan, D., EDiR, D. K. K., & others. (2017). Role of Multiparametric MRI Prostate as A Screening Tool for Cancer Detection. J Med Sci Clin Research, 5(2), 18162–18176. https://doi.org/10.18535/jmscr/v5i2.151
Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6(9), 691.
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J., Dekker, A., Fenstermacher, D., & others. (2012). Radiomics: the process and the challenges. Magnetic Resonance Imaging, 30(9), 1234–1248.
Labate, D., Lim, W.-Q., Kutyniok, G., & Weiss, G. (2005). Sparse multidimensional representation using shearlets. Wavelets XI, 5914, 59140U.
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5–6), 579–591. https://doi.org/10.1007/s00429-010-0251-3
Lamport, L. (1994). LaTeX: A Document Preparation System. Addison-Wesley.
Larson, D. R., Massopust, P., Nashed, Z., Nguyen, M. C., Papadakis, M., & Zayed, A. (Eds.). (2008). Frames and Operator Theory in Analysis and Signal Processing. American Mathematical Society. https://doi.org/10.1090/conm/451
Lauvin, M.-A., Martineau, J., Destrieux, C., Andersson, F., Bonnet-Brilhault, F., Gomot, M., El-Hage, W., & Cottier, J.-P. (2012). Functional morphological imaging of autism spectrum disorders: Current position and theories proposed . Diagnostic and Interventional Imaging , 93(3), 139–147. https://doi.org/http://dx.doi.org/10.1016/j.diii.2012.01.007
Lawrence, Y., Kemper, T., Bauman, M., & Blatt, G. (2010). Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121(2), 99–108.
Lees-Miller, J. D. (n.d.). Free and Interactive Online Introduction to LaTeX. Overleaf, 26 February 2015 https://www.overleaf.com/latex/learn/free-online-introduction-to-latex-part-1.
Lehaire, J., Flamary, R., Rouvière, O., & Lartizien, C. (2014). Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. Image Processing (ICIP), 2014 IEEE International Conference On, 2251–2255.
Lemaı̂tre, G., Martı́, R., Freixenet, J., & others. (2015). Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Computers in Biology and Medicine, 60, 8–31.
Lewis, S., Hectors, S., & Taouli, B. (2020). Radiomics of hepatocellular carcinoma. Abdominal Radiology, 1–13.
Li, Hailong, Parikh, N. A., & He, L. (2018). A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00491
Li, Hongliang, & Ngan, K. N. (2011). A co-saliency model of image pairs. IEEE Transactions on Image Processing, 20(12), 3365–3375.
Li, Jia, Duan, L.-Y., Chen, X., Huang, T., & Tian, Y. (2015). Finding the secret of image saliency in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(12), 2428–2440.
Li, Jian, Levine, M. D., An, X., Xu, X., & He, H. (2012). Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 996–1010.
Liang, Z.-P., & Lauterbur, P. C. (2000). Principles of magnetic resonance imaging: a signal processing perspective. SPIE Optical Engineering Press.
LICA. (2013). Comunicado Liga Colombiana de Autismo. http://www.ligautismo.org/. http://www.ligautismo.org/
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2014). Computer-Aided Detection of Prostate Cancer in MRI. IEEE Transactions on Medical Imaging, 33(5), 1083–1092. https://doi.org/10.1109/tmi.2014.2303821
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2017). SPIE-AAPM PROSTATEx Challenge Data. The Cancer Imaging Archive. https://doi.org/10.7937/K9TCIA.2017.MURS5CL
Liu, J., Yao, L., Zhang, W., Xiao, Y., Liu, L., Gao, X., Shah, C., Li, S., Tao, B., Gong, Q., & others. (2017). Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. European Child & Adolescent Psychiatry, 26(8), 933–945.
Liu, Maofu, He, Y., & Ye, B. (2007). Image zernike moments shape feature evaluation based on image reconstruction. Geo-Spatial Information Science, 10(3), 191–195.
Liu, Mingxia, Zhang, J., Adeli, E., & Shen, D. (2018). Landmark-based deep multi-instance learning for brain disease diagnosis. Medical Image Analysis, 43, 157–168. https://doi.org/10.1016/j.media.2017.10.005
Liu, Mingxia, Zhang, J., Nie, D., Yap, P.-T., & Shen, D. (2018). Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1476–1485. https://doi.org/10.1109/jbhi.2018.2791863
Liu, Z., Zou, W., Li, L., Shen, L., & Le Meur, O. (2013). Co-saliency detection based on hierarchical segmentation. IEEE Signal Processing Letters, 21(1), 88–92.
Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.
Lord, C., Rutter, M., DiLavore, P. C., & others. (1999). Autism Diagnostic Observation Schedule–Generic. Dissertation Abstracts International Section A: Humanities and Social Sciences.
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.
Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006a). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2), 155–171.
Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006b). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2–3), 155–171. https://doi.org/10.1016/j.schres.2005.11.020
Martino, A. D., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., & Milham, M. P. (2011). Aberrant Striatal Functional Connectivity in Children with Autism. Biological Psychiatry, 69(9), 847–856. https://doi.org/10.1016/j.biopsych.2010.10.029
Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., & Cook, G. (2020). Introduction to radiomics. Journal of Nuclear Medicine, 61(4), 488–495.
Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: Theory and rationale for its development: The international consortium for brain mapping (icbm). Neuroimage, 2(2), 89–101.
Meselhy Eltoukhy, M., Faye, I., & Belhaouari Samir, B. (2010). A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Computers in Biology and Medicine, 40(4), 384–391. https://doi.org/https://doi.org/10.1016/j.compbiomed.2010.02.002
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem. Phys., 21, 1087–1091.
Mittelbach, F., Goossens, M., Braams, J., & Carlisle, D. (2004). The LaTeX Companion (second). Addison-Wesley.
Morrison, J. (2015). DSM-5® Guı́a para el diagnóstico clı́nico. Editorial El Manual Moderno.
Múnera, N., Almeida, J., Álvarez, C., Velasco, N., & Romero, E. (2018). Autism Spectrum Disorders (ASD) Characterization in Children by Decomposing MRI Brain Regions with Zernike Moments. Sipaim–Miccai Biomedical Workshop, 42–53.
Murphy, G., Haider, M., Ghai, S., & Sreeharsha, B. (2013). The expanding role of MRI in prostate cancer. American Journal of Roentgenology, 201(6), 1229–1238.
Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229–244.
Nelson, A. W., Harvey, R. C., Parker, R. A., & others. (2013). Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PloS One, 8(2), e57480.
Niederhuber, J. E., Armitage, J. O., Doroshow, J. H., & others. (2015). Abeloff’s Clinical Oncology. Bangkok Med J, 10.
