Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes

ilustraciones, fotografías, gráficas

Autores:
Ceballos Ordoñez, Leidy Johanna
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84343
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84343
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::571 - Fisiología y temas relacionados
Sistemas Neurosecretores
Glucocorticoides
Corticosterona
Neurosecretory Systems
Glucocorticoids
Corticosterone
Separación materna
Ambiente enriquecido
Corticosterona
Ratas Wistar
Sistema de recompensa
Maternal separation
Enriched environment
Corticosterone
Wistar rats
Reward system
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_91f512f6681281e04ffdae181e062d94
oai_identifier_str oai:repositorio.unal.edu.co:unal/84343
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
dc.title.translated.eng.fl_str_mv Effect of the enriched environment, after maternal separation, on microglial morphology and corticosterone concentration, in adolescent Wistar rats
title Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
spellingShingle Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
570 - Biología::571 - Fisiología y temas relacionados
Sistemas Neurosecretores
Glucocorticoides
Corticosterona
Neurosecretory Systems
Glucocorticoids
Corticosterone
Separación materna
Ambiente enriquecido
Corticosterona
Ratas Wistar
Sistema de recompensa
Maternal separation
Enriched environment
Corticosterone
Wistar rats
Reward system
title_short Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
title_full Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
title_fullStr Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
title_full_unstemmed Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
title_sort Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes
dc.creator.fl_str_mv Ceballos Ordoñez, Leidy Johanna
dc.contributor.advisor.spa.fl_str_mv Dueñas Gómez, Zulma Janeth
dc.contributor.author.spa.fl_str_mv Ceballos Ordoñez, Leidy Johanna
dc.contributor.researchgroup.spa.fl_str_mv Neurobiología y Comportamiento
dc.subject.ddc.spa.fl_str_mv 570 - Biología::571 - Fisiología y temas relacionados
topic 570 - Biología::571 - Fisiología y temas relacionados
Sistemas Neurosecretores
Glucocorticoides
Corticosterona
Neurosecretory Systems
Glucocorticoids
Corticosterone
Separación materna
Ambiente enriquecido
Corticosterona
Ratas Wistar
Sistema de recompensa
Maternal separation
Enriched environment
Corticosterone
Wistar rats
Reward system
dc.subject.decs.spa.fl_str_mv Sistemas Neurosecretores
Glucocorticoides
Corticosterona
dc.subject.decs.eng.fl_str_mv Neurosecretory Systems
Glucocorticoids
Corticosterone
dc.subject.proposal.spa.fl_str_mv Separación materna
Ambiente enriquecido
Corticosterona
Ratas Wistar
Sistema de recompensa
dc.subject.proposal.eng.fl_str_mv Maternal separation
Enriched environment
Corticosterone
Wistar rats
Reward system
description ilustraciones, fotografías, gráficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-28T01:27:03Z
dc.date.available.none.fl_str_mv 2023-07-28T01:27:03Z
dc.date.issued.none.fl_str_mv 2023-06-29
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84343
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84343
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv 1. Swain J., Lorberbaum J., Kose S. & Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. Child Psychol. Psychiatry. 2007; 48(3-4): 262-87.
2. Vivineto A., Suárez M., Rivarola M. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behavioural Brain Research. 2013(240): 110-8.
3. Koe A., Ashokan A., Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Translational Psychiatry. 2016(6), e729; doi:10.1038/tp.2015.217
4. Ministerio de salud y protección social. Encuesta nacional de salud mental. 2015. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/presentacion-encuesta-nacional-salud-mental-2015.pdf
5. Patiño J., Corredor L., & Dueñas Z. Impacto de la separación materna duranta la lactancia sobre el tamaño del cerebro y la inmunorreacción al receptor Gaba-A. Revista Investig.Salud Univ. Boyacá. 2013,1(1): 31-44.
6. Noble KG., Houston SM., Brito NH., Bartsch H., Kan E., Kuperman JM., et al. Family income, parental education and brain structure in children and adolescents. Nature Neuroscience. 2015; 18(5): 773–78.doi:10.1038/nn.3983
7. Departamento Administrativo Nacional de Estadística – DANE. Disponible en: https://www.dane.gov.co/
8. Ministerio de salud y protección social. Boletín de salud mental en niños, niñas y adolescentes, 2017.Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletin-4-salud-mental-nna-2017.pdf
9. Ball N., Mercado E., & Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Frontiers in Psychology. 2019; 10:466. doi: 10.3389/fpsyg.2019.00466
10. Calcia M., Bonsall D., Bloomfield P., Selvaraj S., Barichello T., & Howes O. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychofarmacology.2016(233):1637-50.
12. Novick A, Levandowski M, Laumann L., Philip N., Price L, & Tyrka, A. The effects of early life stress on reward processing. Journal of Psychiatric Research. 2018. 101, 80–103.doi:10.1016/j.jpsychires.2018.0
13. Barrera I., Dueñas Z. La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas. Biomédica, 2016; 36, 67-77.
14. Liu C, Hao S, Zhu M, Wang Y, Zhang T, Yang Z. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience. 2018 374:287–94. doi: 10.1016/j.neuroscience.2018.01.043
15. Liu S., & Zhao M. Neuroprotective effect of estrogen: Role of nonsynaptic NR2B-containing NMDA receptors. Brain Research Bulletin. 2013; 93: 27–31.doi:10.1016/j.brainresbull.2012.10.004
16. Liu Y., Wong T., Aarts M., Rooyakkers A., Liu L., Lai T., et al. NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo. Journal of Neuroscience. 2007; 27(11): 2846–57. doi:10.1523/jneurosci.0116-07.2007
17. Aparicio I., Muñoz P., Salido G., Peña F., & Tapia J. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal. 2016; 10(07): 1182–91. doi:10.1017/s1751731116000240
18. Chen W., Sun Y., Liu K., & Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration research. 2014; 9(12): 1210-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146291/
19. Dueñas Z; Caicedo-Mera JC & Torner L. Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 2017, 23, 1-8. DOI: 10.2174/1381612823666170224111641
20. Johnson F., & Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity. 2018; 69: 18–27. doi:10.1016/j.bbi.2017.06.008
21. Hanamsagar R. & Bilbo S. Environment matters: microglia function and dysfunction in a changing world. Current Opinion in Neurobiology. 2017; 47: 146–55.doi:10.1016/j.conb.2017.10.007
22. Delpech J., Wei L., Hao J., Yu X., Madore C., Butovsky O., & Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Inmmun. 2016 (57): 79-93.
23. Neal S., Kent M., Bardi M., Lambert K. Enriched Environment Exposure Enhances Social Interactions and Oxytocin Responsiveness in Male Long-Evans Rats. Frontiers in Behavioral Neuroscience. 2018 (12):1-10.
24. Novaes L., Barreto dos Santos N., Batalhote R., Malta M., Camarini R., Scavone, C. et al. Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. 2017 (113): 457-66.
