Introducción al análisis estructural de proteínas y glicoproteínas

ilustraciones

Autores:
Vega Castro, Nohora Angélica
Reyes Montaño, Edgar Antonio
Tipo de recurso:
Book
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81133
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81133
https://repositorio.unal.edu.co/
Palabra clave:
572 - Bioquímica
Bioquímica
Aminoácidos
Proteínas - Análisis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_91e77f504943ee07bcdd070f49b6d059
oai_identifier_str oai:repositorio.unal.edu.co:unal/81133
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Introducción al análisis estructural de proteínas y glicoproteínas
title Introducción al análisis estructural de proteínas y glicoproteínas
spellingShingle Introducción al análisis estructural de proteínas y glicoproteínas
572 - Bioquímica
Bioquímica
Aminoácidos
Proteínas - Análisis
title_short Introducción al análisis estructural de proteínas y glicoproteínas
title_full Introducción al análisis estructural de proteínas y glicoproteínas
title_fullStr Introducción al análisis estructural de proteínas y glicoproteínas
title_full_unstemmed Introducción al análisis estructural de proteínas y glicoproteínas
title_sort Introducción al análisis estructural de proteínas y glicoproteínas
dc.creator.fl_str_mv Vega Castro, Nohora Angélica
Reyes Montaño, Edgar Antonio
dc.contributor.author.none.fl_str_mv Vega Castro, Nohora Angélica
Reyes Montaño, Edgar Antonio
dc.subject.ddc.spa.fl_str_mv 572 - Bioquímica
topic 572 - Bioquímica
Bioquímica
Aminoácidos
Proteínas - Análisis
dc.subject.lemb.none.fl_str_mv Bioquímica
Aminoácidos
Proteínas - Análisis
description ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-05
dc.date.accessioned.none.fl_str_mv 2022-03-06T05:11:21Z
dc.date.available.none.fl_str_mv 2022-03-06T05:11:21Z
dc.type.spa.fl_str_mv Libro
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81133
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
dc.identifier.eisbn.none.fl_str_mv 9789587944006
url https://repositorio.unal.edu.co/handle/unal/81133
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
9789587944006
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Colección textos;
dc.relation.references.spa.fl_str_mv Sanger F, Thompson eOp. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal. 1953;53(3): 353.
Creigthon TE. Disulphide bonds between cysteine residues. Creighton TE. (Ed.) Protein structure. A practical approach. Oxford, UK: irl Press; 1995.
Koingsberg aWH y Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.
Bio-rad. Glycoprotein and oligosaccharide analysis. P. 149-155, 1997
Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956;28(3):350-356.
Edge AS, Faltynek CR, Hof L, Reichert Jle, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Analytical biochemistry. 1981;118(1):131-137.
J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF. irl Oxford University Press, 1994.
Ellman GL. Tissue sulfhydryl groups. Archives of biochemistry and biophysics. 1959; 82(1): 70-77.
Spies JR, Chambers D. Determination of Tryptophan. Anal. Chem. 1948;20:30-39.
Hirs cHW, Moore S, Stein WH. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol. Chem. 1960;235:633-647.
Hirs cHW, Moore S, Stein WH. Volatile buffers exchange columns; use of chromatography on asolation of amino acids. J. Biol. Chem. 1952;195:669-683.
Aitken E, Geisow MJ, Findlay Jbc, Holmes C, Yawoord A. Peptide preparation and characterization. Findlay Jbc, Geisow MM. Protein Sequencing. A Practical Approach. Oxford, UK: irl Press, Oxford University Press; 1989. P.43-68.
Ren J, Zhao M, Wang J, Cui C, Yang B. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technology and Biotechnology. 2007;45(4):360-366.
Vega N, Pérez G. Isolation and characterization of a lectin from Salvia bogotensis seeds that recognizes Tn Antigen. Phytochemistry. 2006;67:347-355.
Khan AS, Faiz F. Amino acids analysis using ion exchange resins. Coden Jnsmac. 2008;48:1-17.
Song C, Zhang SH, Ji Z, Li You J. Accurate determination of amino acids in serum samples by liquid chromatography tandem mass spectrometry using a stable isotope labeling strategy. Journal of Chromatographic Science. 2015; 53:1536-1541. dOi:10.1093/chromsci/bmv049.
Walker JM. The Dansyl-Edman method for peptide sequencing. Walker JM. (ed.). Proteins. Methods in Molecular Biology. Vol I. Clifton, N. J.: Humana Press; 1984. 203-219.
Klemm P. Manual Edman degradation of proteins and peptides. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 243-254.
Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene diflouride membranes. J. Biol. Chem. 1987;262:10035-10038.
Taylor A. Aminopeptidases: Structure and Function. Faseb J. 1993;7(2):290-298.
Wittmann-Liebold B, Kimura M. Microsequencing of peptides and proteins with 4-N, N, Dimethylazobenzene 4 ́Isothiocyanate. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press; 1984.
Deng J, Zhang G y Huang NT. Identification of protein N-termini Using tmpp or dimethyl labeling and mass spectrometry. Methods Mol Biol. 2015;1295:249-258. dOi:10.1007/978-1-4939-2550-6_19.
Shen PT, Hsu JL, Chen SH. dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.
Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005;4(1):101-108.
Shiveley JE (ed). Methods in microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338
Avilés F y Vendrell J. Carboxypeptidase B in handbook of proteolytic enzymes (Third Edition). Ciudad: London. Academic Press; 2013.
Greenblatt HM, Feinberg H, Tucker PA, Shoham G. Carboxypeptidase A: Native, Zinc-Removed and Mercury-Replaced Forms. Acta Crystallogr D Biol Crystallogr. 1. 1998; 54(Pt 3):289-305.
Remington SJ, Breddam K. Carboxypeptidases C and D. Methods in Enzimology. 1994;244:231-248.
Klemm P. Carboxy-terminal sequence determination of proteins and peptides with carboxypeptidase Y. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 255-259.
Jung G, Ueno H, Hayashi R. Carboxypeptidase Y: Structural Basis for Protein Sorting and Catalytic Triad. J Biochem. 1999;126(1):1-6.
Shiveley JE. Methods in Microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338-346.
Nika H, Nieves E, Hawke D, Angeletti R. C-Terminal protein characterization by mass spectrometry using combined micro scale liquid and solid-phase derivatization. Journal of Biomolecular Techniques. 2013;24:17-31.
Thiede B, Wittmann-Liebold B, Bienert M, Krause e. Maldi-ms for C-terminal Sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. febs Letters. 1995;357:65-69.
Montreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Oxford University Press; 1994. Chapter 5, 193
Koingsberg WH, Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.
Hustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T. A critical review of trypsin digestion for lc-ms based proteomics. Integrative Proteomics. 2012;(1):73-82.
Lewis WG, Basford JM, Walton PL. Specificity and inhibition studies of Armillaria mellea protease. Biochimica et Biophysica Acta (bba) – Enzymology.1978; 522(2): 551–560. dOi:10.1016/0005-2744(78)90087-6
Drapeau GR. Protease from Staphyloccus aureus. Methods in Enzymology. 1976:469-475. dOi:10.1016/s0076-6879(76)45041-3
Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics. 2004;3(6):608-614.
Pauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science. 1949;110(2865): 543–548. dOi:10.1126/ science.110.2865.543
Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature. 1956;178:792. dOi: 10.1038/178792a0
Catsimpoolas N, Wood JL. Cleavage of the peptide bond at the cystine amino group by the action of cyanide. J Biol Chem. 1963;238:2887-2888.
Catsimpoolas N, Wood JL. Specific Cleavage of Cystine Peptides by Cyanide. J. Biol. Chem. 1966;241:1790-1796.
Elashal HE, Raj M. Site-selective chemical cleavage of peptide bonds. Chemical Communications. 2016;52(37):6304-6307.
Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: Macmillan; 2005.
Bandeira N, Victoria P, Pevzner P, Arnott D, y Lill J. Beyond Edman degradation: Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12): 1336-1338. Disponible en: http://doi. org/10.1038/nbt1208-1336 (19 de febrero de 2020).
Perez G, Perez C, Sousa-Cavada B, Moreira R, Richardson M. Comparison of the amino acid sequences of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry. 1991;30(8):2619-2621.
Brown JR, Hartley BS. Location of disulfide bridges by diagonal paper electrophoresis. Biochem J. 1966;101: 241-228.
Weeds AG, Hartley BS. Selective purification of the thiol peptides of myosin. Biochemical Journal, 1968; 107(4), 531-548.
Weeds AG. Small sub-units of myosin. Biochemical Journal. 1967;105(2):25.
Tang J, Hartley BS. A diagonal electrophoretic method for selective purification of methionine peptides. Biochemical Journal. 1967;102(2):593.
Dixon HB, Perham RN. Reversible blocking of amino groups with citraconic anhydride. Biochemical Journal. 1968; 109(2): 312.
Perham RN, Jones gmt. The determination of the order of lysine- containing: tryptic peptides of proteins by diagonal paper electrophoresis a carboxyl-terminal sequence for pepsin. European journal of biochemistry. 1967;2(1):84-89.
Perham RN. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochemical Journal. 1967;105(3):1203-1207.
Butler pJg, Hartley BS. Maleylation of amino groups. In Methods in enzymology. Vol. 25. Academic Press. 1972.
Milstein C. A simple procedure for the fractionation of the tryptic peptides of the c-terminal half of immunoglobulin lambda-chains. Biochemical Journal. 1968;110(4):652.
Milstein C. Linked groups of of residues in immunoglobulin κ chains. Nature,
Winger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics. 2007;7:4158-4170. dOi:10.1002/pmic.200700209
McDonagh B. Diagonal electrophoresis for the detection of protein disulfides. In Protein Electrophoresis Humana Press; Totowa, NJ: 2012.
Wojcik R, Vannatta M, Dovichi N. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization. Anal. Chem. 2010;82(4):1564-1567. dOi: 10.1021/ac100029u
Mann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes by Mass Spectrometry. Annu. Rev. Biochem. 2001;70:437-473.
Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y. Electrospray and Tandem Mass Spectrometry in Biochemistry. Biochemical Journal. 2001;355(Pt 3):545-561.
Mano N, Goto J. Biomedical and Biological Mass Spectrometry. Analytical Sciences. 2003; 19(1): 3–14. dOi:10.2116/analsci.19.3.
Gibson D, Costello C. Mass Spectrometry of Biomolecules. Ahuja S (ed). Handbook of bioseparations. San Diego: Academic Press; 2000. 299-327.
Vega N. Caracterización bioquímica, funcional y biológica de la lectina de Salvia bogotensis y evaluación de su aplicación para la detección del antígeno Tn [Tesis de Doctorado]. Bogotá: Universidad Nacional de Colombia, 2004.
Seattle Proteome Center (spc). Proteomics Tools. Disponible en: http://tools. proteomecenter.org/software.php. [4 de febrero de 2015].