Niu, Y., Geng, Y., Li, X., & Liu, F. (2012). Leveraging stereopsis for saliency analysis. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 454–461.
Nketiah, G., Elschot, M., Kim, E., Teruel, J. R., Scheenen, T. W., Bathen, T. F., & Selnæs, K. M. (2017). T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. European Radiology, 27(7), 3050–3059.
Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., Kawashima, R., Fukuda, H., Itoh, M., & Yamadori, A. (2003). Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. NeuroImage, 19(4), 1369–1380. https://doi.org/10.1016/s1053-8119(03)00179-4
Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.
Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., Rogers, S. J., Rozga, A., Sangha, S., Sigman, M., Steinfeld, M. B., & Young, G. S. (2010). A Prospective Study of the Emergence of Early Behavioral Signs of Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49(3), 256-266.e2. https://doi.org/10.1016/j.jaac.2009.11.009
Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., & Rueckert, D. (2018). Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Medical Image Analysis, 48, 117–130. https://doi.org/10.1016/j.media.2018.06.001
Patro, B. N., Lunayach, M., & Namboodiri, V. P. (2021). Uncertainty Class Activation Map (U-CAM) Using Gradient Certainty Method. IEEE Transactions on Image Processing, 30, 1910–1924.
Perelman, L. C., Paradis, J., & Barrett, E. (1997). Mayfield Handbook of Technical and Scientific Writing. Mountain View.
Ploussard, G., Nicolaiew, N., Marchand, C., & others. (2013). Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU International, 111(6), 988–996.
Posada De la Paz, M., Ferrari Arroyo, M., Touriño Aguilera, E., & Boada Muñoz, L. (2005). Investigación epidemiológica en el autismo: una visión integradora. Rev. Neurol.(Ed. Impr.), s191-198.
Pratt, H., Williams, B., Coenen, F., & Zheng, Y. (2017). Fcnn: Fourier convolutional neural networks. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 786–798.
Puzzo, I., Cooper, N. R., Vetter, P., & Russo, R. (2010). EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism. Brain Research, 1342, 104–110. https://doi.org/10.1016/j.brainres.2010.04.060
Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016a). One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Frontiers in Neuroscience, 10, 306.
Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016b). One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00306
Riddle, K., Cascio, C. J., & Woodward, N. D. (2016). Brain structure in autism: a voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE). Brain Imaging and Behavior, 1–11.
Robinson, M. D., Toth, C. A., Lo, J. Y., & Farsiu, S. (2010). Efficient Fourier-wavelet super-resolution. IEEE Transactions on Image Processing, 19(10), 2669–2681.
Rodríguez-Barrionuevo, A., & Rodríguez-V., M. (2002). Diagnóstico clínico del autismo. Revista de Neurología, 34(1), 72–77.
Röthke, M., Blondin, D., Schlemmer, H., & Franiel, T. (2013). PI-RADS classification: structured reporting for MRI of the prostate. Rofo, 185(3), 253–261.
Rutter, M., Le Couteur, A., Lord, C., & others. (2003). Autism diagnostic interview-revised. Los Angeles, CA: Western Psychological Services, 29(2003), 30.
Saki, F., Tahmasbi, A., Soltanian-Zadeh, H., & Shokouhi, S. B. (2013). Fast opposite weight learning rules with application in breast cancer diagnosis. Computers in Biology and Medicine, 43(1), 32–41.
SALUD, M. D. S. Y. P. S. I. D. E. T. E. (2015). PROTOCOLO CLINICO PARA EL DIAGNOSTICO, TRATAMIENTO Y RUTA DE ATENCION INTEGRAL DE NINOS Y NINAS CON TRASTORNOS DEL ESPECTRO AUTISTA. Institucion de evaluacion tecnolOgica en salud.
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., Sakihama, M., & Toichi, M. (2017). Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00395
Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186. https://doi.org/https://doi.org/10.1016/j.brainres.2010.09.061
Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23(4), 613–624. https://doi.org/10.1016/s0278-5846(99)00020-2
Sen, B., Borle, N. C., Greiner, R., & Brown, M. R. (2018). A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PloS One, 13(4), e0194856.
Serefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, D. (2012). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 6(2). https://doi.org/10.5489/cuaj.11224
Serefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, M. D. (2013). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 7(5–6), E293.
Shen, M. D., Nordahl, C. W., Li, D. D., Lee, A., Angkustsiri, K., Emerson, R. W., Rogers, S. J., Ozonoff, S., & Amaral, D. G. (2018). Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. The Lancet Psychiatry, 5(11), 895–904.
Shmilovici, A. (2009). Support vector machines. In Data mining and knowledge discovery handbook (pp. 231–247). Springer.
Smith, S. M. (2002a). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.
Smith, S. M. (2002b). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 2951–2959.
Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 1007–1008. https://doi.org/10.1038/nn1728
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192. https://doi.org/10.1212/wnl.59.2.184
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826
Tahmasbi, A., Saki, F., & Shokouhi, S. B. (2011). Classification of benign and malignant masses based on Zernike moments. Computers in Biology and Medicine, 41(8), 726–735.
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. ArXiv Preprint ArXiv:2006.10739.
Vaccarino, F. M., & Smith, K. M. (2009). Increased Brain Size in Autism—What It Will Take to Solve a Mystery. Biological Psychiatry, 66(4), 313–315. https://doi.org/10.1016/j.biopsych.2009.06.013
Vila T., M. (2004). Rendimiento del estudio diagnóstico del autismo. La aportación de La neuroimagen, las pruebas metabólicas y los estudios genéticos. Revista de Neurología, 38(1), 15–20.
Viswanath, S. E., Bloch, N. B., Chappelow, J. C., & others. (2012). Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery. Journal of Magnetic Resonance Imaging, 36(1), 213–224.
Vos, P., Barentsz, J., Karssemeijer, N., & Huisman, H. (2012). Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Physics in Medicine & Biology, 57(6), 1527.
Wang, Haibo, Viswanath, S., & Madabhushi, A. (2017). Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12569-z
Wang, Haofan, Du, M., Yang, F., & Zhang, Z. (2019). Score-cam: Improved visual explanations via score-weighted class activation mapping. ArXiv Preprint ArXiv:1910.01279.
Wang, L., Wee, C. Y., Tang, X., Yap, P. T., & Shen, D. (2015). Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging and Behavior, 10(1), 33–40. https://doi.org/10.1007/s11682-015-9360-1
Wang, Y., Zheng, B., Gao, D., & Wang, J. (2018). Fully convolutional neural networks for prostate cancer detection using multi-parametric magnetic resonance images: an initial investigation. 2018 24th International Conference on Pattern Recognition (ICPR), 3814–3819. https://doi.org/10.1109/ICPR.2018.8545754
Weaver, J. B., Xu, Y., Healy Jr, D., & Cromwell, L. (1991). Filtering noise from images with wavelet transforms. Magnetic Resonance in Medicine, 21(2), 288–295.