25. Cao, W., Hu, Z., Xu, Y., Zhang, W., Huang, F., Qiao, X., Cui, Y., Wan, W., Wang, X., Liu, D., Dai, R., Li, D., Li, C. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology. 2017 (22), 234: 3321-34.
26. Dandi E., Kalamari A., Touloumi O., Lagoudaki R., Nousiopoulou E., Simeonidou, et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental. Neuroscience.2018(67):19-32.
27. Hofer M. Psychobiological Roots of Early Attachment. 2006. Current Directions in Psychological Science. 15(2), 84–88. doi:10.1111/j.0963-7214.2006.00412.x
28. Herzberg M., & Gunnar, M. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. 2019. NeuroImage, 116493.doi:10.1016/j.neuroimage.2019.1
29. Swain J, Lorberbaum J, Kose S, Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. 2007. J. Child Psychol. Psychiatry ;48(3-4):262-87
30. Strathearn L, Li J, Fonagy P, Montague PR. What’s in a smile? Maternal brain responses to infant facial cues. 2008. Pediatrics;122(1):40-51.
31. Bowlby J. Grief and mourning in infancy and early childhood. 1960. Psychoanal Study Child; 15:9-52
32. Feldman R. Oxytocin and social affiliation in humans. 2012. Hormones and Behavior; 61:380-91.
33. Winnicott D. Nuevas observaciones sobre la teoría de la relación parento-filial. 1961. Obras Completas.
34. Kristal M. The Biopsychology of Maternal Behavior in Nonhuman Mammals. 2009. ILAR Journal. 50(1): 51–63. doi:10.1093/ilar.50.1.51
35. Suomi S, van der Horst F, Van der Veer R. Rigorous experiments on monkey love: an account of Harry F. Harlow’s role in the history of attachment theory. 2008. Integr Psychol Behav Sci.;42:354–369. https://doi.org/10.1007/s12124-008-9072-9.
36. Harlow H. Love in Infant Monkeys. 1959. . Scientific American. 200(6), 68–74.doi:10.1038/scientificamerican0659-68
37. Levine S. Infantile Experience and Resistance to Physiological Stress. 1957. Science,. 126 (3270), 405–405.doi:10.1126/science.126.3270.
38. Spitz R. Hospitalism; an inquiry into the genesis of psychiatric conditions in early childhood. 1945. Psychoanal Study Child; 1:53-74.
40. Harlow H, Dodsworth R, Harlow M. Total social isolation in monkeys. 1965. Proc Natl Acad Sci USA 1965; 54:90-7
41. Mitchell, G, Raymond E, Ruppenthal G, Harlow H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychological Reports 1966;18;567-80.
42. Rodríguez D., & Dueñaz Z. efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta biol. Colomb. 2012 (17); 1:129.42.
43. Hebb D. The mammal and his environment. Annual American Psychiatry Association. 1955; 111: 826-31.
44. Hunt J. Psychological development: Early Experience. Annual reviews psychological. 1979; 30: 103-43.
45. Diamond, M. Response of the Brain to Enrichmen. Anais da Academia Brasileira de Ciencias, 2001 (2); 73.
46. Lopes D., Souza T., Andrade J., Silva M, Antunes H., LeSueur-Maluf L. et al. Environmental enrichment decreases avoidance responses in the elevated Tmaze and delta FosB immunoreactivity in anxiety-related brain regions. Behavioural Brain Research. 2018; 344: 65-72.
47. Yeshurun S., Corto A., Bredy T., Pang T., & Hannan A. Paternal environmental enrichment transgenerationally altersaffective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225-35.
48. Rosenzweig M., Bennett E. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 1966; 78: 57-65.
49. Rosenzweig M., Bennett E., Hebert M., Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153: 563-76.
50. Cutuli D., Berretta E., Caporali P., Sampedro-Piquero P., De Bartolo P., Laricchiuta, et al. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology, 2018: 1-15. https://doi.org/10.1016/j.neuropharm.2018.02.015
51. Petrosini, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws, 2009;61(2): 221-39
52. Simpson J. & Kelly J. The impact of environmental enrichment in laboratory rats Behavioural and neurochemical aspects. Behavioural Brain Research, 2011;222 (1), 246-64.
53. Rosenzweig M, Krech D, Bennett E, Diamond M. Effects of environmental complexity and training on brain chemistry and anatomy: A replication and extension. J Comp Physiol Psychol 1962; 55:429-37.
54. Walsh EG Sense of Visual Direction in Normal Subjects and Neurological Patients. Developmental Medicine & Child Neurology. 1969;11(3): 333-45. doi:10.1111/j.1469-8749.1969.tb01440.
55. Greenough W., Volkmar F. & Juraska J. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology. 1973; 41(2): 371- 78. doi:10.1016/0014-4886(73)90278-1
56. Floeter M. & Greenough W. Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys. Science. 1979; 206(4415): 227-29. doi:10.1126/science.113873
57. Volkmar F. & Greenough W. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science, 1972; 176(4042): 1445 -47.doi:10.1126/science.176.4042.1445
58. Pascual R. & Figueroa H. Effects of Preweaning Sensorimotor Stimulation on Behavioral and Neuronal Development in Motor and Visual Cortex of the Rat. Neonatology. 1996; 69(6): 399–404.doi:10.1159/000244337
59. Rampon C., Jiang C., Dong H., Tang Y., Lockhart D., Schultz P. et al. Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences. 2000; 97(23): 12880–84.doi:10.1073/pnas.97.23.12880
60. Comery T., Shah R. & Greenough W. Differential Rearing Alters Spine Density on Medium-Sized Spiny Neurons in the Rat Corpus Striatum: Evidence for Association of Morphological Plasticity with Early Response Gene Expression. Neurobiology of Learning and Memory. 1995; 63(3): 217–19.doi:10.1006/nlme.1995.1025
61. Ferchmin P., Eterovic V. & Caputto R. Studies of brain weight and RNA content after short periods of exposure to environmental complexity. Brain Research. 1970; 20(1): 49–57.doi:10.1016/0006-8993(70)90153-8
62. Rampon C, Tang Y, Goodhouse J, Shimizu E, Kyin M, Tsien J. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice.Nat Neurosciences. 2000; 3(3): 238-44.
63. Meaney M. Epigenetics and the Biological Definition of Gene × Environment Interactions. Child Development. 2010; 81(1): 41–79.doi:10.1111/j.1467-8624.2009.01381.