Bandeira N, Pham V, Pevzner P, Arnott D, y Lill JR. Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12):1336-1338. dOi:10.1038/nbt1208-1336
Biemann K. Sequencing of Peptides by Tandem Spectrometry and High Energy Collision-Induced Dissociation. Methods in enzimology. 1990;193:455-479. dOi:10.1016/0076-6879(90)93433-l
Elviri L. etd and ecd Mass Spectrometry Fragmentation for the Characterization of Protein Post Translational Modifications. Jeevan KP. Tandem Mass Spectrometry-Applications and Principles. Croatia:InTech. 2012;7:161-178. Disponible en www.intechopen.com. dOi: 10.5772/35277. 2012
Chang E, Pourmal S, Zhou C, Kumar R, Teplova M, Pavletich NP, et al. N-terminal amino acid sequence determination of proteins by N-terminal dimethyl labeling: pitfalls and advantages when compared with Edman degradation sequence analysis. J Biomol. Tech. 2016;27(2):61-74. dOi: 10.7171/jbt.16-2702-002.
Deng J, Zhang G, Huang F, Neubert T. Identification of protein N-termini using tmpp or dimethyl labeling and mass spectrometry. Methods Mol. Biol. 2015;1295:249-258. dOi: 10.1007/978-1-4939-2550-6_19
Shen PT, Hsu JL, Chen SH. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.
Li L, Wu R, Yan G, Gao M, Deng C, Zhang X. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold nanoparticle-based depletion. Anal Bioanal Chem. 2016;408(2):441-448. dOi: 10.1007/s00216-015-9136-x.
Twyman RM. Strategies for protein quantitation. In Principles of Proteomics, 2nd ed. New York, NY, usa: Garland Science, Taylor & Francis Group, llc; 2014.
Konerman L, Collings BA, Douglas DJ. Cytochrome C folding kinetics studied by time resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:5554-5559.
Konermann L, Douglas D. Unfolding of proteins monitored by electrospray ionization mass spectrometry: A comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998;9(12):1248-1254.
Konermann L, Pan J, Wilson D. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. BioTechniques. 2006;40(2):135-141.
Loo JA. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997;16:1-23. dOi:10.1016/j. jasms.2005.02.017
M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognise blood group H determinants. Arch.Biochem. Biophys. 2004;492:180-190.
Sharon M, Robinson C. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 2007;76:167-193.
Heck AJ. Native Mass Spectrometry: A bridge between interactomics and structural biology. Nature Methods. 2008;5:927-933.
Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9000 mass spectrometry experiments builds a global map of human protein complexes. Molecular Systems Biology. 2017;13(6):932. dOi:10.15252/msb.20167490
Dickerson RE, Geis I. The structure and action of proteins. Londres: Harper & Row publishers, 1969.
Multiple Sequence Alignment. Clustal. Disponible en: http:/www.ebi.ac.uk/ clustalw/. [Consultado 4 febrero 2020].
Expasy. Bioinformatics Resource Portal. Disponible en: https://web.expasy. org/docs/relnotes/relstat.htm. [Consultado 4 febrero 2020].
UniProtKB/Swiss-Prot UniProt release 2019. Disponible en: https://www. uniprot.org/statistics/Swiss-Prot. [Consultado 3 febrero 2020].
Chavali S, Chavali P, Chalacu G, Sanchez de Groot N, Gemayel R, Latysheva N, et al. Constraints and Consequences of the Emergence of Amino Acid Repeats. Eukaryotic Proteins Nature Structural & Molecular Biology. 2017;24:765-777. dOi:10.1038/nsmb.3441
Mularoni L, Ledda A, Toll Riera M, Alba M., Natural Selection Drives the Accumulation of Amino Acid Tandem Repeats in Human Proteins. Genome Res. 2010;20(6):745-754. dOi: 10.1101/gr.101261.109
Eisenberg D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences. 2003;100(20):11207–11210. dOi:10.1073/pnas.2034522100
Wikimedia Commons. Peptide bond cis trans miguelferig. Disponible en: https://commons.wikimedia.org/wiki/File:Peptide_bond_cis_trans_ miguelferig.jpg. [04 de febrero de 2020].
Schiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal. 1967;7(2):121–135. dOi:10.1016/s0006-3495(67)86579-2
Wikimedia commons. Helical Wheel 2nrl 77-92 KaelFischer Disponible en: https://commons.wikimedia.org/wiki/File:Helical_Wheel_2nrl_77-92_ KaelFischer.jpg. [04 de febrero de 2020].
Dunnill P. The use of helical net-diagrams to represent protein structures. Biophysical Journal. 1968;8(7): 865–875. dOi:10.1016/ s0006-3495(68)86525-7
Berndt KD. Types of Secondary Structure. Protein Secondary Structure. Helices. Estocolmo: Karolinska Institute, 1996. Disponible en: http://www. cryst.bbk.ac.uk/pps2/course/section8/ss-960531_5.html [20 de febrero de 2020].
Sancho P. Tema 4a. Estructura tridimensional de las proteínas. Segundo curso de farmacia 2012-2013 [Presentación]. Universidad de Alcalá. Disponible en: http://www3.uah.es/bioquimica/Sancho/farmacia/temas/ tema-4a_proteinas-estructura.pdf [20 de febrero de 2020].
Costantini S, Colonna G, Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochemical and Biophysical Research Communications. 2006; 342(2): 441–451. dOi:10.1016/j.bbrc.2006.01.159
Ashok KT. cfssp: Chou and Fasman Secondary Structure Prediction server. Wide spectrum: Research Journal. 2013; 1(9):15-19.
Koehl P, Levitt M. Structure-based conformational preferences of amino acids. Proceedings of the National Academy of Sciences. 1999; 96(22): 12524–12529. dOi:10.1073/pnas.96.22.12524
Branden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.
Clothia C. Principles that Determine the Structure of Proteins. Ann. Rev. Biochem. 1984;53:537-572.
Efimov AV. Super-secondary Structures and Modeling of Protein Folds. Methods Mol Biol. 2013;932:177-189. Disponible en dOi: 10.1007/978-1-62703-065-6_11.
Craig L. Tertiary Structure Chapter 3, 4, & 5 [Presentación]. Slide Player. Disponible en: https://slideplayer.com/slide/6407321/ [20 de febrero de 2020].
Sheriff S, Hendrickson WA, Smith JL. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J. Mol. Biol. 1987;197:273-296. Disponible en: https://www.ebi.ac.uk/pdbe/entry/pdb/2mhr/ [20 de febrero de 2020].
Wilches tma. Aproximación a la estructura primaria de lectinas específicas para el antígeno tn e identificación de nuevas lectinas específicas para glucosa/manosa en semillas de Salvia bogotensis y Lepechinia bullata [Tesis de doctorado]. Universidad Nacional de Colombia; 2017.
Hidalgo D.J. Detección, purificación y caracterización parcial de lectinas presentes en algas marinas colombianas [Tesis de Maestría]. Universidad Nacional de Colombia; 2017.
Branden CI, Tooze J. Introduction to protein structure. New York: Garland Science; 2012.
Walshaw J, Mills A. Alpha/Beta Topologies. Protein Folds. Birkbeck College, Londres; 1995. Disponible en http://www.cryst.bbk.ac.uk/pps95/course/8_ folds/alph_bet_wnd.html [20 de febrero de 2020].
Branden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.
Wikimedia Commons. tim barrel. Disponible en: https://commons. wikimedia.org/wiki/File:tim_barrel.tif [20 de febrero de 2020].
Computationally designed tim-barrel protein, Halfflr. dOi: 10.2210/ pdb3tdm/pdb. Disponible en: https://www.rcsb.org/structure/3tdm [05 de febrero de 2020].
3qvO. Structure of a Rossmann-fold nad(p)-binding family protein from Shigella flexneri. dOi: 10.2210/pdb3qvO/pdb. Disponible en: https://www.rcsb. org/structure/3qvO [05 de febrero de 2020].
rcsb pdb.The crystal structure of class I Major histocompatibility complex, H-2Kd at 2.0 A resolution. dOi: 10.2210/pdb1vgK/pdb. Disponible en: https://www.rcsb.org/structure/1vgK [05 de febrero de 2020].
Georgia State University.Polarización lineal. Hyperphysics. Disponible en: http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/polclas.html. [05 de febrero de 2020].
Mancho C. Luz polarizada. El rincon de la Ciencia. 2008;48. Disponible en: http://rincondelaciencia.educa.madrid.org/Curiosid2/rc-114/rc-114.html. [05 de febrero de 2020].
Cortazar A, Silva EP. Métodos Físico-Químicos en Biotecnología pcr. México: Universidad Nacional Autónoma de México, Instituto de Biotecnología; 2004. Disponible en: http://www.ibt.unam.mx/computo/pdfs/ met/dicroismocircular2013.pdf. [05 de febrero de 2020].
Van Holde KE. Circular Dichroism and Optical Rotatory Dispersion. Physical Biochemistry. New York: Prentice Hall; 1971. 202-220.
Mata E. Métodos fisco-químicos en biotecnología. Disponible en: http://www. ibt.unam.mx/computo/pdfs/met/dicroismocircular2013.pdf [05 de febrero de 2020].
Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols. 2007;1(6):2876-2890. dOi:10.1038/ nprot.2006.202
Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc. Natl. Acad. Sci. 2015;112(24):E3095-E3103. Disponible en: dOi: 10.1073/pnas.1500851112.
Kelly M, Price N. The Application of Circular Dichroism to Studies of Protein Folding and Unfolding. Biochimica et Biophysica Acta. 1997;1338:161-185.
Pontificia Universidad Católica de Chile. Difracción de Bragg. Laboratorio de Difracción de Rayos X. Disponible en: http://servicios.fis.puc.cl/rayosx/teoria. html. [05 de febrero de 2020].
Matthews BW. X-ray Structure of Proteins Structure. Neurath H, Hill R. The Proteins. Vol. iii. Tercera edición. Nueva York: Academic Press; 1977. 404-590.
Dickerson RE. X-Ray Analisys and Protein Structure. Hans N. The Proteins. Vol. II. Segunda edición. New York: Academic Press; 1964. 603-778.
Hendrickson WA. Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics. 2014;47(01):49-93. dOi:10.1017/ s0033583514000018
Wuthrich K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science. 1989;243(4887):45-50. dOi:10.1126/ science.2911719
Wüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. Journal of Molecular Biology. 1982;155(3):311–319. dOi:10.1016/0022-2836(82)90007-9
Schirra HJ. Analysis of nmr spectra. Structure Determination of Proteins with nmr Spectroscopy. Disponible en: http://www.cryst.bbk.ac.uk/pps2/ projects/schirra/html/assign.htm [20 de febrero de 2020].
Bangerter BW. Nuclear magnetic resonance. Glasel J, Deutscher M. Introduction to Biophysycal Methods for Protein and Nucleic Acid Research. San Diego, California: Academic Press; 1995. 317-379.
Billeter M. Comparison of Protein Structures Determined by nmr in Solution and by X-Ray Diffraction in Single Crystals. Quart. Rev Biophys. 1992;25:325-377.
Dubochet J, Adrian M, Chang J, Homo J, Lepault J, McDowall M. Cryo-Electron Microscopy of Vitrified Specimens. Q. Rev. Biophys. 1988;21:129-228, Disponible en: http://dx.doi.org/10.1017/ S0033583500004297
Cheng Y, Grigorieff N, Penczek P, Walz T. A Primer to Single-Particle Cryoelectron Microscopy. Cell. 2015;161:438-449. Disponible en: http:// dx.doi.org/10.1016/j.cell.2015.03.050
Kühlbrandt, W. Cryo-em enters a new era. eLife, 3. 2014. dOi:10.7554/ elife.03678
Orlova E, Saibil H. Structural Analysis of Macromolecular Assemblies by Electron Microscopy. Chem. Rev. 2011;111:7710-7748.