Whitney, E. R., Kemper, T. L., Bauman, M. L., Rosene, D. L., & Blatt, G. J. (2008). Cerebellar Purkinje Cells are Reduced in a Subpopulation of Autistic Brains: A Stereological Experiment Using Calbindin-D28k. The Cerebellum, 7(3), 406–416. https://doi.org/10.1007/s12311-008-0043-y
Whitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: Evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254. https://doi.org/10.1002/jnr.22056
Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., Zheng, J., Goldman, D., Moskowitz, C., Fine, S. W., & others. (2015). Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. European Radiology, 25(10), 2840–2850.
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(1), S173–S186.
Yang, X., Liu, C., Wang, Z., & others. (2017). Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Medical Image Analysis, 42, 212–227.
Yasuhara, A. (2010). Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain and Development, 32(10), 791–798. https://doi.org/10.1016/j.braindev.2010.08.010
Ye, W., Yao, J., Xue, H., & Li, Y. (2020). Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling. ArXiv Preprint ArXiv:2005.14480.
Yip, S. S. F., & Aerts, H. J. W. L. (2016). Applications and limitations of radiomics. Physics in Medicine and Biology, 61(13), R150–R166. https://doi.org/10.1088/0031-9155/61/13/r150
Zhang, B., Chang, K., Ramkissoon, S., Tanguturi, S., Bi, W. L., Reardon, D. A., Ligon, K. L., Alexander, B. M., Wen, P. Y., & Huang, R. Y. (2017). Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology, 19(1), 109–117.
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424
Zhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 612–619.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80526/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80526/2/1030638756.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80526/3/1030638756.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
a5ec435d9443488210d007e8ead54be3
d68c7356e00b32f97898124d59a94696
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089998042923008
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, Edgar Eduardod49b2499bdf2c07e42f8b4dc9715ef18Múnera Garzón, Nicolása1ca4833b5b0929537159ffc79e9c538CIM@LAB2021-10-12T21:57:18Z2021-10-12T21:57:18Z2021https://repositorio.unal.edu.co/handle/unal/80526Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasRadiomics is a research field in which features from radiological images are extracted to provide non-invasive but reliable quantification with potential usage in personalized medicine. One of its applications is the extraction of sub-visual patterns, which are not commonly analyzed but have high correlation with pathology and require a specific representation to appear. As so, the state of the art has demonstrated the use of higher order transforms a.k.a the frequency domain to obtain such patterns. For this thesis work two use cases that benefited from the use of the frequency domain for radiomic analysis are presented, these are, characterization of prostate cancer and autism spectrum disorder (ASD) from prostate and brain MRI respectively. In both cases gold standard diagnosis protocols do not involve the use of MRI but could benefit from it, as in the case of Prostate Cancer an effective characterization could help to triage prior to a biopsy procedure with tasks like tumor segmentation, classification of normal vs cancerous tissue or automatic tumor staging. Additionally, for ASD an effective characterization from MRI could help to contribute in the study of different manifestations of the spectrum. As a result three contributions in this matter were done: The first one is an adaptive frequency saliency model (AFSM) that sparsely learns a bank of filters in the frequency domain and was used as a preprocessing strategy prior to a transfer learning scheme which classifies cancerous vs healthy tissue in prostate MRI, this method obtains an accuracy of 0.792 ± 0.016 which yields better performance than a baseline experiment without preprocessing that scores 0.776 ± 0.036. The second one is a preliminary study that uses Fourier transform's phase space to study the spatial support of prostate cancerous versus non cancerous tissue. This strategy consisted in a random selection of one subject per class, then, the dataset is preprocessed by replacing the phase of each image by the one of the random selected subject obtaining different preprocessed datasets, and, finally transfer learning models are obtained. Results from this study suggested how spatial support is important for model training. Additionally, a classification improvement was observed when a healthy subject was used for preprocessing obtaining sensitivity and specificity of 0.77 and 0.80 respectively, against a baseline that obtains 0.69 and 0.80 for both metrics. As a third contribution of this thesis, two characterization strategies to differentiate between ASD and control subjects are proposed, these are: Zernike moments and Curvelet Transform under a region-wise analysis. Anatomical brain regions were repersented by a 2D multi slice mapping to analyze first and second order relationships. Both characterization strategies were evaluated under a 10 fold cross validation scheme with children cohorts from the heterogeneous datasets ABIDE I and II. Top performance regions for area under the reciever-operating curve (AUC) were: Left supramarginal gyrus (0.77), Right occipital fusiform cortex (0.76), Right supramarginal gyrus - anterior division (0.75) and Left superior temporal gyrus anterior division (0.77). Additionally the Curvelet approach presented generalizability as a hold out experiment was able to yield an AUC of 0.69 for the Right parahippocampal gyrus - posterior division. This representation also showed no correlation with other state of the art techniques representing a contribution to ASD characterization with structural MRI.Radiómica es un área de investigación en la que se extraen patrones de imágenes radiológicas con el objetivo de lograr una cuantificación no invasiva y confiable con usos potenciales en medicina personalizada. Una aplicación común es la extracción de patrones sub-visuales; éstos, no son fáciles de apreciar o analizar en campo y requieren de un cambio de dominio para poderlos apreciar. El estado del arte en el área ha demostrado cómo el uso de transformaciones de alto orden también nombradas en la literatura como representaciones frecuenciales son aptas para obtener patrones sub-visuales, de manera que éste trabajo de tesis se enfocó en la aplicación de radiómica utilizando el dominio de la frecuencia para dos casos de estudio: caracterización de cancer de próstata y trastorno del espectro autista (TEA) a partir de imágenes de resonancia magnética estructural de próstata y cerebro. El protocolo estándar de diagnóstico para ambos casos no incluye la toma de resonancia magnética, sin embargo una caracterización adecuada de esta fuente de información no invasiva puede traer ventajas sustanciales como por ejemplo en el caso de cancer de próstata, servir de triage antes de un procedimiento de biopsia transrectal