64. Yeshurun S., Short A., Bredy T., Pang T. & Hannan, A. J.Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225–35.doi:10.1016/j.psyneuen.2016.11.013
65. Kimura L., Mattaraia V. de M. & Picolo G. Distinct environmental enrichment protocols reduce anxiety but differentially modulate pain sensitivity in rats. Behavioural Brain Research. 2017. doi:10.1016/j.bbr.2017.11.012
66. Lehmann M. & Herkenham M. Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience. 2011; 31(16): 6159–73.doi:10.1523/jneurosci.0577-11.2011
67. Smith B., Lyons C., Correa F., Benoit S., Myers B., Solomon M., et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology. 2017; 77: 37–46. doi:10.1016/j.psyneuen.2016.11.040
68. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan, S, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science. 2010; 330(6005): 841–45. doi:10.1126/science.119463
69. Matcovitch-Natan O., Winter DR., Giladi A., Vargas Aguilar S., Spinrad A., Sarrazin S., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016; 353(6301), aad8670–aad8670.doi:10.1126/science.aad8670
70. Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science. 2005; 308(5726): 1314–18. doi:10.1126/science.1110647
71. Prinz, M., Jung, S., & Priller, J. (2019). Microglia Biology: One Century of Evolving Concepts. Cell, 179(2), 292–311.doi:10.1016/j.cell.2019.08.053
72. Grutzendler J., Yang G., Kim J., Zuo Y., Jung S. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 2005; 8(6): 752–58.doi:10.1038/nn1472
73. Loane D., Kumar A., Stoica BA., Cabatbat R. & Faden A. Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology & Experimental Neurology. 2014; 73(1): 14–29.doi:10.1097/nen.0000000000000021
74. Paolicelli R., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011; 333(6048): 1456–58.doi:10.1126/science.1202529
75. Parkhurst C., Yang G., Ninan I., Savas J., Yates J., Lafaille J., et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell.2013; 155(7): 1596–609.doi:10.1016/j.cell.2013.11.030
76. Lawson L., Perry V., Dri, P., & Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990; 39(1): 151–70. doi:10.1016/0306-4522(90)90229-w
77. Brown, G., & Neher, J. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 2014 15(4), 209–216.doi:10.1038/nrn3710
79. Beumer W., Gibney S., Drexhage RC., Pont-Lezica L., Doorduin J., Klein H., et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology. 2012; 92(5): 959 75. doi:10.1189/jlb.0212100
80. Nelson L., & Lenz K. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behavioural Brain Research. 2017; 316: 279-93.doi:10.1016/j.bbr.2016.09.006
81. Baudin A., Blot K., Verney C., Estevez L., Santamaria J., Gressens P., et al. Maternal deprivation induces deficits intemporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiology of Learning and Memory. 2012; 98(3): 207-14.doi:10.1016/j.nlm.2012.08.004
82. Francis D., Dioro J., Plotsky P., Meaney M. Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 2002; 22(18): 7840-43.
83. Do Prado C., Narahari T., Lee H., Murthy S., & Brenhouse H. Effects of Early Adolescent Environmental Enrichment on Cognitive Dysfunction, Prefrontal Cortex Development, and Inflammatory Cytokines After Early Life Stress. Developmental Psychobiologia. 2015; (4): 482-91.
84. Eklund M., & Arborelius L. Twice daily long maternal separations in Wistar rats decreases anxiety-like behaviour in females but does not affect males. Behavioural Brain Research. 2016; 172(2): 278–85.doi:10.1016/j.bbr.2006.05.015
85. Moreno L., Lamprea M. & Dueñaz Z. Diferencias en los comportamientos asociados con la ansiedad de ratas macho y hembra expuestas a un protocolo de estrés crónico por separación maternal temprana. Suma Psicológica. 2009; (16): 31-43.
86. Cerón J., & Troncoso J. Alteraciones de las células de la microglía del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica. 2016; 36: 619-
87. Paxinos G., & Watson C. The Rat Brain in stereotaxic coordinates. Cuarta edición, Academic Press, 1998.
88. George, E. D. (2010). Maternal Separation With Early Weaning: A Novel Mouse Model Of Early Life Neglect. BMC Neurosciences, 11:123.
89. Hofer MA¿. The role of nutrition in the physiological and behav-ioral effects of early maternal separation on infant rats. Psychosom Med. 1973 Jul-Aug;35(4):350-9
90. León Rodríguez D, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. 2013 PLoS ONE 8(6): e68010
91. Milligan M. & Yates. Experimental Techniques and Anaesthesia in the Rat and Mouse. (1994) Anzccart Facts Sheet, pp 1-4.
92. Noonan D. The Guinea Pig. (1994). Anzccart Facts Sheet, pp 1-8.
93. Bates R., Militello L., Barker E., Gonzalez H., and Schmeer K. Early childhood stress responses to psychosocial stressors: The state of the science. Dev Psychobiol. 2022 Nov; 64(7). doi: 10.1002/dev.22320
94. Condon E. Chronic Stress in Children and Adolescents: A Review of Biomarkers for Use in Pediatric Research. Biological Research For Nursing,. 2018. 109980041877921. doi:10.1177/1099800418779214
95. Pollak, S. (2015). Multilevel developmental approaches to understanding the effects of child maltreatment: Recent advances and future challenges. Development and Psychopathology, 27(4pt2), 1387–1397.doi:10.1017/s0954579415000826,
96. Rizvi, S., Pizzagalli, D., Sproule, B., & Kennedy, S. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience & Biobehavioral Reviews, 65, 21–35.doi:10.1016/j.neubiorev.2016.0
97. Baik, J. Stress and the dopaminergic reward system. Experimental & Molecular Medicine. 2020. 52(12), 1879–1890. doi:10.1038/s12276-020-00532-4
98. Bromberg-Martin, E., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68(5), 815–834.doi:10.1016/j.neuron.2010.11.0)
99. Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H., Visser-Vandewalle, V., & Temel, Y. Nucleus accumbens and impulsivity. Progress in Neurobiology. 2010. 92(4), 533–557.doi:10.1016/j.pneurobio.2010)
100. Kelley A. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews. 2004. 27(8), 765–776.doi:10.1016/j.neubiorev.2003.1
101. Kupchik Y, Brown R., Heinsbroek J., Lobo M, Schwartz D & Kalivas P. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience. 2015.18(9), 1230–1232. doi:10.1038/nn.4068
102. Monk C, McClure E, Nelson E, Zarahn E, Bilder RM, Leibenluft E, et al. Inmadurezadolescente en el compromiso cerebral relacionado con la atención con las expresiones faciales emocionales. Neuroimage. 2003. 20:420–428
103. LeDoux J. Redes emocionales y control motor: una visión temerosa. Prog Brain Res. 1996. 107:437-446.
104. Fobbs W & Mizumori S. Cost–Benefit Decision Circuitry. Molecular Basis of Memory. 2014. 233–261.doi:10.1016/b978-0-12-420170-5.00009-x
105. Paquola C., Bennett M, & Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neuroscience & Biobehavioral Reviews. 2016. 69, 299–312.doi:10.1016/j.neubiorev.2016.0
106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2
106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2
108. Evans G, Swain J., King A., Wang X. Javanbakht A., Ho S. et al. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. Journal of Neuroscience Research. 2015. 94(6), 535–543.doi:10.1002/jnr.23681.