Egelman E. Three-Dimensional Reconstruction of Helical Polymers. Arch. Biochem. Biophys. 2015;581:54-58. dOi:10.1016/j.abb.2015.04.004
Briggs J. Structural Biology in situ. The potential of Subtomogram Averaging, Curr. Opin. Struct. Biol. 2013;23:261–267. Disponible en: http://dx.doi. org/10.1016/j.sbi.2013.02.003
Lucic V, Forster F, Baumeister W. Structural Studies By Electron Tomography: from Cells to Molecules. Annu. Rev. Biochem. 2005;74:833-865.
Schenk A, Castaño-Diez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D Reconstruction from 2D Crystal Image and Diffraction Data. Meth. Enzymol. 2010;482(2010):101–129. Disponible en: http://dx.doi.org/10.1016/ S0076-6879(10)82004-X.
Booth D, Avila-Sakar A, Cheng Y. Visualizing Proteins and Macromolecular Complexes by Negative Stain em: from Grid Preparation to Image Acquisition. J. Vis. Exp. 2011;(58):e3227. dOi: 10.3791/3227
Lau WcY, Rubinstein JL. Single Particle Electron Microscopy. Electron Crystallography of Soluble and Membrane Proteins. 2012;401-426. dOi:10.1007/978-1-62703-176-9_22
Thompson R, Walker M, Siebert A, Muench S, Ranson N. An Introduction to sample preparation and imaging by Cryo-Electron Microscopy for structural biology. Methods. 2016;100:3-15.
Stark H. GraFix: Stabilization of fragile macromolecular complexes for single particle Cryo-em. Meth. Enzymol. 2010;481:109-126. Disponible en: http:// dx.doi.org/10.1016/S0076-6879(10)81005-5
McMullan G, Faruqi A, Clare D, Henderson R. Comparison of Optimal Performance at 300 Kev of Three Direct Electron Detectors for Use in Low Dose Electron Microscopy. Ultramicroscopy. 2014;147:156-163. Disponible en: http://dx.doi.org/10.1010/j.ultramic.2014.08.002.
Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. 2004;3:863-873.
Bertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.
Hart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.
Bucior I, Burguer MM. Carbohydrate-carbohydrate interactions in cell recognition. Curr. Opinion Struc. Biol.2004;14:631-637.
Wormald MR, Sharon N. Carbohydrates and Glycoconjugates. Progress in non-mammalian glycosylation, glycosyltransferases, invertebrate lectins and carbohydrate-carbohydrate interactions. Curr. Opinion Struc. Biol. 2004;14:591-592.
Laine RA. The information potential in the sugar code. Gabius HJ, Gabius S (eds). Glycosciences. Status and perspectives. London: Chapman and Hall; 1997. 1-14.
Gabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim.Biophys. Acta. 2002;1572:165-177.
Von der Lieth CW. Bioinformatics for glycomics: Status, methods, requirements and perspectives. Briefings in bioinformatics. 2004;5(2):164– 178. dOi:10.1093/bib/5.2.164
Baycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical Proteomics. 2014;11(1):15. dOi:10.1186/1559-0275-11-15
Böhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macías MA, Lütteke T. Glycosciences. db: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Disponible en; doi:10.1093/ nar/gky994. [6 de febrero de 2020].
Yan A, Lennarz W. Unraveling the mechanism of protein N-glycosylation. J.Biol. Chem. 2005;280:3121-3124. dOi:10.1074/jbc.R400036200
Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. Eur. J. Biochem. 2000;267(5):1434-1440
Wilson I. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology. 2002;12(5):569–577. dOi:10.1016/ s0959-440x(02)00367-6.
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Medicinal Chem. 2005;13:5021-5034.
Caset A, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research. 2010;12:204-217.
Ju T, Aryal R, Kudelka M, Wang Y, Cummings R. The Cosmc connection to the Tn antigen in cancer. Cancer Biomarkers. 2014;14:63–81.
Ju T, Otto V, Cummings R. The Tn Antigen—Structural Simplicity and Biological Complexity. Angew. Chem. Int. Ed. 50: 1770 – 1791.2011
Kailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410. dOi: 10.1007/s00216-016-9880-6.
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 2013;(9-10):618-31. dOi: 10.1002/prca.201300024.
Lisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42:11-17.
Freire T, Osinaga E. A Immunological and biomedical relevance of the Tn antigen. Inmunología. 2003;22(1):27-38.
Van den steen P, Rudd P, Wormald M, Dwek, Opdenakker G. O-Linked glycosylation. Trends in Glycosc. Glycotech. 2000;12:35-49.
Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nature Reviews Immunology. 2008; 8(11), 874–887. dOi:10.1038/nri2417
Fukuda M. Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta. 2002;1573:194-405.
Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. muc1 and cancer. Biochimica et Biophysica Acta (bba) - Molecular Basis of Disease. 1999;1455(2-3):301–313. dOi:10.1016/s0925-4439(99)00055-1
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: Structures, functions, and mechanisms. Annual Review of Biochemistry. 2008;77(1):521–555. dOi:10.1146/annurev.biochem.76.061005.092322
Drickamer K, Taylor ME. Glycan arrays for functional glycomics. Genome Biol. 2002;3: 1034.1-1034.4.
Disney MD, Seeberger PH. Carbohydrate arrays as tools for the glycomics revolution. ddt:Targets. 2004;3:151-158.
Liang PH, Wu CY, Greenberg WA, Wong CH. Glycan arrays: biological and medical applications. Curr.Opinion. Chem.Biol. 2008;12:86-92.
Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun. 2018;9(1):258. dOi: 10.1038/ s41467-017-02747-y.
Tateno H, Mori A, Uchiyama N, Yabe R, Iwaki J, Shikanai TT et al. Glycoconjugate microarray based on an evanescent–field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology. 2008:18:789-798.
Oyelaran O, Gildersleeve JC. Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Review of Vaccines. 2007;6(6):957–969. dOi:10.1586/14760584.6.6.957
Bedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography J. Chromat. 2005;1079: 236-245.
Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta. 2016; 943:8- 16. dOi: 10.1016/j.aca.2016.08.035.
Haojie Lu, Ying Zhang, Pengyuan Yang. Advancements in mass spectrometry-based glycoproteomics and glycomics, National Science Review. Disponible en: https://doi.org/10.1093/nsr/nww019. [06 de febrero de 2020].
Hirabayashi J, Kasai K. Separation technologies for glycomics. J. Chromat. B. 2002;771:67-87.
Khajehpour M, Dashnau JL, Vanderkooi JM. Infrared spectroscopy used to evaluate glycosylation of proteins. Anal.Biochem. 2005; 348:40-48.
Duverger E, Frison N, Roche AC, Monsigny M. Carbohydrate- lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85:167-179.
Reynolds M, Pérez S. Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie. 2011;14(1):74-95.
Shimomura O, Oda T, Tateno H, Ozawa Y, Kimura S, Sakashita S, ... Ohkohchi N. A novel therapeutic strategy for pancreatic cancer: Targeting cell surface glycan using rBC2LC-N Lectin–Drug Conjugate (ldc). Molecular Cancer Therapeutics. 2017;17(1): 183–195. dOi:10.1158/1535-7163. mct-17-0232
Hirabayashi J. Oligosaccharide microarrays for glycomics. Trends Biotech. 2003;21:141-143.
Hirabayashi J, Tateno H, Shikanai T, Aoki-kinoshita KFf, Narimatsu H. The Lectin Frontier Database (lfdb), and data generation based on frontal affinity chromatography. Molecules. 2015;20(1):951-73. dOi: 10.3390/ molecules20010951.
Nakamura-Tsuruta S, Uchiyama N, Kominami J. Hirabayashi J. Frontal affinity chromatography: Systematization for quantitative interaction analysis between lectins and glycans. Nilsson CL (ed.) Lectins: Analytical technologies. Amsterdam: Elsevier, 2007. 239-266
Research Center for Medical Glycoscience. DataBase for glycan structure analysis and synthetic technology. Lectin Frontier Database. Disponible en: http://riodb.ibase.aist.go.jp/rcmg/glycodb/. [06 de febrero de 2020].
Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. Febs Journal. 2010; 277:95–105.
Hizal DB, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical proteomics. 2014;11(1):15.
Cermav (cnrs). Cermav. Disponible en: www.cermav.cnrs.fr. [06 de febrero de 2020].
Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys.Acta 1999;1473:67-95.
Freeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R-143R.
Madsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Wandall HH. Cancer associated aberrant protein O-Glycosylation can modify antigen processing and immune response. PLoS One, 2012;7(11). e50139. http://doi.org/10.1371/journal.pone.0050139
Kailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410.doi: 10.1007/s00216-016-9880-6.
Kuno A, Uchiyama N, Koseki-kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent–field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods. 2005;2:851-856.
Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Comm. 2008;370:259-263.
Hu S, Wong DT. Lectin microarray. Proteomics - Clinical Applications. 2009;3(2):148–154. dOi:10.1002/prca.200800153
Edgea Faltynek C, Hof L, Reichert L, Weber P. Deglycosilation of glycoprotenis by trifuoromethane sulfonic acid. Analytical Biochemistry. 1981;118: 131-137.
Montreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. Glycoproteins in Carbohydrate Analysis. A practical approach 7. Chaplin MF, Kennedy J.F (eds). United Kingdom: irl Press, Oxford; 1994.
Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell
Proteomics. 2002;1:791–804.
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins—a tutorial. Analytical and Bioanalytical Chemistry. 2017;409(19):4483–4505. dOi:10.1007/s00216-017-0406-7
Quian Fan J, Namiky J, Matsuoka K, Lee YC. Comparison of acid hydrolitic conditions for asn linked oligosaccharides. Analytical Biochemistry. 1994;219: 375-378.
Biorad. Glycoprotein and Oligosaccharide Analysis. 1997;149-155.
Chaplin MF. Monosacarides. Chaplin MF, Kennedy J.F (eds.) Carbohydrate Analysis. A practical approach. United Kingdom: irl Press, Oxford; 1994.
Patel TP y Parekh RB. Release of oligosaccharides from glyco¬proteins by hydrazinolysis. Meth. Enzymol., 230, 57-66 (1994)
Oxford Glyco Systems. Tools for Glycobiology. Oxford: Oxford Glyco Systems; 1994. Pp. 152.
Li SY, Höltje JV, Young KD. Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Analytical Biochemistry. 2004; 326(1): 1–12. dOi:10.1016/j.ab.2003.11.007
Bigge J, Patel T, Bruce J, Goulding P, Cahrles S y Parekh R. Non selective and efficient fluorescent labeling of glycans using 2-amino benzamide and antranilic acid.Anal.Biochem. 1995;230:229-238.
Kenedy J, Pagliuca G. Oligosaccharides in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF (eds) United Kingdom: irl Press, Oxford; 1994. Pp 64-67.