realizando tareas como segmentación de tumores, clasificación de tejido sano vs cáncer o detección de la agresividad del cáncer en tejido. Mientras que en el caso del TEA esta caracterización contribuye al estudio de diferentes manifestaciones del espectro autista. Como resultado tres contribuciones se realizaron: La primera es un método adaptativo de saliencia en el dominio de la frecuencia (AFSM) que de manera sparse aprende un banco de filtros en el dominio de la frecuencia y se utilizó como estrategia de preprocesamiento previo a la clasificación via transfer learning entre tejido sano y cancer. Este método obtiene un accuracy de 0.792 ± 0.016 superando una línea de base que obtiene 0.776 ± 0.036 . La segunda contribución es un estudio preliminar que utiliza el espacio de fase de la transformada de Fourier para para estudiar el soporte espacial de tejido canceroso y no canceroso en resonancia de próstata. Esta estrategia consiste en la selección de un sujeto aleatorio por clase, luego, la base de datos se preprocesa reemplazando la fase de todos los sujetos por la de cada sujeto escogido de manera aleatoria, obteniendo versiones modificadas de la base de datos que son sometidas a un esquema de clasificación utilizando transfer learning. Los resultados de este trabajo sugieren cómo el soporte espacial es importante en el entranamiento de cualquier modelo. Adicionalmente, se observó una mejora en clasificación cuando se utilizó tejido sano en el preprocesamiento, es decir, mejora de una línea de base con sensibilidad y especificidad de 0.69 y 0.80 respectivamente, a 0.77 0.80 en las imágenes preprocesadas. Como última contribución, se propusieron dos estrategias de caracterización para diferencias entre sujetos con TEA y control en imagen de resonancia, estas fueron: momentos de Zernike y transformada Curvelet. Ambas estrategias se realizaron bajo una representación 2D de cada región cerebral y fueron evaluadas utilizando validación cruzada 10 fold en dos cohortes infantiles de las bases de datos ABIDE I y II. Las regiones con mejor rendimiento en la métrica Área bajo la curva ROC (AUC) fueron: giro supramarginal izquierdo (0.77), corteza fusiforme occipital derecha (0.76), giro supramarginal derecho - división anterior (0.75) y giro temporal superior izquierdo - divisón anterior (0.77). Adicional a esto, el enfoque con la transformada Curvelet presentó generalización obteniendo un AUC de 0.69 para un experimento hold out en la región: giro parahipocampal derecho - división posterior. Además, esta repesentación no mostró ningún tipo de correlación con otras técnicas del estado del arte, representando una contribución al estado del arte en el área. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónRadiómicaxvii, 88 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesProcesamiento de Imagen Asistido por ComputadorTrastorno AutísticoTranstorno AutísticoInteligencia ArtificialImage Processing, Computer-AssistedArtificial IntelligenceRadiómicaCáncer de próstataDominio de la frecuenciaTrastorno del espectro autistaResonancia magnéticaTransformada CurveletMomentos de ZernikeTransformada de FourierRedes neuronales convolucionalesRadiomicsProstate cancerAutism spectrum disorderConvolutional neural networksFrequency domainCurvelet transformFourier transformDeep learningZernike momentsRadiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRIRadiómica utilizando representaciones frecuenciales, casos de estudio: caracterización de trastorno del espectro autista y cáncer de próstata utilizando MRITrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM9287, S. (Ed.). (2015). Morphometry-based comparison of relevant brain regions for Alzheimer’s disease detection (Vol. 928706).Afshar, P., Mohammadi, A., Plataniotis, K. N., Oikonomou, A., & Benali, H. (2019). From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 36(4), 132–160. https://doi.org/10.1109/MSP.2019.2900993Aggarwal, S., & Angus, B. (2015). Misdiagnosis versus missed diagnosis: diagnosing autism spectrum disorder in adolescents. Australasian Psychiatry, 23(2), 120–123.Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2018). Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. Journal of Digital Imaging, 31(6), 895–903. https://doi.org/10.1007/s10278-018-0093-8Alexeeff, S. E., Yau, V., Qian, Y., Davignon, M., Lynch, F., Crawford, P., Davis, R., & Croen, L. A. (2017). Medical Conditions in the First Years of Life Associated with Future Diagnosis of ASD in Children. Journal of Autism and Developmental Disorders, 47(7), 2067–2079.Alred, G. J., Brusaw, C. T., & Oliu, W. E. (2015 (eleventh edition)). Handbook of Technical Writing. St. Martin’s.Alvarez-Jimenez, C., Barrera, C., Munera, N., Viswanath, S. E., & Romero, E. (2019). Differentiating Cancerous and Non-cancerous Prostate Tissue Using Multi-scale Texture Analysis on MRI. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2695–2698.Alvarez-Jimenez, C., Múnera-Garzón, N., Zuluaga, M. A., Velasco, N. F., & Romero, E. (2020). Autism spectrum disorder characterization in children by capturing local-regional brain changes in MRI. Medical Physics, 47(1), 119–131.Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.American Psychiatric Association, & others. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Pub.Andersson, J. L., Jenkinson, M., Smith, S., & others. (2007). Non-linear registration, aka Spatial Normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2, 1–21.Armato, S. G., Huisman, H., Drukker, K., Hadjiiski, L., Kirby, J. S., Petrick, N., Redmond, G., Giger, M. L., Cha, K., Mamonov, A., & others. (2018). PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of Medical Imaging, 5(4), 044501.Auzias, G., Viellard, M., Takerkart, S., Villeneuve, N., Poinso, F., Fonséca, D. D., Girard, N., & Deruelle, C. (2014). Atypical sulcal anatomy in young children with autism spectrum disorder. NeuroImage: Clinical, 4, 593–603. https://doi.org/10.1016/j.nicl.2014.03.008Babaian, R. J., Toi, A., Kamoi, K., Troncoso, P., Sweet, J., Evans, R., Johnston, D., & Chen, M. (2000). A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. The Journal of Urology, 163(1), 152–157.Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C. R., White, T., & others. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1.Bastiaansen, J. A., Thioux, M., Nanetti, L., van der Gaag, C., Ketelaars, C., Minderaa, R., & Keysers, C. (2011). Age-Related Increase in Inferior Frontal Gyrus Activity and Social Functioning in Autism Spectrum Disorder. Biological Psychiatry, 69(9), 832–838. https://doi.org/10.1016/j.biopsych.2010.11.007Bauman, M. L., & Kemper, T. L. (2005a). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2), 183–187. https://doi.org/https://doi.org/10.1016/j.ijdevneu.2004.09.006Bauman, M. L., & Kemper, T. L. (2005b). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183–187. https://doi.org/10.1016/j.ijdevneu.2004.09.006Beig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., & et al. (2019). Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology, 290(3), 783–792. https://doi.org/10.1148/radiol.2018180910Bigler, E. D., Mortensen, S., Neeley, E. S., Ozonoff, S., Krasny, L., Johnson, M., Lu, J., Provencal, S. L., McMahon, W., & Lainhart, J. E. (2007). Superior Temporal Gyrus, Language Function, and Autism. Developmental Neuropsychology, 31(2), 217–238. https://doi.org/10.1080/87565640701190841Blatt, G. J., & Fatemi, S. H. (2011). Alterations in GABAergic Biomarkers in the Autism Brain: Research Findings and Clinical Implications. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(10), 1646–1652. https://doi.org/10.1002/ar.21252Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.Bray, F., Ferlay, J., Soerjomataram, I., & others. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.Cameron, A., Khalvati, F., Haider, M. A., & Wong, A. (2016). MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Transactions on Biomedical Engineering, 63(6), 1145–1156.Candes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast Discrete Curvelet Transforms. Multiscale Modeling & Simulation, 5(3), 861–899. https://doi.org/10.1137/05064182xCandes, E. J., & Donoho, D. L. (2000). Curvelets: A surprisingly effective nonadaptive representation for objects with edges [Techreport]. Stanford Univ Ca Dept of Statistics.Casanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F., Elnakib, A., Soliman, A., Allison-McNutt, A., & Switala, A. E. (2013). Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathologica Communications, 1(1), 67. https://doi.org/10.1186/2051-5960-1-67Castillo T, J. M., Arif, M., Niessen, W. J., Schoots, I. G., Veenland, J. F., & others. (2020). Automated classification of significant prostate cancer on MRI: A systematic review on the performance of machine learning applications. Cancers, 12(6), 1606.Chaddad, A., Daniel, P., & Niazi, T. (2018). Radiomics evaluation of histological heterogeneity using multiscale textures derived from 3D wavelet transformation of multispectral images. Frontiers in Oncology, 8, 96.Chaddad, A., Desrosiers, C., Hassan, L., & Tanougast, C. (2017). Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neuroscience, 18(1), 1–12.Chaddad, A., Desrosiers, C., & Toews, M. (2017a). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1), 1–17.Chaddad, A., Desrosiers, C., & Toews, M. (2017b). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1). https://doi.org/10.1038/srep45639Chang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199Chung, A. G., Khalvati, F., Shafiee, M. J., Haider, M. A., & Wong, A. (2015). Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. Ieee Access, 3, 2531–2541.Corino, V. D., Montin, E., Messina, A., Casali, P. G., Gronchi, A., Marchianò, A., & Mainardi, L. T. (2018). Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. Journal of Magnetic Resonance Imaging, 47(3), 829–840.Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Research, 1380, 138–145.Courchesne, E., Karns, C., Davis, H., Ziccardi, R., Carper, R., Tigue, Z., Chisum, H., Moses, P., Pierce, K., Lord, C., & others. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245–254.Cuocolo, R., Stanzione, A., Castaldo, A., De Lucia, D. R., & Imbriaco, M. (2021). Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset. European Journal of Radiology, 109647.Cuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., La Rocca, R., Longo, N., Pace, L., & Imbriaco, M. (2019). Clinically significant prostate cancer detection on MRI: A radiomic shape features study. European Journal of Radiology, 116, 144–149. https://doi.org/https://doi.org/10.1016/j.ejrad.2019.05.006Dager, S. R., Wang, L., Friedman, S., Shaw, D., Constantino, J., Artru, A., Dawson, G., & Csernansky, J. (2007). Shape mapping of the hippocampus in young children with autism spectrum disorder. American Journal of Neuroradiology, 28(4), 672–677.Davis, P. J. (1959). Leonhard Euler’s integral: A historical profile of the Gamma function: In memoriam: Milton Abramowitz. The American Mathematical Monthly, 66(10), 849–869.De Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., McGrath, L., Steele, S., Ziegler, D. A., Herbert, M. R., Frazier, J. A., & others. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757–766.de la Salud, O. M. (2013). Medidas integrales y coordinadas para gestionar los trastornos del espectro autista. Organización Mundial de la Salud. http://apps.who.int/gb/ebwha/pdf_files/EB133/B133_4-sp.pdfDesikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., & others. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.Despotović, I., Goossens, B., & Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Computational and Mathematical Methods in Medicine, 2015.Di Martino, A., O’connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1), 1–15.Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4, 170010.Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014a). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014b). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.Dichter, G. S., Felder, J. N., & Bodfish, J. W. (2009). Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Social Cognitive and Affective Neuroscience, 4(3), 215–226.Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11(2), 146–158. https://doi.org/10.1109/83.982822Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., Maltezos, S., Murphy, C. M., Robertson, D., Williams, S. C., & others. (2010). Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of Neuroscience, 30(32), 10612–10623.Eichler, K., Hempel, S., Wilby, J., & others. (2006). Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 175(5), 1605–1612.Epstein, J. I. (2010). An update of the Gleason grading system. J Urol, 183(2), 433–440.Epstein, J. I., Zelefsky, M. J., Sjoberg, D. D., & others. (2016). A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol, 69(3), 428–435.Falkmer T., F. M., Anderson K., & C., H. (2013). Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur Child Adolesc Psychiatry, 22(10), 329–340.Fang, Y., Wang, J., Narwaria, M., Le Callet, P., & Lin, W. (2014). Saliency detection for stereoscopic images. IEEE Transactions on Image Processing, 23(6), 2625–2636.Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cellular and Molecular Neurobiology, 22(2), 171–175.Fehr, D., Veeraraghavan, H., Wibmer, A., & others. (2015). Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences, 112(46), E6265–E6273.Fei, B. (2017). Computer-aided diagnosis of prostate cancer with MRI. Current Opinion in Biomedical Engineering, 3, 20–27.Fischl, B. (2004). Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex, 14(1), 11–22. https://doi.org/10.1093/cercor/bhg087Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797for Cancer (UK, N. C. C., & others. (2008). Prostate cancer: diagnosis and treatment.Fu, H., Cao, X., & Tu, Z. (2013). Cluster-based co-saliency detection. IEEE Transactions on Image Processing, 22(10), 3766–3778.Garzón, N. M., Alvarez-Jimenez, C., Gonzalez, F., & Romero, E. (2020). Adaptive frequency saliency model based on convolutional neural networks: a case study for prostate cancer MRI. 15th International Symposium on Medical Information Processing and Analysis, 11330, 113300B.Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021(1), 77–85.Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169Ginn, N. C., Clionsky, L. N., Eyberg, S. M., Warner-Metzger, C., & Abner, J.-P. (2017). Child-directed interaction training for young children with autism spectrum disorders: Parent and child outcomes. Journal of Clinical Child & Adolescent Psychology, 46(1), 101–109.Giuliano, A., Gori, I., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., Cosenza, A., Tosetti, M., Calderoni, S., & Retico, A. (2016). Machine learning techniques implemented ON structural MRI features at different spatial scales for preschoolers with autism spectrum disorders. Physica Medica, 32, 128. https://doi.org/10.1016/j.ejmp.2016.01.443Gómez, F., & Romero, E. (2011). Rotation invariant texture characterization using a curvelet based descriptor. Pattern Recognition Letters, 32(16), 2178–2186. https://doi.org/10.1016/j.patrec.2011.09.029Gonzalez, P. (2007). Neurobiología del autismo: estudio de neuropatología y neuroimagen. Actas Especialistas Psiquiatricas, 35(4), 271–276.Goossens, M., Mittelbach, F., & Rahtz, S. (1997). The LaTeX Companion. Addison-Wesley.Gull, S. F. (1989). Developments in maximum-entropy data analysis. In J. Skilling (Ed.), Maximum Entropy and Bayesian Methods (pp. 53–71). Kluwer Academic.Guo, F., Wang, W., Shen, J., Shao, L., Yang, J., Tao, D., & Tang, Y. Y. (2017). Video saliency detection using object proposals. IEEE Transactions on Cybernetics, 48(11), 3159–3170.Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16(9), 1276–1282.Haffner, J., Lemaitre, L., Puech, P., Haber, G.-P., Leroy, X., Jones, J. S., & Villers, A. (2011). Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU International, 108(8b), E171–E178.Han, Y., Yang, Y., sheng Zhe-Shi, ding An-Zhang, feng Lin-Yan, chuan Yu-Hu, lan Lan-Feng, Ma, J., Wang, W., & bin Guang-Cui. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/https://doi.org/10.1016/j.ejrad.2020.109467Hanson, K. M. (1993). Introduction to Bayesian image analysis. In M. \ H. Loew (Ed.), Medical Imaging:\ Image Processing (Vol. 1898, pp. 716–731).Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. https://doi.org/10.1109/PROC.1979.11328Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., & others. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351.Hectors, S. J., Wagner, M., Bane, O., Besa, C., Lewis, S., Remark, R., Chen, N., Fiel, M. I., Zhu, H., Gnjatic, S., & others. (2017). Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Scientific Reports, 7(1), 1–12.Hedley, D., Brewer, N., Nevill, R., Uljarević, M., Butter, E., & Mulick, J. A. (2016). The relationship between clinicians’ confidence and accuracy, and the influence of child characteristics, in the screening of autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(7), 2340–2348.Herbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., Lange, N. T., Chabris, C. F., Bakardjiev, A., Hodgson, J., & others. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52(5), 588–596.Hirai, T., & Jones, E. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14(1), 1–34.Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. ArXiv Preprint ArXiv:1404.1869.Ismail, M. M. T., Keynton, R. S., Mostapha, M. M. M. O., ElTanboly, A. H., Casanova, M. F., Gimel’farb, G. L., & El-Baz, A. (2016). Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00211Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 11, 1254–1259.Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002a). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002b). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790.Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., & Herskovits, E. H. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage, 50(2), 589–599. https://doi.org/10.1016/j.neuroimage.2009.12.047Jiao Y, Z. L., Kangkang Chu. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage., 50(2)(10.1016), 589–599.Jin, J., Zhang, L., Leng, E., & others. (2018). Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Statis Med, 37(22), 3214–3229. https://doi.org/10.1002/sim.7810Karthik, R., Menaka, R., & Chellamuthu, C. (2015). A comprehensive framework for classification of brain tumour images using SVM and curvelet transform. International Journal of Biomedical Engineering and Technology, 17(2), 168–177.Katuwal, G. J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273. https://doi.org/10.1109/EMBC.2015.7319338Katuwal, Gajendra J., Baum, S. A., Cahill, N. D., & Michael, A. M. (2016). Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry. PLOS ONE, 11(4), e0153331. https://doi.org/10.1371/journal.pone.0153331Katuwal, Gajendra J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015, August). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2015.7319338Katuwal, Gajendra J, Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273.Kemper, T. L., & Bauman, M. L. (1993). The contribution of neuropathologic studies to the understanding of autism. Neurologic Clinics, 11(1), 175–187.Kim, H. L., Puymon, M. R., Qin, M., & others. (2013). NCCN Clinical practice guidelines in oncology™.KNAUS, T. A., SILVER, A. M., LINDGREN, K. A., HADJIKHANI, N., & TAGER-FLUSBERG, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14(6), 967–979. https://doi.org/10.1017/s1355617708081216Knopf, A. (2020). Autism prevalence increases from 1 in 60 to 1 in 54: CDC. The Brown University Child and Adolescent Behavior Letter, 36(6), 4–4.Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., & Liu, J. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63–68.Koshy, S. M., Anil Prahladan, D., EDiR, D. K. K., & others. (2017). Role of Multiparametric MRI Prostate as A Screening Tool for Cancer Detection. J Med Sci Clin Research, 5(2), 18162–18176. https://doi.org/10.18535/jmscr/v5i2.151Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6(9), 691.Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J., Dekker, A., Fenstermacher, D., & others. (2012). Radiomics: the process and the challenges. Magnetic Resonance Imaging, 30(9), 1234–1248.Labate, D., Lim, W.-Q., Kutyniok, G., & Weiss, G. (2005). Sparse multidimensional representation using shearlets. Wavelets XI, 5914, 59140U.Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5–6), 579–591. https://doi.org/10.1007/s00429-010-0251-3Lamport, L. (1994). LaTeX: A Document Preparation System. Addison-Wesley.Larson, D. R., Massopust, P., Nashed, Z., Nguyen, M. C., Papadakis, M., & Zayed, A. (Eds.). (2008). Frames and Operator Theory in Analysis and Signal Processing. American Mathematical Society. https://doi.org/10.1090/conm/451Lauvin, M.-A., Martineau, J., Destrieux, C., Andersson, F., Bonnet-Brilhault, F., Gomot, M., El-Hage, W., & Cottier, J.-P. (2012). Functional morphological imaging of autism spectrum disorders: Current position and theories proposed . Diagnostic and Interventional Imaging , 93(3), 139–147. https://doi.org/http://dx.doi.org/10.1016/j.diii.2012.01.007Lawrence, Y., Kemper, T., Bauman, M., & Blatt, G. (2010). Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121(2), 99–108.Lees-Miller, J. D. (n.d.). Free and Interactive Online Introduction to LaTeX. Overleaf, 26 February 2015 https://www.overleaf.com/latex/learn/free-online-introduction-to-latex-part-1.Lehaire, J., Flamary, R., Rouvière, O., & Lartizien, C. (2014). Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. Image Processing (ICIP), 2014 IEEE International Conference On, 2251–2255.Lemaı̂tre, G., Martı́, R., Freixenet, J., & others. (2015). Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Computers in Biology and Medicine, 60, 8–31.Lewis, S., Hectors, S., & Taouli, B. (2020). Radiomics of hepatocellular carcinoma. Abdominal Radiology, 1–13.Li, Hailong, Parikh, N. A., & He, L. (2018). A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00491Li, Hongliang, & Ngan, K. N. (2011). A co-saliency model of image pairs. IEEE Transactions on Image Processing, 20(12), 3365–3375.Li, Jia, Duan, L.-Y., Chen, X., Huang, T., & Tian, Y. (2015). Finding the secret of image saliency in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(12), 2428–2440.Li, Jian, Levine, M. D., An, X., Xu, X., & He, H. (2012). Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 996–1010.Liang, Z.-P., & Lauterbur, P. C. (2000). Principles of magnetic resonance imaging: a signal processing perspective. SPIE Optical Engineering Press.LICA. (2013). Comunicado Liga Colombiana de Autismo. http://www.ligautismo.org/. http://www.ligautismo.org/Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2014). Computer-Aided Detection of Prostate Cancer in MRI. IEEE Transactions on Medical Imaging, 33(5), 1083–1092. https://doi.org/10.1109/tmi.2014.2303821Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2017). SPIE-AAPM PROSTATEx Challenge Data. The Cancer Imaging Archive. https://doi.org/10.7937/K9TCIA.2017.MURS5CLLiu, J., Yao, L., Zhang, W., Xiao, Y., Liu, L., Gao, X., Shah, C., Li, S., Tao, B., Gong, Q., & others. (2017). Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. European Child & Adolescent Psychiatry, 26(8), 933–945.Liu, Maofu, He, Y., & Ye, B. (2007). Image zernike moments shape feature evaluation based on image reconstruction. Geo-Spatial Information Science, 10(3), 191–195.Liu, Mingxia, Zhang, J., Adeli, E., & Shen, D. (2018). Landmark-based deep multi-instance learning for brain disease diagnosis. Medical Image Analysis, 43, 157–168. https://doi.org/10.1016/j.media.2017.10.005Liu, Mingxia, Zhang, J., Nie, D., Yap, P.-T., & Shen, D. (2018). Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1476–1485. https://doi.org/10.1109/jbhi.2018.2791863Liu, Z., Zou, W., Li, L., Shen, L., & Le Meur, O. (2013). Co-saliency detection based on hierarchical segmentation. IEEE Signal Processing Letters, 21(1), 88–92.Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.Lord, C., Rutter, M., DiLavore, P. C., & others. (1999). Autism Diagnostic Observation Schedule–Generic. Dissertation Abstracts International Section A: Humanities and Social Sciences.Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006a). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2), 155–171.Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006b). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2–3), 155–171. https://doi.org/10.1016/j.schres.2005.11.020Martino, A. D., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., & Milham, M. P. (2011). Aberrant Striatal Functional Connectivity in Children with Autism. Biological Psychiatry, 69(9), 847–856. https://doi.org/10.1016/j.biopsych.2010.10.029Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., & Cook, G. (2020). Introduction to radiomics. Journal of Nuclear Medicine, 61(4), 488–495.Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: Theory and rationale for its development: The international consortium for brain mapping (icbm). Neuroimage, 2(2), 89–101.Meselhy Eltoukhy, M., Faye, I., & Belhaouari Samir, B. (2010). A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Computers in Biology and Medicine, 40(4), 384–391. https://doi.org/https://doi.org/10.1016/j.compbiomed.2010.02.002Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem. Phys., 21, 1087–1091.Mittelbach, F., Goossens, M., Braams, J., & Carlisle, D. (2004). The LaTeX Companion (second). Addison-Wesley.Morrison, J. (2015). DSM-5® Guı́a para el diagnóstico clı́nico. Editorial El Manual Moderno.Múnera, N., Almeida, J., Álvarez, C., Velasco, N., & Romero, E. (2018). Autism Spectrum Disorders (ASD) Characterization in Children by Decomposing MRI Brain Regions with Zernike Moments. Sipaim–Miccai Biomedical Workshop, 42–53.Murphy, G., Haider, M., Ghai, S., & Sreeharsha, B. (2013). The expanding role of MRI in prostate cancer. American Journal of Roentgenology, 201(6), 1229–1238.Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229–244.Nelson, A. W., Harvey, R. C., Parker, R. A., & others. (2013). Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PloS One, 8(2), e57480.Niederhuber, J. E., Armitage, J. O., Doroshow, J. H., & others. (2015). Abeloff’s Clinical Oncology. Bangkok Med J, 10.Niu, Y., Geng, Y., Li, X., & Liu, F. (2012). Leveraging stereopsis for saliency analysis. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 454–461.Nketiah, G., Elschot, M., Kim, E., Teruel, J. R., Scheenen, T. W., Bathen, T. F., & Selnæs, K. M. (2017). T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. European Radiology, 27(7), 3050–3059.Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., Kawashima, R., Fukuda, H., Itoh, M., & Yamadori, A. (2003). Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. NeuroImage, 19(4), 1369–1380. https://doi.org/10.1016/s1053-8119(03)00179-4Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., Rogers, S. J., Rozga, A., Sangha, S., Sigman, M., Steinfeld, M. B., & Young, G. S. (2010). A Prospective Study of the Emergence of Early Behavioral Signs of Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49(3), 256-266.e2. https://doi.org/10.1016/j.jaac.2009.11.009Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., & Rueckert, D. (2018). Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Medical Image Analysis, 48, 117–130. https://doi.org/10.1016/j.media.2018.06.001Patro, B. N., Lunayach, M., & Namboodiri, V. P. (2021). Uncertainty Class Activation Map (U-CAM) Using Gradient Certainty Method. IEEE Transactions on Image Processing, 30, 1910–1924.Perelman, L. C., Paradis, J., & Barrett, E. (1997). Mayfield Handbook of Technical and Scientific Writing. Mountain View.Ploussard, G., Nicolaiew, N., Marchand, C., & others. (2013). Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU International, 111(6), 988–996.Posada De la Paz, M., Ferrari Arroyo, M., Touriño Aguilera, E., & Boada Muñoz, L. (2005). Investigación epidemiológica en el autismo: una visión integradora. Rev. Neurol.(Ed. Impr.), s191-198.Pratt, H., Williams, B., Coenen, F., & Zheng, Y. (2017). Fcnn: Fourier convolutional neural networks. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 786–798.Puzzo, I., Cooper, N. R., Vetter, P., & Russo, R. (2010). EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism. Brain Research, 1342, 104–110. https://doi.org/10.1016/j.brainres.2010.04.060Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016a). One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Frontiers in Neuroscience, 10, 306.Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016b). One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00306Riddle, K., Cascio, C. J., & Woodward, N. D. (2016). Brain structure in autism: a voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE). Brain Imaging and Behavior, 1–11.Robinson, M. D., Toth, C. A., Lo, J. Y., & Farsiu, S. (2010). Efficient Fourier-wavelet super-resolution. IEEE Transactions on Image Processing, 19(10), 2669–2681.Rodríguez-Barrionuevo, A., & Rodríguez-V., M. (2002). Diagnóstico clínico del autismo. Revista de Neurología, 34(1), 72–77.Röthke, M., Blondin, D., Schlemmer, H., & Franiel, T. (2013). PI-RADS classification: structured reporting for MRI of the prostate. Rofo, 185(3), 253–261.Rutter, M., Le Couteur, A., Lord, C., & others. (2003). Autism diagnostic interview-revised. Los Angeles, CA: Western Psychological Services, 29(2003), 30.Saki, F., Tahmasbi, A., Soltanian-Zadeh, H., & Shokouhi, S. B. (2013). Fast opposite weight learning rules with application in breast cancer diagnosis. Computers in Biology and Medicine, 43(1), 32–41.SALUD, M. D. S. Y. P. S. I. D. E. T. E. (2015). PROTOCOLO CLINICO PARA EL DIAGNOSTICO, TRATAMIENTO Y RUTA DE ATENCION INTEGRAL DE NINOS Y NINAS CON TRASTORNOS DEL ESPECTRO AUTISTA. Institucion de evaluacion tecnolOgica en salud.Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., Sakihama, M., & Toichi, M. (2017). Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00395Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186. https://doi.org/https://doi.org/10.1016/j.brainres.2010.09.061Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23(4), 613–624. https://doi.org/10.1016/s0278-5846(99)00020-2Sen, B., Borle, N. C., Greiner, R., & Brown, M. R. (2018). A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PloS One, 13(4), e0194856.Serefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, D. (2012). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 6(2). https://doi.org/10.5489/cuaj.11224Serefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, M. D. (2013). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 7(5–6), E293.Shen, M. D., Nordahl, C. W., Li, D. D., Lee, A., Angkustsiri, K., Emerson, R. W., Rogers, S. J., Ozonoff, S., & Amaral, D. G. (2018). Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. The Lancet Psychiatry, 5(11), 895–904.Shmilovici, A. (2009). Support vector machines. In Data mining and knowledge discovery handbook (pp. 231–247). Springer.Smith, S. M. (2002a). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.Smith, S. M. (2002b). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 2951–2959.Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 1007–1008. https://doi.org/10.1038/nn1728Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192. https://doi.org/10.1212/wnl.59.2.184Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826Tahmasbi, A., Saki, F., & Shokouhi, S. B. (2011). Classification of benign and malignant masses based on Zernike moments. Computers in Biology and Medicine, 41(8), 726–735.Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. ArXiv Preprint ArXiv:2006.10739.Vaccarino, F. M., & Smith, K. M. (2009). Increased Brain Size in Autism—What It Will Take to Solve a Mystery. Biological Psychiatry, 66(4), 313–315. https://doi.org/10.1016/j.biopsych.2009.06.013Vila T., M. (2004). Rendimiento del estudio diagnóstico del autismo. La aportación de La neuroimagen, las pruebas metabólicas y los estudios genéticos. Revista de Neurología, 38(1), 15–20.Viswanath, S. E., Bloch, N. B., Chappelow, J. C., & others. (2012). Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery. Journal of Magnetic Resonance Imaging, 36(1), 213–224.Vos, P., Barentsz, J., Karssemeijer, N., & Huisman, H. (2012). Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Physics in Medicine & Biology, 57(6), 1527.Wang, Haibo, Viswanath, S., & Madabhushi, A. (2017). Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12569-zWang, Haofan, Du, M., Yang, F., & Zhang, Z. (2019). Score-cam: Improved visual explanations via score-weighted class activation mapping. ArXiv Preprint ArXiv:1910.01279.Wang, L., Wee, C. Y., Tang, X., Yap, P. T., & Shen, D. (2015). Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging and Behavior, 10(1), 33–40. https://doi.org/10.1007/s11682-015-9360-1Wang, Y., Zheng, B., Gao, D., & Wang, J. (2018). Fully convolutional neural networks for prostate cancer detection using multi-parametric magnetic resonance images: an initial investigation. 2018 24th International Conference on Pattern Recognition (ICPR), 3814–3819. https://doi.org/10.1109/ICPR.2018.8545754Weaver, J. B., Xu, Y., Healy Jr, D., & Cromwell, L. (1991). Filtering noise from images with wavelet transforms. Magnetic Resonance in Medicine, 21(2), 288–295.Whitney, E. R., Kemper, T. L., Bauman, M. L., Rosene, D. L., & Blatt, G. J. (2008). Cerebellar Purkinje Cells are Reduced in a Subpopulation of Autistic Brains: A Stereological Experiment Using Calbindin-D28k. The Cerebellum, 7(3), 406–416. https://doi.org/10.1007/s12311-008-0043-yWhitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: Evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254. https://doi.org/10.1002/jnr.22056Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., Zheng, J., Goldman, D., Moskowitz, C., Fine, S. W., & others. (2015). Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. European Radiology, 25(10), 2840–2850.Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(1), S173–S186.Yang, X., Liu, C., Wang, Z., & others. (2017). Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Medical Image Analysis, 42, 212–227.Yasuhara, A. (2010). Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain and Development, 32(10), 791–798. https://doi.org/10.1016/j.braindev.2010.08.010Ye, W., Yao, J., Xue, H., & Li, Y. (2020). Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling. ArXiv Preprint ArXiv:2005.14480.Yip, S. S. F., & Aerts, H. J. W. L. (2016). Applications and limitations of radiomics. Physics in Medicine and Biology, 61(13), R150–R166. https://doi.org/10.1088/0031-9155/61/13/r150Zhang, B., Chang, K., Ramkissoon, S., Tanguturi, S., Bi, W. L., Reardon, D. A., Ligon, K. L., Alexander, B. M., Wen, P. Y., & Huang, R. Y. (2017). Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology, 19(1), 109–117.Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424Zhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 612–619.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80526/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1030638756.2021.pdf1030638756.2021.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf6715136https://repositorio.unal.edu.co/bitstream/unal/80526/2/1030638756.2021.pdfa5ec435d9443488210d007e8ead54be3MD52THUMBNAIL1030638756.2021.pdf.jpg1030638756.2021.pdf.jpgGenerated Thumbnailimage/jpeg5427https://repositorio.unal.edu.co/bitstream/unal/80526/3/1030638756.2021.pdf.jpgd68c7356e00b32f97898124d59a94696MD53unal/80526oai:repositorio.unal.edu.co:unal/805262024-07-31 23:13:29.582Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==