109. McEwen B., Bowles N., Gray J., Hill M. Hunter R. Karatsoreos I & Nasca C. . Mechanisms of stress in the brain. Nature Neuroscience. 2015. 18(10), 1353–1363.doi:10.1038/nn.4086
110. Gee D, Gabard-Durnam L, Flannery J, Goff G, Humphreys K, Telzer E, Hare T, Bookheimer S, Tottenham N. A aparición temprana en el desarrollo de la conectividad amígdala humana-prefrontal después de la privación materna. Proc Nat Acad Sci. 2013;110:15638–15643.
111. Dutcher J., & Creswell J. The role of brain reward pathways in stress resilience and health. Neuroscience & Biobehavioral Reviews. 2018. 95, 559–567.doi:10.1016/j.neubiorev.2018.1;
112. Hanson J., Nacewicz B, Sutterer M., Cayo A., Schaefer, S., Rudolph K., et al. Behavioral Problems After Early Life Stress: Contributions of the Hippocampus and Amygdala. Biological Psychiatry. 2015. 77(4), 314–323.doi:10.1016/j.biopsych.2014.
113. Stratoulias V., Venero J, Tremblay M., Joseph B. Subtipos microgliales: Diversidad dentro de la comunidad microglial. EMBO J.2019;38:e101997. doi: 10.15252/embj.2019101997
114. McCormick C., & Hodges T. Stress, Glucocorticoids, and Brain Development in Rodent Models. Stress: Neuroendocrinology and Neurobiology. 2017. 197–206.doi:10.1016/b978-0-12-802175-0.00019-x
115. Chocyk A., Dudys D., Przyborowska A., Majcher I., Maćkowiak M., & Wędzony K. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011. 173, 1–18.doi:10.1016/j.neuroscience.20
116. Saavedra L., Fenton Navarro B., Torner L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation. 2017;24:242–255. doi: 10.1159/000485383.
117. Roque A., Ochoa-Zarzosa A., & Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity. 2017. 55, 39–48. doi:10.1016/j.bbi.2015.09.017
118. Bellavance M, Rivest S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 2014;5:136.
119. Chao W., A., & Bilbo, S. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain, Behavior, and Immunity. 2012. 26(3), 500–510.doi:10.1016/j.bbi.2012.01.003
120. Van Steenbergen H., de Bruijn E., van Duijvenvoorde A , & van Harmelen A L. How positive affect buffers stress responses. 2021. Current Opinion in Behavioral Sciences, 39, 153–160.doi:10.1016/j.cobeha.2021.03.0
121. Douma E, & de Kloet E. Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons. 2019. Neuroscience & Biobehavioral Reviews.doi:10.1016/j.neubiorev.2019.1
122. Cabib S., Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav. Rev. 2012;36:79–89. doi: 10.1016/j.neubiorev.2011.04.012
123. Ironside M., Kumar P., Kang M.-S., & Pizzagalli D. A. Brain mechanisms mediating effects of stress on reward sensitivity. 2018. Current Opinion in Behavioral Sciences, 22, 106–113.doi:10.1016/j.cobeha.2018.01.0
124. Nephew C., Huang W., Poirier L., Payne L., & King A. Altered neural connectivity in adult female rats exposed to early life social stress. 2017. Behavioural Brain Research, 316, 225–233.doi:10.1016/j.bbr.2016.08.051
125. Javanbakht A., Kim P., Swain J., Evans G., Phan K., & Liberzon, I.. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. 2016. Behavioral Sciences, 6(4), 28.doi:10.3390/bs6040028
126. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz, N., Wilf A. Pick, C. G. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. 2004. European Journal of Neuroscience, 20(5), 1341–1347.doi:10.1111/j.1460-9568.2004.03587.x
127. Boletín de prensa No 473 de 2021. 2021, Tomado de https:// www.minsalud.gov.co/Paginas/ Mas-de-18-mil-atenciones-en- salud-mental-en-opcion-4-de- Linea-192.aspx
128. Eslava J, Mejía de Eslava L, Ramos-Rodríguez M, Uscategui A, Eslava Mejía J, Natalia MF, et al. Emergencia Sanitaria y su Impacto Sobre Nuestros Niños [Internet]. Vol. Especiales. Bogotá D.C.; 2020. Available from: https://www.neurociencias.org. co/especiales/2020/emergencia- sanitaria-y-su-impacto-sobre- nuestros-ninos/
129. Paxinos G. & Watson C. The Rat Brain in Stereotaxic Coordinates. Hard Cover Edition, 2006, 6th Edition.
130. Montoya, R., Bos, A., Terburg, D., Rosenberger, A., & van Honk, J. Cortisol administration induces global down-regulation of the brain’s reward circuitry. 2014 Psychoneuroendocrinology, 47, 31–42.doi:10.1016/j.psyneuen.2014.
131. Levine S. Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. 2001. Physiology & Behavior. Volume 73, Issue 3, June 2001, Pages 255-260
132. Levine S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. 2002. Neurotoxicity Research, 4(5-6), 557–564.doi:10.1080/10298420290030569
133. Paolicelli R, et al. Microglia states and nomenclature: A field at its crossroads. 2022. Neuron. Nov 2; 110(21): 3458–3483. doi: 10.1016/j.neuron.2022.10.020
134. Kierdorf K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. 2013. Nature Neuroscience, 16(3), 273–280. doi:10.1038/nn.3318
135. Grabert K, et al. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. 2020. J. Immunol 205, 3154–3166. 10.4049/jimmunol.2000835.