Cummings R, Pierce M. The challenge and promise of glycomics. Chem Biol. 2014;21(1): 1–15. dOi: 10.1016/j.chembiol.2013.12.010.
Brocke C, Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Medicinal Chem. 2002;10: 3085-3112.
Hemmerich S. Glycomics: coming of age across the globe. ddt. 2005; 10:307-309.
Gouyer V, Leteurtre E, Zanetta J, Lesuffleur T, Delannoy P, Huer G. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNacαα-o-bn in muosal cell lines: an effect mediated through the intracellular synthesis of complex GalNacαα-o- bn oligosaccharides. Front. Biosc. 2001;6: 1235-1244.
Hirabayashi J, Kuno A, Tateno H. Lectin-based structural glycomics: A practical approach to complex glycans. Electrophoresis. 2011;32(10):1118– 1128. dOi:10.1002/elps.201000650
Hiono T, Matsuda A, Wagatsuma T, Okamatsu M, Sakoda Y, Kuno A. Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology. 2019; 527:132–140. dOi:10.1016/j.virol.2018.11.010
Wang, YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research. 2011; 21(11): 1551–1563. doi:10.1038/cr.2011.148
Pomin V, Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals. 2018; 11(1):27. dOi:10.3390/ph11010027
Sasisekharan R, Raman R y Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annual Review of Biomedical Engineering. 2006; 8(1): 181–231. dOi:10.1146/annurev. bioeng.8.061505.095745
Ricardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, Mandel U, Clausen H, Felix A, Lunet N, David L. Detection of glyco-mucin profiles improves specificity of muc16 and muc1 biomarkers in ovarian serous tumours. Mol Oncol. 2015; 9(2):503-12. dOi: 10.1016/j.molonc.2014.10.005.
Storr SJ, Royle L, Chapman CJ, Hamid uma, Robertson JF, Murray A, ... y Rudd PM. The O-linked glycosylation of secretory/shed muc1 from an advanced breast cancer patient’s serum. Glycobiology.2008; 18: 456-462.
Revoredo L, Wang SH, Bennett E, Clausen H, Moremen K, Jarvis D, Ten Hagen K, Tabak L y Gerken T. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family Glycobiology. 2016; 4:360-376. dOi: 10.1093/glycob/cwv108.
Kishikawa T, Ghazizadeh M, Sasaki Y, Springer GF. Specific role of T and Tn tumor-associated antigens in adhesion between a human breast carcinoma cell line and normal human breast epithelial cell line. Jpn. J. Cancer Res.1999; 90: 326-332.
Lisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42: 11-17.
Dotan N. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 2006;15:442-450.
Arnoudse CA, García JJ, Saeland E, Van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr. Opinion Immunol. 2005; 17: 1-7.
PrendergasT JM, Galvao Da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, Desander J, Behrens J, Rueda BR. Novel anti-Sialyl- Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs. 2017;9(4):615-627. dOi: 10.1080/19420862.2017.1290752
Bonomelli C, Crispin M, Scanlan CN, Doores KJ. Hiv Glycomics and Glycoproteomics. In: Pantophlet R. (eds). Hiv glycans in infection and immunity. New York, NY: Springer; 2014.
Wang D. Glyco-epitope diversity: An evolving area of glycomics research and biomarker discovery. Journal of Proteomics & Bioinformatics, 2014; 07(02). dOi:10.4172/jpb.10000e24
Lo-man R, Vichier-Guerre S, Bay S, Deriaud E, Cantacuzene D, Leclerc C. Anti-tumor immunity provided by synthetic multiple antigen glycopeptide displaying a tri-Tn glycotope. J. Immunol. 16: 2829-2854.2001
Vichier–Guerre S, Lo-man R, Huteau V, Deriaud E, Leclerc C, Bay S. Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen. Bioorg. Medicinal Chem Letters. 2004; 14: 3567-3570.
Miyajima K, Takahiro N, Kiyoshi I, Kazuo A. Synthesis of Tn and sialil Tn antigen-lipid and analog conjugates for synthetic vaccines. Chem. Pharm. Bull. Tokyo. 1997;45: 1544-1546.
Bay S, Loman R, Osinaga E, Nakada H, Leclerc C, Cantacuzene D. Preparation of a multiple antigen glycopeptide (mag) carrying the Tn antigen-A possible approach to a synthetic carbohydrate vaccine. J. Peptide Res. 1997;49: 620-625.
Chan HS, Dill KA. The protein folding problem. Physics today. 1993;46(2):24-32.
Voet D, Voet JG. Techniques of protein purification. Biochemistry. New York, NY: John Wiley and Sons Inc., 1990.75.
Roy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure. 2012;20(6):987-997.
Floudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R. Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science. 2006;61(3):966-988.
Singh M, Kim PS. Towards predicting coiled-coil protein interactions. recOmb01: The Fifth Annual International Conference on Computational Molecular Biology. Association for Computing Machinery: Quebec, Montreal, Canada; 2001. 279-286.
Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry. 1974;13(2):222-245.
Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978;120(1):97-120.
Garnier J, Robson B. The gOr method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation: Springer; 1989. 417-465.
Gibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. Journal of molecular biology. 1987;198(3):425-443.
Garnier J, Gibrat JF, Robson B. gOr method for predicting protein secondary structure from amino acid sequence. Methods in enzymology. 266: Elsevier; 1996. 540-553.
Kloczkowski A, Ting KL, Jernigan RL, Garnier J. Combining the gOr v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins: Structure, Function and Bioinformatics. 2002;49(2):154-166.
Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. Journal of molecular biology. 1988;202(4):865-884.
Holley LH, Karplus M. Protein secondary structure prediction with a neural network. Proceedings of the National Academy of Sciences. 1989;86(1):152-156.
Maclin R, Shavlik JW. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine Learning. 1994;11(2-3):195-215.
Rost B, Sander C. Prediction of protein secondary structure at better than 70 % accuracy. Journal of molecular biology. 1993;232(2):584-599.
Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function, and Bioinformatics. 2002;47(2):228-235.
Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-230.
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of molecular biology. 1997;268(1):209-225.
Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field. Proteins: Structure, Function and Bioinformatics. 2012;80(7):1715-1735.
Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A. Critical assessment of methods of protein structure prediction—Round viii. Proteins: Structure, Function and Bioinformatics. 2009;77(S9):1-4.
Jauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of casp7 structure predictions for template free targets. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):57-67.
Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Annual review of biophysics and biomolecular structure. 2000;29(1):291-325.
Read RJ, Chavali G. Assessment of casp7 predictions in the high accuracy template‐based modeling category. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):27-37.
Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253(5016):164-170.
Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Science. 2000;9(2):232-241.
Söding J. Protein homology detection by Hmm–Hmm comparison. Bioinformatics. 2005;21(7):951-960.
Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the prOspectOr_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics. 2004;56(3):502-518.
Xu Y, Xu D, Crawford OH, Einstein JR, Larimer F, Uberbacher E, et al. Protein threading by prOspect: a prediction experiment in casp3. Protein engineering. 1999;12(11):899-907.
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 1970;48(3):443-453.
Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755-63.
Wu S, Zhang Y. muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function and Bioinformatics. 2008;72(2):547-556.
Yang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics. 2011;27(15):2076-2082
Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3d-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19(8):1015-1018.
Wu S, Zhang Y. lOmets: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007;35(10):3375-3382.
MacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA. Assessment of the protein‐structure refinement category in casp8. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):66-80.
Summa CM, Levitt M. Near-native structure refinement using in vacuo energy minimization. Proceedings of the National Academy of Sciences. 2007;104(9):3177-3182.
Skolnick J. In quest of an empirical potential for protein structure prediction. Current opinion in structural biology. 2006;16(2):166-171.
Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins: Structure, Function, and Bioinformatics. 2002;48(2):192-201.
Zhang Y. Template‐based modeling and free modeling by i‐tasser in casp7. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):108-117.
Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, et al. Modification and optimization of the united-residue (unres) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. The Journal of Physical Chemistry B. 2007;111(1):260-285.
Holm L, Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C? trace. Journal of molecular biology. 1991;218(1):183-194.
Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full‐atom protein models from reduced representations. Journal of computational chemistry. 2008;29(9):1460-1465.
Li Y, Zhang Y. remO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins:from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins: Structure, Function, and Bioinformatics. 2009;76(3):665-676.
Zhang J, Liang Y, Zhang Y. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure. 2011;19(12):1784-1795.
Zhang L, Skolnick J. What should the Z‐score of native protein structures be? Protein science. 1998;7(5):1201-1207.
Cozzetto D, Kryshtafovych A, Tramontano A. Evaluation of casp8 model quality predictions. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):157-166.
Fischer D. Servers for protein structure prediction. Current opinion in structural biology. 2006;16(2):178-182.
Kryshtafovych A, Fidelis K, Tramontano A. Evaluation of model quality predictions in casp9. Proteins: Structure, Function, and Bioinformatics. 2011;79(S10):91-106.
Zhang Y. Protein structure prediction: when is it useful? Current opinion in structural biology. 2009;19(2):145-155.
Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, net. Proceedings of the National Academy of Sciences. 2011;108(38):15810-5.
Giorgetti A, Raimondo D, Miele AE, Tramontano A. Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics. 2005;21(suppl_2):ii72-ii76.
Arakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics. 2004;20(7):1087-1096.
Malmström L, Riffle M, Strauss cem, Chivian D, Davis TN, Bonneau R, et al. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. plos biology. 2007;5(4). Disponible en: https://doi.org/10.1371/journal.pbio.0050076
dc.rights.spa.fl_str_mv Universidad Nacional de Colombia, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Universidad Nacional de Colombia, 2020
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 267 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Sede Bogotá
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81133/3/Introducci%c3%b3n%20al%20analisis%20estructural%20de%20proteinas%20y%20glicoproteinas.pdf
https://repositorio.unal.edu.co/bitstream/unal/81133/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81133/4/Introducci%c3%b3n%20al%20analisis%20estructural%20de%20proteinas%20y%20glicoproteinas.pdf.jpg
bitstream.checksum.fl_str_mv 53d6e964bd9a65718937279d712a2eff
8153f7789df02f0a4c9e079953658ab2
d48ed544462b2e5be9356e67eec2bcc6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089795642589184
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalUniversidad Nacional de Colombia, 2020info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vega Castro, Nohora Angélica1bac60b0381f939db8d6c334f123ddc1Reyes Montaño, Edgar Antoniocf6d1cf5625fae2e74c37a137c09067b2022-03-06T05:11:21Z2022-03-06T05:11:21Z2020-05https://repositorio.unal.edu.co/handle/unal/81133Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/9789587944006ilustracionesLos seres vivos están conformados por gran diversidad de proteínas con diferentes características físicas, químicas, estructurales y funcionales. Para entender la función de una proteína se necesita conocer su secuencia y, mejor aún, su estructura tridimensional. Hoy en día es significativo el incremento en el número de secuencias reportadas, al igual que el aumento en la determinación del número de estructuras tridimensionales por métodos experimentales e in silico. Todo este conjunto de estudios ha sido de gran importancia en la formulación de los conceptos modernos de la bioquímica y ha permitido entender la relación que se da entre estructura y función de las proteínas, esto es una premisa fundamental que guía el quehacer bioquímico. En el presente texto brindamos una descripción general de algunos de los aspectos más relevantes sobre los componentes estructurales de proteínas y glicoproteínas, así como algunas técnicas que se han usado para estudiar cada uno de los niveles estructurales que se encuentran en ellas.Introducción -- Capítulo uno Estructura primaria de proteínas -- Requisitos para establecer la secuencia de una proteína -- Procesos de fragmentación de proteínas Métodos enzimáticos -- Mapeo peptídico -- Métodos químicos -- Fragmentación de la proteína -- Secuenciación de los péptidos -- Superposición de fragmentos -- Fuentes de error en la determinación de la estructura primaria -- Limitaciones de la determinación de la estructura primaria a partir de la secuencia de adn -- Referencias -- Capítulo dos Caracterización de proteínas por espectrometría de masas (ms)-- Ionización en modo electrospray (esi) -- Ionización/desorción láser asistida por matriz (Maldi) -- Analizador -- Otros analizadores -- Analizador de trampa iónica (it) -- Ciclotrón de resonancia de iones con transformada de Fourier (ft-icr) -- Orbitrap -- Determinación de la secuencia de proteínas por espectrometría de masas -- Fragmentación de la molécula -- Determinación de la secuencia N-terminal -- Cuantificación de proteínas en estudios de proteómica -- Utilidad de la espectrometría de masas como herramienta en el análisis de problemas relacionados con proteínas -- Identificación de nuevas variantes proteínas -- Evaluación del plegamiento de las proteínas -- Referencias -- Capítulo tres Consecuencias de la determinación de la estructura primaria de proteínas -- Proteínas que tienen la misma función y están en diferentes especies -- Proteínas que surgieron por la duplicación de un gen -- Proteínas con diferente función y localización relacionadas evolutivamente -- Referencias -- Estructura secundaria -- Capítulo cuatro -- Aspectos relevantes para la formación de estructuras secundarias -- El enlace peptídico -- Ángulos de torsión -- Estructuras secundarias -- Héliceα -- Estructuraβ -- Propensiones -- Girosβ -- Estructuras supersecundarias -- Conformación de α-hélice, estructuras β y cadenas laterales -- Estabilidad -- Determinación experimental de la estructura secundaria Dispersión óptica rotatoria (dor) -- Dicroísmo circular (dc) -- Comportamiento de macromoléculas -- Aplicaciones del dicroísmo circular (dc) -- Referencias -- Capítulo cinco Estructura terciaria -- Determinación experimental de la estructura terciaria -- Determinación de la estructura de proteínas por difracción de rayos X -- Resonancia magnética nuclear -- Microscopía crioelectrónica o criomicroscopía electrónica (Cryo-em) -- Referencias -- Capítulo seis Glicoproteínas y carbohidratos -- Diversidad estructural de los oligosacáridos -- Biosíntesis de oligosacáridos en las glicoproteínas -- Análisis estructural y funcional de glicanos -- Análisis de la glicosilación en glicoproteínas -- 1. ¿La proteína es glicosilada? -- 2. Caracterización de la glicosilación en la proteína intacta -- 3. Caracterización de los oligosacáridos -- Análisis de la estructura del oligosacárido --Métodos químicos -- Métodos enzimáticos -- Métodos enzimáticos para elucidar estructura primaria de oligosacáridos -- Estudios de glicosilación, funciones biológicas y posibles aplicaciones -- Patologías asociadas a glicoproteínas -- Referencias -- Bioinformática estructural: aplicaciones del modelamiento estructural de proteínas -- Predicción de estructura secundaria y terciaria de proteínas -- Métodos para predecir estructura secundaria de proteínas -- Predicción de estructura terciaria -- Metodología sugerida para generar modelos estructurales -- Capítulo siete modelamiento estructural de proteínas -- Aplicaciones -- Conclusiones -- Referenciasprimera edición267 páginasapplication/pdfspaColección textos;Sanger F, Thompson eOp. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal. 1953;53(3): 353.Creigthon TE. Disulphide bonds between cysteine residues. Creighton TE. (Ed.) Protein structure. A practical approach. Oxford, UK: irl Press; 1995.Koingsberg aWH y Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.Bio-rad. Glycoprotein and oligosaccharide analysis. P. 149-155, 1997Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956;28(3):350-356.Edge AS, Faltynek CR, Hof L, Reichert Jle, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Analytical biochemistry. 1981;118(1):131-137.J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF. irl Oxford University Press, 1994.Ellman GL. Tissue sulfhydryl groups. Archives of biochemistry and biophysics. 1959; 82(1): 70-77.Spies JR, Chambers D. Determination of Tryptophan. Anal. Chem. 1948;20:30-39.Hirs cHW, Moore S, Stein WH. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol. Chem. 1960;235:633-647.Hirs cHW, Moore S, Stein WH. Volatile buffers exchange columns; use of chromatography on asolation of amino acids. J. Biol. Chem. 1952;195:669-683.Aitken E, Geisow MJ, Findlay Jbc, Holmes C, Yawoord A. Peptide preparation and characterization. Findlay Jbc, Geisow MM. Protein Sequencing. A Practical Approach. Oxford, UK: irl Press, Oxford University Press; 1989. P.43-68.Ren J, Zhao M, Wang J, Cui C, Yang B. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technology and Biotechnology. 2007;45(4):360-366.Vega N, Pérez G. Isolation and characterization of a lectin from Salvia bogotensis seeds that recognizes Tn Antigen. Phytochemistry. 2006;67:347-355.Khan AS, Faiz F. Amino acids analysis using ion exchange resins. Coden Jnsmac. 2008;48:1-17.Song C, Zhang SH, Ji Z, Li You J. Accurate determination of amino acids in serum samples by liquid chromatography tandem mass spectrometry using a stable isotope labeling strategy. Journal of Chromatographic Science. 2015; 53:1536-1541. dOi:10.1093/chromsci/bmv049.Walker JM. The Dansyl-Edman method for peptide sequencing. Walker JM. (ed.). Proteins. Methods in Molecular Biology. Vol I. Clifton, N. J.: Humana Press; 1984. 203-219.Klemm P. Manual Edman degradation of proteins and peptides. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 243-254.Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene diflouride membranes. J. Biol. Chem. 1987;262:10035-10038.Taylor A. Aminopeptidases: Structure and Function. Faseb J. 1993;7(2):290-298.Wittmann-Liebold B, Kimura M. Microsequencing of peptides and proteins with 4-N, N, Dimethylazobenzene 4 ́Isothiocyanate. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press; 1984.Deng J, Zhang G y Huang NT. Identification of protein N-termini Using tmpp or dimethyl labeling and mass spectrometry. Methods Mol Biol. 2015;1295:249-258. dOi:10.1007/978-1-4939-2550-6_19.Shen PT, Hsu JL, Chen SH. dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005;4(1):101-108.Shiveley JE (ed). Methods in microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338Avilés F y Vendrell J. Carboxypeptidase B in handbook of proteolytic enzymes (Third Edition). Ciudad: London. Academic Press; 2013.Greenblatt HM, Feinberg H, Tucker PA, Shoham G. Carboxypeptidase A: Native, Zinc-Removed and Mercury-Replaced Forms. Acta Crystallogr D Biol Crystallogr. 1. 1998; 54(Pt 3):289-305.Remington SJ, Breddam K. Carboxypeptidases C and D. Methods in Enzimology. 1994;244:231-248.Klemm P. Carboxy-terminal sequence determination of proteins and peptides with carboxypeptidase Y. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 255-259.Jung G, Ueno H, Hayashi R. Carboxypeptidase Y: Structural Basis for Protein Sorting and Catalytic Triad. J Biochem. 1999;126(1):1-6.Shiveley JE. Methods in Microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338-346.Nika H, Nieves E, Hawke D, Angeletti R. C-Terminal protein characterization by mass spectrometry using combined micro scale liquid and solid-phase derivatization. Journal of Biomolecular Techniques. 2013;24:17-31.Thiede B, Wittmann-Liebold B, Bienert M, Krause e. Maldi-ms for C-terminal Sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. febs Letters. 1995;357:65-69.Montreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Oxford University Press; 1994. Chapter 5, 193Koingsberg WH, Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.Hustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T. A critical review of trypsin digestion for lc-ms based proteomics. Integrative Proteomics. 2012;(1):73-82.Lewis WG, Basford JM, Walton PL. Specificity and inhibition studies of Armillaria mellea protease. Biochimica et Biophysica Acta (bba) – Enzymology.1978; 522(2): 551–560. dOi:10.1016/0005-2744(78)90087-6Drapeau GR. Protease from Staphyloccus aureus. Methods in Enzymology. 1976:469-475. dOi:10.1016/s0076-6879(76)45041-3Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics. 2004;3(6):608-614.Pauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science. 1949;110(2865): 543–548. dOi:10.1126/ science.110.2865.543Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature. 1956;178:792. dOi: 10.1038/178792a0Catsimpoolas N, Wood JL. Cleavage of the peptide bond at the cystine amino group by the action of cyanide. J Biol Chem. 1963;238:2887-2888.Catsimpoolas N, Wood JL. Specific Cleavage of Cystine Peptides by Cyanide. J. Biol. Chem. 1966;241:1790-1796.Elashal HE, Raj M. Site-selective chemical cleavage of peptide bonds. Chemical Communications. 2016;52(37):6304-6307.Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: Macmillan; 2005.Bandeira N, Victoria P, Pevzner P, Arnott D, y Lill J. Beyond Edman degradation: Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12): 1336-1338. Disponible en: http://doi. org/10.1038/nbt1208-1336 (19 de febrero de 2020).Perez G, Perez C, Sousa-Cavada B, Moreira R, Richardson M. Comparison of the amino acid sequences of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry. 1991;30(8):2619-2621.Brown JR, Hartley BS. Location of disulfide bridges by diagonal paper electrophoresis. Biochem J. 1966;101: 241-228.Weeds AG, Hartley BS. Selective purification of the thiol peptides of myosin. Biochemical Journal, 1968; 107(4), 531-548.Weeds AG. Small sub-units of myosin. Biochemical Journal. 1967;105(2):25.Tang J, Hartley BS. A diagonal electrophoretic method for selective purification of methionine peptides. Biochemical Journal. 1967;102(2):593.Dixon HB, Perham RN. Reversible blocking of amino groups with citraconic anhydride. Biochemical Journal. 1968; 109(2): 312.Perham RN, Jones gmt. The determination of the order of lysine- containing: tryptic peptides of proteins by diagonal paper electrophoresis a carboxyl-terminal sequence for pepsin. European journal of biochemistry. 1967;2(1):84-89.Perham RN. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochemical Journal. 1967;105(3):1203-1207.Butler pJg, Hartley BS. Maleylation of amino groups. In Methods in enzymology. Vol. 25. Academic Press. 1972.Milstein C. A simple procedure for the fractionation of the tryptic peptides of the c-terminal half of immunoglobulin lambda-chains. Biochemical Journal. 1968;110(4):652.Milstein C. Linked groups of of residues in immunoglobulin κ chains. Nature,Winger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics. 2007;7:4158-4170. dOi:10.1002/pmic.200700209McDonagh B. Diagonal electrophoresis for the detection of protein disulfides. In Protein Electrophoresis Humana Press; Totowa, NJ: 2012.Wojcik R, Vannatta M, Dovichi N. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization. Anal. Chem. 2010;82(4):1564-1567. dOi: 10.1021/ac100029uMann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes by Mass Spectrometry. Annu. Rev. Biochem. 2001;70:437-473.Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y. Electrospray and Tandem Mass Spectrometry in Biochemistry. Biochemical Journal. 2001;355(Pt 3):545-561.Mano N, Goto J. Biomedical and Biological Mass Spectrometry. Analytical Sciences. 2003; 19(1): 3–14. dOi:10.2116/analsci.19.3.Gibson D, Costello C. Mass Spectrometry of Biomolecules. Ahuja S (ed). Handbook of bioseparations. San Diego: Academic Press; 2000. 299-327.Vega N. Caracterización bioquímica, funcional y biológica de la lectina de Salvia bogotensis y evaluación de su aplicación para la detección del antígeno Tn [Tesis de Doctorado]. Bogotá: Universidad Nacional de Colombia, 2004.Seattle Proteome Center (spc). Proteomics Tools. Disponible en: http://tools. proteomecenter.org/software.php. [4 de febrero de 2015].Bandeira N, Pham V, Pevzner P, Arnott D, y Lill JR. Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12):1336-1338. dOi:10.1038/nbt1208-1336Biemann K. Sequencing of Peptides by Tandem Spectrometry and High Energy Collision-Induced Dissociation. Methods in enzimology. 1990;193:455-479. dOi:10.1016/0076-6879(90)93433-lElviri L. etd and ecd Mass Spectrometry Fragmentation for the Characterization of Protein Post Translational Modifications. Jeevan KP. Tandem Mass Spectrometry-Applications and Principles. Croatia:InTech. 2012;7:161-178. Disponible en www.intechopen.com. dOi: 10.5772/35277. 2012Chang E, Pourmal S, Zhou C, Kumar R, Teplova M, Pavletich NP, et al. N-terminal amino acid sequence determination of proteins by N-terminal dimethyl labeling: pitfalls and advantages when compared with Edman degradation sequence analysis. J Biomol. Tech. 2016;27(2):61-74. dOi: 10.7171/jbt.16-2702-002.Deng J, Zhang G, Huang F, Neubert T. Identification of protein N-termini using tmpp or dimethyl labeling and mass spectrometry. Methods Mol. Biol. 2015;1295:249-258. dOi: 10.1007/978-1-4939-2550-6_19Shen PT, Hsu JL, Chen SH. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.Li L, Wu R, Yan G, Gao M, Deng C, Zhang X. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold nanoparticle-based depletion. Anal Bioanal Chem. 2016;408(2):441-448. dOi: 10.1007/s00216-015-9136-x.Twyman RM. Strategies for protein quantitation. In Principles of Proteomics, 2nd ed. New York, NY, usa: Garland Science, Taylor & Francis Group, llc; 2014.Konerman L, Collings BA, Douglas DJ. Cytochrome C folding kinetics studied by time resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:5554-5559.Konermann L, Douglas D. Unfolding of proteins monitored by electrospray ionization mass spectrometry: A comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998;9(12):1248-1254.Konermann L, Pan J, Wilson D. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. BioTechniques. 2006;40(2):135-141.Loo JA. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997;16:1-23. dOi:10.1016/j. jasms.2005.02.017M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognise blood group H determinants. Arch.Biochem. Biophys. 2004;492:180-190.Sharon M, Robinson C. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 2007;76:167-193.Heck AJ. Native Mass Spectrometry: A bridge between interactomics and structural biology. Nature Methods. 2008;5:927-933.Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9000 mass spectrometry experiments builds a global map of human protein complexes. Molecular Systems Biology. 2017;13(6):932. dOi:10.15252/msb.20167490Dickerson RE, Geis I. The structure and action of proteins. Londres: Harper & Row publishers, 1969.Multiple Sequence Alignment. Clustal. Disponible en: http:/www.ebi.ac.uk/ clustalw/. [Consultado 4 febrero 2020].Expasy. Bioinformatics Resource Portal. Disponible en: https://web.expasy. org/docs/relnotes/relstat.htm. [Consultado 4 febrero 2020].UniProtKB/Swiss-Prot UniProt release 2019. Disponible en: https://www. uniprot.org/statistics/Swiss-Prot. [Consultado 3 febrero 2020].Chavali S, Chavali P, Chalacu G, Sanchez de Groot N, Gemayel R, Latysheva N, et al. Constraints and Consequences of the Emergence of Amino Acid Repeats. Eukaryotic Proteins Nature Structural & Molecular Biology. 2017;24:765-777. dOi:10.1038/nsmb.3441Mularoni L, Ledda A, Toll Riera M, Alba M., Natural Selection Drives the Accumulation of Amino Acid Tandem Repeats in Human Proteins. Genome Res. 2010;20(6):745-754. dOi: 10.1101/gr.101261.109Eisenberg D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences. 2003;100(20):11207–11210. dOi:10.1073/pnas.2034522100Wikimedia Commons. Peptide bond cis trans miguelferig. Disponible en: https://commons.wikimedia.org/wiki/File:Peptide_bond_cis_trans_ miguelferig.jpg. [04 de febrero de 2020].Schiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal. 1967;7(2):121–135. dOi:10.1016/s0006-3495(67)86579-2Wikimedia commons. Helical Wheel 2nrl 77-92 KaelFischer Disponible en: https://commons.wikimedia.org/wiki/File:Helical_Wheel_2nrl_77-92_ KaelFischer.jpg. [04 de febrero de 2020].Dunnill P. The use of helical net-diagrams to represent protein structures. Biophysical Journal. 1968;8(7): 865–875. dOi:10.1016/ s0006-3495(68)86525-7Berndt KD. Types of Secondary Structure. Protein Secondary Structure. Helices. Estocolmo: Karolinska Institute, 1996. Disponible en: http://www. cryst.bbk.ac.uk/pps2/course/section8/ss-960531_5.html [20 de febrero de 2020].Sancho P. Tema 4a. Estructura tridimensional de las proteínas. Segundo curso de farmacia 2012-2013 [Presentación]. Universidad de Alcalá. Disponible en: http://www3.uah.es/bioquimica/Sancho/farmacia/temas/ tema-4a_proteinas-estructura.pdf [20 de febrero de 2020].Costantini S, Colonna G, Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochemical and Biophysical Research Communications. 2006; 342(2): 441–451. dOi:10.1016/j.bbrc.2006.01.159Ashok KT. cfssp: Chou and Fasman Secondary Structure Prediction server. Wide spectrum: Research Journal. 2013; 1(9):15-19.Koehl P, Levitt M. Structure-based conformational preferences of amino acids. Proceedings of the National Academy of Sciences. 1999; 96(22): 12524–12529. dOi:10.1073/pnas.96.22.12524Branden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.Clothia C. Principles that Determine the Structure of Proteins. Ann. Rev. Biochem. 1984;53:537-572.Efimov AV. Super-secondary Structures and Modeling of Protein Folds. Methods Mol Biol. 2013;932:177-189. Disponible en dOi: 10.1007/978-1-62703-065-6_11.Craig L. Tertiary Structure Chapter 3, 4, & 5 [Presentación]. Slide Player. Disponible en: https://slideplayer.com/slide/6407321/ [20 de febrero de 2020].Sheriff S, Hendrickson WA, Smith JL. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J. Mol. Biol. 1987;197:273-296. Disponible en: https://www.ebi.ac.uk/pdbe/entry/pdb/2mhr/ [20 de febrero de 2020].Wilches tma. Aproximación a la estructura primaria de lectinas específicas para el antígeno tn e identificación de nuevas lectinas específicas para glucosa/manosa en semillas de Salvia bogotensis y Lepechinia bullata [Tesis de doctorado]. Universidad Nacional de Colombia; 2017.Hidalgo D.J. Detección, purificación y caracterización parcial de lectinas presentes en algas marinas colombianas [Tesis de Maestría]. Universidad Nacional de Colombia; 2017.Branden CI, Tooze J. Introduction to protein structure. New York: Garland Science; 2012.Walshaw J, Mills A. Alpha/Beta Topologies. Protein Folds. Birkbeck College, Londres; 1995. Disponible en http://www.cryst.bbk.ac.uk/pps95/course/8_ folds/alph_bet_wnd.html [20 de febrero de 2020].Branden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.Wikimedia Commons. tim barrel. Disponible en: https://commons. wikimedia.org/wiki/File:tim_barrel.tif [20 de febrero de 2020].Computationally designed tim-barrel protein, Halfflr. dOi: 10.2210/ pdb3tdm/pdb. Disponible en: https://www.rcsb.org/structure/3tdm [05 de febrero de 2020].3qvO. Structure of a Rossmann-fold nad(p)-binding family protein from Shigella flexneri. dOi: 10.2210/pdb3qvO/pdb. Disponible en: https://www.rcsb. org/structure/3qvO [05 de febrero de 2020].rcsb pdb.The crystal structure of class I Major histocompatibility complex, H-2Kd at 2.0 A resolution. dOi: 10.2210/pdb1vgK/pdb. Disponible en: https://www.rcsb.org/structure/1vgK [05 de febrero de 2020].Georgia State University.Polarización lineal. Hyperphysics. Disponible en: http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/polclas.html. [05 de febrero de 2020].Mancho C. Luz polarizada. El rincon de la Ciencia. 2008;48. Disponible en: http://rincondelaciencia.educa.madrid.org/Curiosid2/rc-114/rc-114.html. [05 de febrero de 2020].Cortazar A, Silva EP. Métodos Físico-Químicos en Biotecnología pcr. México: Universidad Nacional Autónoma de México, Instituto de Biotecnología; 2004. Disponible en: http://www.ibt.unam.mx/computo/pdfs/ met/dicroismocircular2013.pdf. [05 de febrero de 2020].Van Holde KE. Circular Dichroism and Optical Rotatory Dispersion. Physical Biochemistry. New York: Prentice Hall; 1971. 202-220.Mata E. Métodos fisco-químicos en biotecnología. Disponible en: http://www. ibt.unam.mx/computo/pdfs/met/dicroismocircular2013.pdf [05 de febrero de 2020].Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols. 2007;1(6):2876-2890. dOi:10.1038/ nprot.2006.202Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc. Natl. Acad. Sci. 2015;112(24):E3095-E3103. Disponible en: dOi: 10.1073/pnas.1500851112.Kelly M, Price N. The Application of Circular Dichroism to Studies of Protein Folding and Unfolding. Biochimica et Biophysica Acta. 1997;1338:161-185.Pontificia Universidad Católica de Chile. Difracción de Bragg. Laboratorio de Difracción de Rayos X. Disponible en: http://servicios.fis.puc.cl/rayosx/teoria. html. [05 de febrero de 2020].Matthews BW. X-ray Structure of Proteins Structure. Neurath H, Hill R. The Proteins. Vol. iii. Tercera edición. Nueva York: Academic Press; 1977. 