136. Oyola M., & Handa R. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. 2017. Stress, 20(5), 476–494.doi:10.1080/10253890.2017.136
137. Gildawie K, Orso R., Peterzell S., Thompson V., & Brenhouse H. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. 2020. Neuroscience Letters, 135381.doi:10.1016/j.neulet.2020.135381
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 106 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Neurociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84343/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84343/2/1130619363.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84343/3/1130619363.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7fc4bcd69aaf78dc90cc9ce4d7def6d2
15b469bf22519b7eac78a1d94ec7e600
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089944438669312
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dueñas Gómez, Zulma Janethddf6ccc29fb0eb2a962c31ef7d7bb79d600Ceballos Ordoñez, Leidy Johanna9ac000cd4fc8735fe145e5a16b7dbf98Neurobiología y Comportamiento2023-07-28T01:27:03Z2023-07-28T01:27:03Z2023-06-29https://repositorio.unal.edu.co/handle/unal/84343Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficasIntroducción: En roedores como en humanos la separación materna durante la lactancia (SMDL) incide en el neurodesarrollo al ser un factor estresor, afectando el metabolismo, comportamiento y aprendizaje. Por otro lado, la exposición a un ambiente enriquecido (AE) activa el sistema nervioso central proporcionando estímulos físicos, sociales y sensoriales que conllevarían a una reducción del estrés y adaptación de respuestas neurobiológicas. Objetivo: Analizar el efecto de 15 días de ambiente enriquecido, posterior a la separación materna durante la lactancia, sobre la cantidad y morfología de la microglía y la concentración de corticosterona, en ratas Wistar machos y hembras durante la adolescencia temprana. Metodología: Se utilizaron 78 crías de ratas Wistar divididas en dos grupos, con y sin SMDL. El día 22 fueron separadas por sexo y tratamiento, y ubicadas en un AE o estándar por 15 días. Los animales se anestesiaron y perfundieron el día 37, se tomó muestra sérica para medir corticosterona y se extrajo el tejido cerebral. Resultados: el AE posterior a la SMDL no revirtió la disminución de los niveles de corticosterona de la SMDL y AE por sí solos, pero si disminuyó el número de microglías por debajo de los números de la SMDL sola, incidiendo en la adaptación de una morfología ramificada. Conclusión: La SMDL puede afectar el sistema neuroendocrino y neuroinflamatorio, mediados por la expresión de corticosterona y glucocorticoides. Aunque la exposición del AE posterior a la SMDL disminuyó el número de microglías y proporcionó una morfología ramificada, este paradigma funcionaría como un modelo de estrés que adapta el sistema garantizando un adecuado funcionamiento a estresores futuros. (Texto tomado de la fuente).Introduction: In rodents as in humans, maternal separation during breastfeeding (MSDB) as a stressor factor affects neurodevelopment, including alteration in metabolism, behavior and learning. On the other hand, exposure to an enriched environment (EA) activates the central nervous system by providing physical, social and sensory stimuli that would lead to a reduction in stress and adaptation of neurobiological responses. Objective: To analyze the effect of 15 days of enriched environment, after maternal separation during breastfeeding, on the quantity and morphology of microglia and the concentration of corticosterone, in male and female Wistar rats during early adolescence. Methodology: 78 offspring of Wistar rats were divided into two groups, with and without SMDL, were used. On day 22 they were separated by sex and treatment and placed in an EA or standard for 15 days. The animals were anesthetized and perfused on day 37, a serum sample was taken to measure corticosterone, and brain tissue was removed. Results: the EA after the MSDB did not the decrease in corticosterone levels of the baseline MSDB and EA, but it did decrease the number of microglia below the numbers of the MSDB, affecting the adaptation of a branched morphology. Conclusion: MSDB may affects the neuroendocrine and neuroinflammatory system, mediated by the expression of corticosterone and glucocorticoids. Although exposure of the EA after MSDB decreased the number of microglia and provided a branched morphology, this paradigm would work as a stress model that adapts the system, guaranteeing proper functioning to future stressors.MaestríaMagíster en NeurocienciasEfectos neurales y comportamentales del estrés106 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en NeurocienciasFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::571 - Fisiología y temas relacionadosSistemas NeurosecretoresGlucocorticoidesCorticosteronaNeurosecretory SystemsGlucocorticoidsCorticosteroneSeparación maternaAmbiente enriquecidoCorticosteronaRatas WistarSistema de recompensaMaternal separationEnriched environmentCorticosteroneWistar ratsReward systemEfecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentesEffect of the enriched environment, after maternal separation, on microglial morphology and corticosterone concentration, in adolescent Wistar ratsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBireme1. Swain J., Lorberbaum J., Kose S. & Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. Child Psychol. Psychiatry. 2007; 48(3-4): 262-87.2. Vivineto A., Suárez M., Rivarola M. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behavioural Brain Research. 2013(240): 110-8.3. Koe A., Ashokan A., Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Translational Psychiatry. 2016(6), e729; doi:10.1038/tp.2015.2174. Ministerio de salud y protección social. Encuesta nacional de salud mental. 2015. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/presentacion-encuesta-nacional-salud-mental-2015.pdf5. Patiño J., Corredor L., & Dueñas Z. Impacto de la separación materna duranta la lactancia sobre el tamaño del cerebro y la inmunorreacción al receptor Gaba-A. Revista Investig.Salud Univ. Boyacá. 2013,1(1): 31-44.6. Noble KG., Houston SM., Brito NH., Bartsch H., Kan E., Kuperman JM., et al. Family income, parental education and brain structure in children and adolescents. Nature Neuroscience. 2015; 18(5): 773–78.doi:10.1038/nn.39837. Departamento Administrativo Nacional de Estadística – DANE. Disponible en: https://www.dane.gov.co/8. Ministerio de salud y protección social. Boletín de salud mental en niños, niñas y adolescentes, 2017.Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletin-4-salud-mental-nna-2017.pdf9. Ball N., Mercado E., & Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Frontiers in Psychology. 2019; 10:466. doi: 10.3389/fpsyg.2019.0046610. Calcia M., Bonsall D., Bloomfield P., Selvaraj S., Barichello T., & Howes O. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychofarmacology.2016(233):1637-50.12. Novick A, Levandowski M, Laumann L., Philip N., Price L, & Tyrka, A. The effects of early life stress on reward processing. Journal of Psychiatric Research. 2018. 101, 80–103.doi:10.1016/j.jpsychires.2018.013. Barrera I., Dueñas Z. La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas. Biomédica, 2016; 36, 67-77.14. Liu C, Hao S, Zhu M, Wang Y, Zhang T, Yang Z. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience. 2018 374:287–94. doi: 10.1016/j.neuroscience.2018.01.04315. Liu S., & Zhao M. Neuroprotective effect of estrogen: Role of nonsynaptic NR2B-containing NMDA receptors. Brain Research Bulletin. 2013; 93: 27–31.doi:10.1016/j.brainresbull.2012.10.00416. Liu Y., Wong T., Aarts M., Rooyakkers A., Liu L., Lai T., et al. NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo. Journal of Neuroscience. 2007; 27(11): 2846–57. doi:10.1523/jneurosci.0116-07.200717. Aparicio I., Muñoz P., Salido G., Peña F., & Tapia J. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal. 2016; 10(07): 1182–91. doi:10.1017/s175173111600024018. Chen W., Sun Y., Liu K., & Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration research. 2014; 9(12): 1210-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146291/19. Dueñas Z; Caicedo-Mera JC & Torner L. Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 2017, 23, 1-8. DOI: 10.2174/138161282366617022411164120. Johnson F., & Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity. 2018; 69: 18–27. doi:10.1016/j.bbi.2017.06.00821. Hanamsagar R. & Bilbo S. Environment matters: microglia function and dysfunction in a changing world. Current Opinion in Neurobiology. 2017; 47: 146–55.doi:10.1016/j.conb.2017.10.00722. Delpech J., Wei L., Hao J., Yu X., Madore C., Butovsky O., & Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Inmmun. 2016 (57): 79-93.23. Neal S., Kent M., Bardi M., Lambert K. Enriched Environment Exposure Enhances Social Interactions and Oxytocin Responsiveness in Male Long-Evans Rats. Frontiers in Behavioral Neuroscience. 2018 (12):1-10.24. Novaes L., Barreto dos Santos N., Batalhote R., Malta M., Camarini R., Scavone, C. et al. Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. 2017 (113): 457-66.25. Cao, W., Hu, Z., Xu, Y., Zhang, W., Huang, F., Qiao, X., Cui, Y., Wan, W., Wang, X., Liu, D., Dai, R., Li, D., Li, C. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology. 2017 (22), 234: 3321-34.26. Dandi E., Kalamari A., Touloumi O., Lagoudaki R., Nousiopoulou E., Simeonidou, et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental. Neuroscience.2018(67):19-32.27. Hofer M. Psychobiological Roots of Early Attachment. 2006. Current Directions in Psychological Science. 15(2), 84–88. doi:10.1111/j.0963-7214.2006.00412.x28. Herzberg M., & Gunnar, M. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. 2019. NeuroImage, 116493.doi:10.1016/j.neuroimage.2019.129. Swain J, Lorberbaum J, Kose S, Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. 2007. J. Child Psychol. Psychiatry ;48(3-4):262-8730. Strathearn L, Li J, Fonagy P, Montague PR. What’s in a smile? Maternal brain responses to infant facial cues. 2008. Pediatrics;122(1):40-51.31. Bowlby J. Grief and mourning in infancy and early childhood. 1960. Psychoanal Study Child; 15:9-5232. Feldman R. Oxytocin and social affiliation in humans. 2012. Hormones and Behavior; 61:380-91.33. Winnicott D. Nuevas observaciones sobre la teoría de la relación parento-filial. 1961. Obras Completas.34. Kristal M. The Biopsychology of Maternal Behavior in Nonhuman Mammals. 2009. ILAR Journal. 50(1): 51–63. doi:10.1093/ilar.50.1.5135. Suomi S, van der Horst F, Van der Veer R. Rigorous experiments on monkey love: an account of Harry F. Harlow’s role in the history of attachment theory. 2008. Integr Psychol Behav Sci.;42:354–369. https://doi.org/10.1007/s12124-008-9072-9.36. Harlow H. Love in Infant Monkeys. 1959. . Scientific American. 200(6), 68–74.doi:10.1038/scientificamerican0659-6837. Levine S. Infantile Experience and Resistance to Physiological Stress. 1957. Science,. 126 (3270), 405–405.doi:10.1126/science.126.3270.38. Spitz R. Hospitalism; an inquiry into the genesis of psychiatric conditions in early childhood. 1945. Psychoanal Study Child; 1:53-74.40. Harlow H, Dodsworth R, Harlow M. Total social isolation in monkeys. 1965. Proc Natl Acad Sci USA 1965; 54:90-741. Mitchell, G, Raymond E, Ruppenthal G, Harlow H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychological Reports 1966;18;567-80.42. Rodríguez D., & Dueñaz Z. efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta biol. Colomb. 2012 (17); 1:129.42.43. Hebb D. The mammal and his environment. Annual American Psychiatry Association. 1955; 111: 826-31.44. Hunt J. Psychological development: Early Experience. Annual reviews psychological. 1979; 30: 103-43.45. Diamond, M. Response of the Brain to Enrichmen. Anais da Academia Brasileira de Ciencias, 2001 (2); 73.46. Lopes D., Souza T., Andrade J., Silva M, Antunes H., LeSueur-Maluf L. et al. Environmental enrichment decreases avoidance responses in the elevated Tmaze and delta FosB immunoreactivity in anxiety-related brain regions. Behavioural Brain Research. 2018; 344: 65-72.47. Yeshurun S., Corto A., Bredy T., Pang T., & Hannan A. Paternal environmental enrichment transgenerationally altersaffective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225-35.48. Rosenzweig M., Bennett E. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 1966; 78: 57-65.49. Rosenzweig M., Bennett E., Hebert M., Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153: 563-76.50. Cutuli D., Berretta E., Caporali P., Sampedro-Piquero P., De Bartolo P., Laricchiuta, et al. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology, 2018: 1-15. https://doi.org/10.1016/j.neuropharm.2018.02.01551. Petrosini, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws, 2009;61(2): 221-3952. Simpson J. & Kelly J. The impact of environmental enrichment in laboratory rats Behavioural and neurochemical aspects. Behavioural Brain Research, 2011;222 (1), 246-64.53. Rosenzweig M, Krech D, Bennett E, Diamond M. Effects of environmental complexity and training on brain chemistry and anatomy: A replication and extension. J Comp Physiol Psychol 1962; 55:429-37.54. Walsh EG Sense of Visual Direction in Normal Subjects and Neurological Patients. Developmental Medicine & Child Neurology. 1969;11(3): 333-45. doi:10.1111/j.1469-8749.1969.tb01440.55. Greenough W., Volkmar F. & Juraska J. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology. 1973; 41(2): 371- 78. doi:10.1016/0014-4886(73)90278-156. Floeter M. & Greenough W. Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys. Science. 1979; 206(4415): 227-29. doi:10.1126/science.11387357. Volkmar F. & Greenough W. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science, 1972; 176(4042): 1445 -47.doi:10.1126/science.176.4042.144558. Pascual R. & Figueroa H. Effects of Preweaning Sensorimotor Stimulation on Behavioral and Neuronal Development in Motor and Visual Cortex of the Rat. Neonatology. 