404-590.Dickerson RE. X-Ray Analisys and Protein Structure. Hans N. The Proteins. Vol. II. Segunda edición. New York: Academic Press; 1964. 603-778.Hendrickson WA. Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics. 2014;47(01):49-93. dOi:10.1017/ s0033583514000018Wuthrich K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science. 1989;243(4887):45-50. dOi:10.1126/ science.2911719Wüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. Journal of Molecular Biology. 1982;155(3):311–319. dOi:10.1016/0022-2836(82)90007-9Schirra HJ. Analysis of nmr spectra. Structure Determination of Proteins with nmr Spectroscopy. Disponible en: http://www.cryst.bbk.ac.uk/pps2/ projects/schirra/html/assign.htm [20 de febrero de 2020].Bangerter BW. Nuclear magnetic resonance. Glasel J, Deutscher M. Introduction to Biophysycal Methods for Protein and Nucleic Acid Research. San Diego, California: Academic Press; 1995. 317-379.Billeter M. Comparison of Protein Structures Determined by nmr in Solution and by X-Ray Diffraction in Single Crystals. Quart. Rev Biophys. 1992;25:325-377.Dubochet J, Adrian M, Chang J, Homo J, Lepault J, McDowall M. Cryo-Electron Microscopy of Vitrified Specimens. Q. Rev. Biophys. 1988;21:129-228, Disponible en: http://dx.doi.org/10.1017/ S0033583500004297Cheng Y, Grigorieff N, Penczek P, Walz T. A Primer to Single-Particle Cryoelectron Microscopy. Cell. 2015;161:438-449. Disponible en: http:// dx.doi.org/10.1016/j.cell.2015.03.050Kühlbrandt, W. Cryo-em enters a new era. eLife, 3. 2014. dOi:10.7554/ elife.03678Orlova E, Saibil H. Structural Analysis of Macromolecular Assemblies by Electron Microscopy. Chem. Rev. 2011;111:7710-7748.Egelman E. Three-Dimensional Reconstruction of Helical Polymers. Arch. Biochem. Biophys. 2015;581:54-58. dOi:10.1016/j.abb.2015.04.004Briggs J. Structural Biology in situ. The potential of Subtomogram Averaging, Curr. Opin. Struct. Biol. 2013;23:261–267. Disponible en: http://dx.doi. org/10.1016/j.sbi.2013.02.003Lucic V, Forster F, Baumeister W. Structural Studies By Electron Tomography: from Cells to Molecules. Annu. Rev. Biochem. 2005;74:833-865.Schenk A, Castaño-Diez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D Reconstruction from 2D Crystal Image and Diffraction Data. Meth. Enzymol. 2010;482(2010):101–129. Disponible en: http://dx.doi.org/10.1016/ S0076-6879(10)82004-X.Booth D, Avila-Sakar A, Cheng Y. Visualizing Proteins and Macromolecular Complexes by Negative Stain em: from Grid Preparation to Image Acquisition. J. Vis. Exp. 2011;(58):e3227. dOi: 10.3791/3227Lau WcY, Rubinstein JL. Single Particle Electron Microscopy. Electron Crystallography of Soluble and Membrane Proteins. 2012;401-426. dOi:10.1007/978-1-62703-176-9_22Thompson R, Walker M, Siebert A, Muench S, Ranson N. An Introduction to sample preparation and imaging by Cryo-Electron Microscopy for structural biology. Methods. 2016;100:3-15.Stark H. GraFix: Stabilization of fragile macromolecular complexes for single particle Cryo-em. Meth. Enzymol. 2010;481:109-126. Disponible en: http:// dx.doi.org/10.1016/S0076-6879(10)81005-5McMullan G, Faruqi A, Clare D, Henderson R. Comparison of Optimal Performance at 300 Kev of Three Direct Electron Detectors for Use in Low Dose Electron Microscopy. Ultramicroscopy. 2014;147:156-163. Disponible en: http://dx.doi.org/10.1010/j.ultramic.2014.08.002.Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. 2004;3:863-873.Bertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.Hart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.Bucior I, Burguer MM. Carbohydrate-carbohydrate interactions in cell recognition. Curr. Opinion Struc. Biol.2004;14:631-637.Wormald MR, Sharon N. Carbohydrates and Glycoconjugates. Progress in non-mammalian glycosylation, glycosyltransferases, invertebrate lectins and carbohydrate-carbohydrate interactions. Curr. Opinion Struc. Biol. 2004;14:591-592.Laine RA. The information potential in the sugar code. Gabius HJ, Gabius S (eds). Glycosciences. Status and perspectives. London: Chapman and Hall; 1997. 1-14.Gabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim.Biophys. Acta. 2002;1572:165-177.Von der Lieth CW. Bioinformatics for glycomics: Status, methods, requirements and perspectives. Briefings in bioinformatics. 2004;5(2):164– 178. dOi:10.1093/bib/5.2.164Baycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical Proteomics. 2014;11(1):15. dOi:10.1186/1559-0275-11-15Böhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macías MA, Lütteke T. Glycosciences. db: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Disponible en; doi:10.1093/ nar/gky994. [6 de febrero de 2020].Yan A, Lennarz W. Unraveling the mechanism of protein N-glycosylation. J.Biol. Chem. 2005;280:3121-3124. dOi:10.1074/jbc.R400036200Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. Eur. J. Biochem. 2000;267(5):1434-1440Wilson I. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology. 2002;12(5):569–577. dOi:10.1016/ s0959-440x(02)00367-6.Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Medicinal Chem. 2005;13:5021-5034.Caset A, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research. 2010;12:204-217.Ju T, Aryal R, Kudelka M, Wang Y, Cummings R. The Cosmc connection to the Tn antigen in cancer. Cancer Biomarkers. 2014;14:63–81.Ju T, Otto V, Cummings R. The Tn Antigen—Structural Simplicity and Biological Complexity. Angew. Chem. Int. Ed. 50: 1770 – 1791.2011Kailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410. dOi: 10.1007/s00216-016-9880-6.Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 2013;(9-10):618-31. dOi: 10.1002/prca.201300024.Lisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42:11-17.Freire T, Osinaga E. A Immunological and biomedical relevance of the Tn antigen. Inmunología. 2003;22(1):27-38.Van den steen P, Rudd P, Wormald M, Dwek, Opdenakker G. O-Linked glycosylation. Trends in Glycosc. Glycotech. 2000;12:35-49.Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nature Reviews Immunology. 2008; 8(11), 874–887. dOi:10.1038/nri2417Fukuda M. Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta. 2002;1573:194-405.Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. muc1 and cancer. Biochimica et Biophysica Acta (bba) - Molecular Basis of Disease. 1999;1455(2-3):301–313. dOi:10.1016/s0925-4439(99)00055-1Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: Structures, functions, and mechanisms. Annual Review of Biochemistry. 2008;77(1):521–555. dOi:10.1146/annurev.biochem.76.061005.092322Drickamer K, Taylor ME. Glycan arrays for functional glycomics. Genome Biol. 2002;3: 1034.1-1034.4.Disney MD, Seeberger PH. Carbohydrate arrays as tools for the glycomics revolution. ddt:Targets. 2004;3:151-158.Liang PH, Wu CY, Greenberg WA, Wong CH. Glycan arrays: biological and medical applications. Curr.Opinion. Chem.Biol. 2008;12:86-92.Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun. 2018;9(1):258. dOi: 10.1038/ s41467-017-02747-y.Tateno H, Mori A, Uchiyama N, Yabe R, Iwaki J, Shikanai TT et al. Glycoconjugate microarray based on an evanescent–field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology. 2008:18:789-798.Oyelaran O, Gildersleeve JC. Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Review of Vaccines. 2007;6(6):957–969. dOi:10.1586/14760584.6.6.957Bedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography J. Chromat. 2005;1079: 236-245.Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta. 2016; 943:8- 16. dOi: 10.1016/j.aca.2016.08.035.Haojie Lu, Ying Zhang, Pengyuan Yang. Advancements in mass spectrometry-based glycoproteomics and glycomics, National Science Review. Disponible en: https://doi.org/10.1093/nsr/nww019. [06 de febrero de 2020].Hirabayashi J, Kasai K. Separation technologies for glycomics. J. Chromat. B. 2002;771:67-87.Khajehpour M, Dashnau JL, Vanderkooi JM. Infrared spectroscopy used to evaluate glycosylation of proteins. Anal.Biochem. 2005; 348:40-48.Duverger E, Frison N, Roche AC, Monsigny M. Carbohydrate- lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85:167-179.Reynolds M, Pérez S. Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie. 2011;14(1):74-95.Shimomura O, Oda T, Tateno H, Ozawa Y, Kimura S, Sakashita S, ... Ohkohchi N. A novel therapeutic strategy for pancreatic cancer: Targeting cell surface glycan using rBC2LC-N Lectin–Drug Conjugate (ldc). Molecular Cancer Therapeutics. 2017;17(1): 183–195. dOi:10.1158/1535-7163. mct-17-0232Hirabayashi J. Oligosaccharide microarrays for glycomics. Trends Biotech. 2003;21:141-143.Hirabayashi J, Tateno H, Shikanai T, Aoki-kinoshita KFf, Narimatsu H. The Lectin Frontier Database (lfdb), and data generation based on frontal affinity chromatography. Molecules. 2015;20(1):951-73. dOi: 10.3390/ molecules20010951.Nakamura-Tsuruta S, Uchiyama N, Kominami J. Hirabayashi J. Frontal affinity chromatography: Systematization for quantitative interaction analysis between lectins and glycans. Nilsson CL (ed.) Lectins: Analytical technologies. Amsterdam: Elsevier, 2007. 239-266Research Center for Medical Glycoscience. DataBase for glycan structure analysis and synthetic technology. Lectin Frontier Database. Disponible en: http://riodb.ibase.aist.go.jp/rcmg/glycodb/. [06 de febrero de 2020].Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. Febs Journal. 2010; 277:95–105.Hizal DB, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical proteomics. 2014;11(1):15.Cermav (cnrs). Cermav. Disponible en: www.cermav.cnrs.fr. [06 de febrero de 2020].Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys.Acta 1999;1473:67-95.Freeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R-143R.Madsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Wandall HH. Cancer associated aberrant protein O-Glycosylation can modify antigen processing and immune response. PLoS One, 2012;7(11). e50139. http://doi.org/10.1371/journal.pone.0050139Kailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410.doi: 10.1007/s00216-016-9880-6.Kuno A, Uchiyama N, Koseki-kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent–field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods. 2005;2:851-856.Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Comm. 2008;370:259-263.Hu S, Wong DT. Lectin microarray. Proteomics - Clinical Applications. 2009;3(2):148–154. dOi:10.1002/prca.200800153Edgea Faltynek C, Hof L, Reichert L, Weber P. Deglycosilation of glycoprotenis by trifuoromethane sulfonic acid. Analytical Biochemistry. 1981;118: 131-137.Montreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. Glycoproteins in Carbohydrate Analysis. A practical approach 7. Chaplin MF, Kennedy J.F (eds). United Kingdom: irl Press, Oxford; 1994.Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol CellProteomics. 2002;1:791–804.Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins—a tutorial. Analytical and Bioanalytical Chemistry. 2017;409(19):4483–4505. dOi:10.1007/s00216-017-0406-7Quian Fan J, Namiky J, Matsuoka K, Lee YC. Comparison of acid hydrolitic conditions for asn linked oligosaccharides. Analytical Biochemistry. 1994;219: 375-378.Biorad. Glycoprotein and Oligosaccharide Analysis. 1997;149-155.Chaplin MF. Monosacarides. Chaplin MF, Kennedy J.F (eds.) Carbohydrate Analysis. A practical approach. United Kingdom: irl Press, Oxford; 1994.Patel TP y Parekh RB. Release of oligosaccharides from glyco¬proteins by hydrazinolysis. Meth. Enzymol., 230, 57-66 (1994)Oxford Glyco Systems. Tools for Glycobiology. Oxford: Oxford Glyco Systems; 1994. Pp. 152.Li SY, Höltje JV, Young KD. Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Analytical Biochemistry. 