1996; 69(6): 399–404.doi:10.1159/00024433759. Rampon C., Jiang C., Dong H., Tang Y., Lockhart D., Schultz P. et al. Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences. 2000; 97(23): 12880–84.doi:10.1073/pnas.97.23.1288060. Comery T., Shah R. & Greenough W. Differential Rearing Alters Spine Density on Medium-Sized Spiny Neurons in the Rat Corpus Striatum: Evidence for Association of Morphological Plasticity with Early Response Gene Expression. Neurobiology of Learning and Memory. 1995; 63(3): 217–19.doi:10.1006/nlme.1995.102561. Ferchmin P., Eterovic V. & Caputto R. Studies of brain weight and RNA content after short periods of exposure to environmental complexity. Brain Research. 1970; 20(1): 49–57.doi:10.1016/0006-8993(70)90153-862. Rampon C, Tang Y, Goodhouse J, Shimizu E, Kyin M, Tsien J. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice.Nat Neurosciences. 2000; 3(3): 238-44.63. Meaney M. Epigenetics and the Biological Definition of Gene × Environment Interactions. Child Development. 2010; 81(1): 41–79.doi:10.1111/j.1467-8624.2009.01381.64. Yeshurun S., Short A., Bredy T., Pang T. & Hannan, A. J.Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225–35.doi:10.1016/j.psyneuen.2016.11.01365. Kimura L., Mattaraia V. de M. & Picolo G. Distinct environmental enrichment protocols reduce anxiety but differentially modulate pain sensitivity in rats. Behavioural Brain Research. 2017. doi:10.1016/j.bbr.2017.11.01266. Lehmann M. & Herkenham M. Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience. 2011; 31(16): 6159–73.doi:10.1523/jneurosci.0577-11.201167. Smith B., Lyons C., Correa F., Benoit S., Myers B., Solomon M., et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology. 2017; 77: 37–46. doi:10.1016/j.psyneuen.2016.11.04068. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan, S, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science. 2010; 330(6005): 841–45. doi:10.1126/science.11946369. Matcovitch-Natan O., Winter DR., Giladi A., Vargas Aguilar S., Spinrad A., Sarrazin S., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016; 353(6301), aad8670–aad8670.doi:10.1126/science.aad867070. Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science. 2005; 308(5726): 1314–18. doi:10.1126/science.111064771. Prinz, M., Jung, S., & Priller, J. (2019). Microglia Biology: One Century of Evolving Concepts. Cell, 179(2), 292–311.doi:10.1016/j.cell.2019.08.05372. Grutzendler J., Yang G., Kim J., Zuo Y., Jung S. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 2005; 8(6): 752–58.doi:10.1038/nn147273. Loane D., Kumar A., Stoica BA., Cabatbat R. & Faden A. Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology & Experimental Neurology. 2014; 73(1): 14–29.doi:10.1097/nen.000000000000002174. Paolicelli R., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011; 333(6048): 1456–58.doi:10.1126/science.120252975. Parkhurst C., Yang G., Ninan I., Savas J., Yates J., Lafaille J., et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell.2013; 155(7): 1596–609.doi:10.1016/j.cell.2013.11.03076. Lawson L., Perry V., Dri, P., & Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990; 39(1): 151–70. doi:10.1016/0306-4522(90)90229-w77. Brown, G., & Neher, J. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 2014 15(4), 209–216.doi:10.1038/nrn371079. Beumer W., Gibney S., Drexhage RC., Pont-Lezica L., Doorduin J., Klein H., et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology. 2012; 92(5): 959 75. doi:10.1189/jlb.021210080. Nelson L., & Lenz K. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behavioural Brain Research. 2017; 316: 279-93.doi:10.1016/j.bbr.2016.09.00681. Baudin A., Blot K., Verney C., Estevez L., Santamaria J., Gressens P., et al. Maternal deprivation induces deficits intemporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiology of Learning and Memory. 2012; 98(3): 207-14.doi:10.1016/j.nlm.2012.08.00482. Francis D., Dioro J., Plotsky P., Meaney M. Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 2002; 22(18): 7840-43.83. Do Prado C., Narahari T., Lee H., Murthy S., & Brenhouse H. Effects of Early Adolescent Environmental Enrichment on Cognitive Dysfunction, Prefrontal Cortex Development, and Inflammatory Cytokines After Early Life Stress. Developmental Psychobiologia. 2015; (4): 482-91.84. Eklund M., & Arborelius L. Twice daily long maternal separations in Wistar rats decreases anxiety-like behaviour in females but does not affect males. Behavioural Brain Research. 2016; 172(2): 278–85.doi:10.1016/j.bbr.2006.05.01585. Moreno L., Lamprea M. & Dueñaz Z. Diferencias en los comportamientos asociados con la ansiedad de ratas macho y hembra expuestas a un protocolo de estrés crónico por separación maternal temprana. Suma Psicológica. 2009; (16): 31-43.86. Cerón J., & Troncoso J. Alteraciones de las células de la microglía del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica. 2016; 36: 619-87. Paxinos G., & Watson C. The Rat Brain in stereotaxic coordinates. Cuarta edición, Academic Press, 1998.88. George, E. D. (2010). Maternal Separation With Early Weaning: A Novel Mouse Model Of Early Life Neglect. BMC Neurosciences, 11:123.89. Hofer MA¿. The role of nutrition in the physiological and behav-ioral effects of early maternal separation on infant rats. Psychosom Med. 1973 Jul-Aug;35(4):350-990. León Rodríguez D, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. 2013 PLoS ONE 8(6): e6801091. Milligan M. & Yates. Experimental Techniques and Anaesthesia in the Rat and Mouse. (1994) Anzccart Facts Sheet, pp 1-4.92. Noonan D. The Guinea Pig. (1994). Anzccart Facts Sheet, pp 1-8.93. Bates R., Militello L., Barker E., Gonzalez H., and Schmeer K. Early childhood stress responses to psychosocial stressors: The state of the science. Dev Psychobiol. 2022 Nov; 64(7). doi: 10.1002/dev.2232094. Condon E. Chronic Stress in Children and Adolescents: A Review of Biomarkers for Use in Pediatric Research. Biological Research For Nursing,. 2018. 109980041877921. doi:10.1177/109980041877921495. Pollak, S. (2015). Multilevel developmental approaches to understanding the effects of child maltreatment: Recent advances and future challenges. Development and Psychopathology, 27(4pt2), 1387–1397.doi:10.1017/s0954579415000826,96. Rizvi, S., Pizzagalli, D., Sproule, B., & Kennedy, S. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience & Biobehavioral Reviews, 65, 21–35.doi:10.1016/j.neubiorev.2016.097. Baik, J. Stress and the dopaminergic reward system. Experimental & Molecular Medicine. 2020. 52(12), 1879–1890. doi:10.1038/s12276-020-00532-498. Bromberg-Martin, E., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68(5), 815–834.doi:10.1016/j.neuron.2010.11.0)99. Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H., Visser-Vandewalle, V., & Temel, Y. Nucleus accumbens and impulsivity. Progress in Neurobiology. 2010. 92(4), 533–557.doi:10.1016/j.pneurobio.2010)100. Kelley A. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews. 2004. 27(8), 765–776.doi:10.1016/j.neubiorev.2003.1101. Kupchik Y, Brown R., Heinsbroek J., Lobo M, Schwartz D & Kalivas P. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience. 2015.18(9), 1230–1232. doi:10.1038/nn.4068102. Monk C, McClure E, Nelson E, Zarahn E, Bilder RM, Leibenluft E, et al. Inmadurezadolescente en el compromiso cerebral relacionado con la atención con las expresiones faciales emocionales. Neuroimage. 2003. 20:420–428103. LeDoux J. Redes emocionales y control motor: una visión temerosa. Prog Brain Res. 1996. 107:437-446.104. Fobbs W & Mizumori S. Cost–Benefit Decision Circuitry. Molecular Basis of Memory. 2014. 233–261.doi:10.1016/b978-0-12-420170-5.00009-x105. Paquola C., Bennett M, & Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neuroscience & Biobehavioral Reviews. 2016. 69, 299–312.doi:10.1016/j.neubiorev.2016.0106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2108. Evans G, Swain J., King A., Wang X. Javanbakht A., Ho S. et al. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. Journal of Neuroscience Research. 2015. 94(6), 535–543.doi:10.1002/jnr.23681.109. McEwen B., Bowles N., Gray J., Hill M. Hunter R. Karatsoreos I & Nasca C. . Mechanisms of stress in the brain. Nature Neuroscience. 2015. 18(10), 1353–1363.doi:10.1038/nn.4086110. Gee D, Gabard-Durnam L, Flannery J, Goff G, Humphreys K, Telzer E, Hare T, Bookheimer S, Tottenham N. A aparición temprana en el desarrollo de la conectividad amígdala humana-prefrontal después de la privación materna. Proc Nat Acad Sci. 2013;110:15638–15643.111. Dutcher J., & Creswell J. The role of brain reward pathways in stress resilience and health. Neuroscience & Biobehavioral Reviews. 2018. 95, 559–567.doi:10.1016/j.neubiorev.2018.1;112. Hanson J., Nacewicz B, Sutterer M., Cayo A., Schaefer, S., Rudolph K., et al. Behavioral Problems After Early Life Stress: Contributions of the Hippocampus and Amygdala. Biological Psychiatry. 2015. 77(4), 314–323.doi:10.1016/j.biopsych.2014.113. Stratoulias V., Venero J, Tremblay M., Joseph B. Subtipos microgliales: Diversidad dentro de la comunidad microglial. EMBO J.2019;38:e101997. doi: 10.15252/embj.2019101997114. McCormick C., & Hodges T. Stress, Glucocorticoids, and Brain Development in Rodent Models. Stress: Neuroendocrinology and Neurobiology. 2017. 197–206.doi:10.1016/b978-0-12-802175-0.00019-x115. Chocyk A., Dudys D., Przyborowska A., Majcher I., Maćkowiak M., & Wędzony K. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011. 173, 1–18.doi:10.1016/j.neuroscience.20116. Saavedra L., Fenton Navarro B., Torner L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation. 2017;24:242–255. doi: 10.1159/000485383.117. Roque A., Ochoa-Zarzosa A., & Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity. 2017. 55, 39–48. doi:10.1016/j.bbi.2015.09.017118. Bellavance M, Rivest S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 2014;5:136.119. Chao W., A., & Bilbo, S. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain, Behavior, and Immunity. 2012. 26(3), 500–510.doi:10.1016/j.bbi.2012.01.003120. Van Steenbergen H., de Bruijn E., van Duijvenvoorde A , & van Harmelen A L. How positive affect buffers stress responses. 2021. Current Opinion in Behavioral Sciences, 39, 153–160.doi:10.1016/j.cobeha.2021.03.0121. Douma E, & de Kloet E. Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons. 2019. Neuroscience & Biobehavioral Reviews.doi:10.1016/j.neubiorev.2019.1122. Cabib S., Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav. Rev. 2012;36:79–89. doi: 10.1016/j.neubiorev.2011.04.012123. Ironside M., Kumar P., Kang M.-S., & Pizzagalli D. A. Brain mechanisms mediating effects of stress on reward sensitivity. 2018. Current Opinion in Behavioral Sciences, 22, 106–113.doi:10.1016/j.cobeha.2018.01.0124. Nephew C., Huang W., Poirier L., Payne L., & King A. Altered neural connectivity in adult female rats exposed to early life social stress. 2017. Behavioural Brain Research, 316, 225–233.doi:10.1016/j.bbr.2016.08.051125. Javanbakht A., Kim P., Swain J., Evans G., Phan K., & Liberzon, I.. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. 2016. Behavioral Sciences, 6(4), 28.doi:10.3390/bs6040028126. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz, N., Wilf A. Pick, C. G. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. 2004. European Journal of Neuroscience, 20(5), 1341–1347.doi:10.1111/j.1460-9568.2004.03587.x127. Boletín de prensa No 473 de 2021. 2021, Tomado de https:// www.minsalud.gov.co/Paginas/ Mas-de-18-mil-atenciones-en- salud-mental-en-opcion-4-de- Linea-192.aspx128. Eslava J, Mejía de Eslava L, Ramos-Rodríguez M, Uscategui A, Eslava Mejía J, Natalia MF, et al. Emergencia Sanitaria y su Impacto Sobre Nuestros Niños [Internet]. Vol. Especiales. Bogotá D.C.; 2020. Available from: https://www.neurociencias.org. co/especiales/2020/emergencia- sanitaria-y-su-impacto-sobre- nuestros-ninos/129. Paxinos G. & Watson C. The Rat Brain in Stereotaxic Coordinates. Hard Cover Edition, 2006, 6th Edition.130. Montoya, R., Bos, A., Terburg, D., Rosenberger, A., & van Honk, J. Cortisol administration induces global down-regulation of the brain’s reward circuitry. 2014 Psychoneuroendocrinology, 47, 31–42.doi:10.1016/j.psyneuen.2014.131. Levine S. Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. 2001. Physiology & Behavior. Volume 73, Issue 3, June 2001, Pages 255-260132. Levine S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. 2002. Neurotoxicity Research, 4(5-6), 557–564.doi:10.1080/10298420290030569133. Paolicelli R, et al. Microglia states and nomenclature: A field at its crossroads. 2022. Neuron. Nov 2; 110(21): 3458–3483. doi: 10.1016/j.neuron.2022.10.020134. Kierdorf K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. 2013. Nature Neuroscience, 16(3), 273–280. doi:10.1038/nn.3318135. Grabert K, et al. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. 2020. J. Immunol 205, 3154–3166. 10.4049/jimmunol.2000835.136. Oyola M., & Handa R. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. 2017. Stress, 20(5), 476–494.doi:10.1080/10253890.2017.136137. Gildawie K, Orso R., Peterzell S., Thompson V., & Brenhouse H. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. 2020. Neuroscience Letters, 135381.doi:10.1016/j.neulet.2020.135381InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84343/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1130619363.2023.pdf1130619363.2023.pdfTesis de Maestría en Neurocienciasapplication/pdf6080428https://repositorio.unal.edu.co/bitstream/unal/84343/2/1130619363.2023.pdf7fc4bcd69aaf78dc90cc9ce4d7def6d2MD52THUMBNAIL1130619363.2023.pdf.jpg1130619363.2023.pdf.jpgGenerated Thumbnailimage/jpeg5139https://repositorio.unal.edu.co/bitstream/unal/84343/3/1130619363.2023.pdf.jpg15b469bf22519b7eac78a1d94ec7e600MD53unal/84343oai:repositorio.unal.edu.co:unal/843432024-08-17 00:00:54.37Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=