2004; 326(1): 1–12. dOi:10.1016/j.ab.2003.11.007Bigge J, Patel T, Bruce J, Goulding P, Cahrles S y Parekh R. Non selective and efficient fluorescent labeling of glycans using 2-amino benzamide and antranilic acid.Anal.Biochem. 1995;230:229-238.Kenedy J, Pagliuca G. Oligosaccharides in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF (eds) United Kingdom: irl Press, Oxford; 1994. Pp 64-67.Cummings R, Pierce M. The challenge and promise of glycomics. Chem Biol. 2014;21(1): 1–15. dOi: 10.1016/j.chembiol.2013.12.010.Brocke C, Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Medicinal Chem. 2002;10: 3085-3112.Hemmerich S. Glycomics: coming of age across the globe. ddt. 2005; 10:307-309.Gouyer V, Leteurtre E, Zanetta J, Lesuffleur T, Delannoy P, Huer G. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNacαα-o-bn in muosal cell lines: an effect mediated through the intracellular synthesis of complex GalNacαα-o- bn oligosaccharides. Front. Biosc. 2001;6: 1235-1244.Hirabayashi J, Kuno A, Tateno H. Lectin-based structural glycomics: A practical approach to complex glycans. Electrophoresis. 2011;32(10):1118– 1128. dOi:10.1002/elps.201000650Hiono T, Matsuda A, Wagatsuma T, Okamatsu M, Sakoda Y, Kuno A. Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology. 2019; 527:132–140. dOi:10.1016/j.virol.2018.11.010Wang, YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research. 2011; 21(11): 1551–1563. doi:10.1038/cr.2011.148Pomin V, Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals. 2018; 11(1):27. dOi:10.3390/ph11010027Sasisekharan R, Raman R y Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annual Review of Biomedical Engineering. 2006; 8(1): 181–231. dOi:10.1146/annurev. bioeng.8.061505.095745Ricardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, Mandel U, Clausen H, Felix A, Lunet N, David L. Detection of glyco-mucin profiles improves specificity of muc16 and muc1 biomarkers in ovarian serous tumours. Mol Oncol. 2015; 9(2):503-12. dOi: 10.1016/j.molonc.2014.10.005.Storr SJ, Royle L, Chapman CJ, Hamid uma, Robertson JF, Murray A, ... y Rudd PM. The O-linked glycosylation of secretory/shed muc1 from an advanced breast cancer patient’s serum. Glycobiology.2008; 18: 456-462.Revoredo L, Wang SH, Bennett E, Clausen H, Moremen K, Jarvis D, Ten Hagen K, Tabak L y Gerken T. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family Glycobiology. 2016; 4:360-376. dOi: 10.1093/glycob/cwv108.Kishikawa T, Ghazizadeh M, Sasaki Y, Springer GF. Specific role of T and Tn tumor-associated antigens in adhesion between a human breast carcinoma cell line and normal human breast epithelial cell line. Jpn. J. Cancer Res.1999; 90: 326-332.Lisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42: 11-17.Dotan N. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 2006;15:442-450.Arnoudse CA, García JJ, Saeland E, Van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr. Opinion Immunol. 2005; 17: 1-7.PrendergasT JM, Galvao Da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, Desander J, Behrens J, Rueda BR. Novel anti-Sialyl- Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs. 2017;9(4):615-627. dOi: 10.1080/19420862.2017.1290752Bonomelli C, Crispin M, Scanlan CN, Doores KJ. Hiv Glycomics and Glycoproteomics. In: Pantophlet R. (eds). Hiv glycans in infection and immunity. New York, NY: Springer; 2014.Wang D. Glyco-epitope diversity: An evolving area of glycomics research and biomarker discovery. Journal of Proteomics & Bioinformatics, 2014; 07(02). dOi:10.4172/jpb.10000e24Lo-man R, Vichier-Guerre S, Bay S, Deriaud E, Cantacuzene D, Leclerc C. Anti-tumor immunity provided by synthetic multiple antigen glycopeptide displaying a tri-Tn glycotope. J. Immunol. 16: 2829-2854.2001Vichier–Guerre S, Lo-man R, Huteau V, Deriaud E, Leclerc C, Bay S. Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen. Bioorg. Medicinal Chem Letters. 2004; 14: 3567-3570.Miyajima K, Takahiro N, Kiyoshi I, Kazuo A. Synthesis of Tn and sialil Tn antigen-lipid and analog conjugates for synthetic vaccines. Chem. Pharm. Bull. Tokyo. 1997;45: 1544-1546.Bay S, Loman R, Osinaga E, Nakada H, Leclerc C, Cantacuzene D. Preparation of a multiple antigen glycopeptide (mag) carrying the Tn antigen-A possible approach to a synthetic carbohydrate vaccine. J. Peptide Res. 1997;49: 620-625.Chan HS, Dill KA. The protein folding problem. Physics today. 1993;46(2):24-32.Voet D, Voet JG. Techniques of protein purification. Biochemistry. New York, NY: John Wiley and Sons Inc., 1990.75.Roy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure. 2012;20(6):987-997.Floudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R. Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science. 2006;61(3):966-988.Singh M, Kim PS. Towards predicting coiled-coil protein interactions. recOmb01: The Fifth Annual International Conference on Computational Molecular Biology. Association for Computing Machinery: Quebec, Montreal, Canada; 2001. 279-286.Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry. 1974;13(2):222-245.Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978;120(1):97-120.Garnier J, Robson B. The gOr method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation: Springer; 1989. 417-465.Gibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. Journal of molecular biology. 1987;198(3):425-443.Garnier J, Gibrat JF, Robson B. gOr method for predicting protein secondary structure from amino acid sequence. Methods in enzymology. 266: Elsevier; 1996. 540-553.Kloczkowski A, Ting KL, Jernigan RL, Garnier J. Combining the gOr v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins: Structure, Function and Bioinformatics. 2002;49(2):154-166.Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. Journal of molecular biology. 1988;202(4):865-884.Holley LH, Karplus M. Protein secondary structure prediction with a neural network. Proceedings of the National Academy of Sciences. 1989;86(1):152-156.Maclin R, Shavlik JW. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine Learning. 1994;11(2-3):195-215.Rost B, Sander C. Prediction of protein secondary structure at better than 70 % accuracy. Journal of molecular biology. 1993;232(2):584-599.Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function, and Bioinformatics. 2002;47(2):228-235.Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-230.Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of molecular biology. 1997;268(1):209-225.Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field. Proteins: Structure, Function and Bioinformatics. 2012;80(7):1715-1735.Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A. Critical assessment of methods of protein structure prediction—Round viii. Proteins: Structure, Function and Bioinformatics. 2009;77(S9):1-4.Jauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of casp7 structure predictions for template free targets. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):57-67.Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Annual review of biophysics and biomolecular structure. 2000;29(1):291-325.Read RJ, Chavali G. Assessment of casp7 predictions in the high accuracy template‐based modeling category. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):27-37.Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253(5016):164-170.Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Science. 2000;9(2):232-241.Söding J. Protein homology detection by Hmm–Hmm comparison. Bioinformatics. 2005;21(7):951-960.Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the prOspectOr_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics. 2004;56(3):502-518.Xu Y, Xu D, Crawford OH, Einstein JR, Larimer F, Uberbacher E, et al. Protein threading by prOspect: a prediction experiment in casp3. Protein engineering. 1999;12(11):899-907.Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 1970;48(3):443-453.Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755-63.Wu S, Zhang Y. muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function and Bioinformatics. 2008;72(2):547-556.Yang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics. 2011;27(15):2076-2082Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3d-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19(8):1015-1018.Wu S, Zhang Y. lOmets: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007;35(10):3375-3382.MacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA. Assessment of the protein‐structure refinement category in casp8. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):66-80.Summa CM, Levitt M. Near-native structure refinement using in vacuo energy minimization. Proceedings of the National Academy of Sciences. 2007;104(9):3177-3182.Skolnick J. In quest of an empirical potential for protein structure prediction. Current opinion in structural biology. 2006;16(2):166-171.Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins: Structure, Function, and Bioinformatics. 2002;48(2):192-201.Zhang Y. Template‐based modeling and free modeling by i‐tasser in casp7. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):108-117.Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, et al. Modification and optimization of the united-residue (unres) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. The Journal of Physical Chemistry B. 2007;111(1):260-285.Holm L, Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C? trace. Journal of molecular biology. 1991;218(1):183-194.Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full‐atom protein models from reduced representations. Journal of computational chemistry. 2008;29(9):1460-1465.Li Y, Zhang Y. remO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins:from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins: Structure, Function, and Bioinformatics. 2009;76(3):665-676.Zhang J, Liang Y, Zhang Y. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure. 2011;19(12):1784-1795.Zhang L, Skolnick J. What should the Z‐score of native protein structures be? Protein science. 1998;7(5):1201-1207.Cozzetto D, Kryshtafovych A, Tramontano A. Evaluation of casp8 model quality predictions. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):157-166.Fischer D. Servers for protein structure prediction. Current opinion in structural biology. 2006;16(2):178-182.Kryshtafovych A, Fidelis K, Tramontano A. Evaluation of model quality predictions in casp9. Proteins: Structure, Function, and Bioinformatics. 2011;79(S10):91-106.Zhang Y. Protein structure prediction: when is it useful? Current opinion in structural biology. 2009;19(2):145-155.Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, net. Proceedings of the National Academy of Sciences. 2011;108(38):15810-5.Giorgetti A, Raimondo D, Miele AE, Tramontano A. Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics. 2005;21(suppl_2):ii72-ii76.Arakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics. 2004;20(7):1087-1096.Malmström L, Riffle M, Strauss cem, Chivian D, Davis TN, Bonneau R, et al. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. plos biology. 2007;5(4). Disponible en: https://doi.org/10.1371/journal.pbio.0050076572 - BioquímicaBioquímicaAminoácidosProteínas - AnálisisIntroducción al análisis estructural de proteínas y glicoproteínasLibroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33http://purl.org/coar/version/c_970fb48d4fbd8a85TextSede BogotáBogotá, ColombiaInvestigadoresPúblico generalORIGINALIntroducción al analisis estructural de proteinas y glicoproteinas.pdfIntroducción al analisis estructural de proteinas y glicoproteinas.pdfLibro Introducción al análisis estructural de proteínas y glicoproteínasapplication/pdf12578695https://repositorio.unal.edu.co/bitstream/unal/81133/3/Introducci%c3%b3n%20al%20analisis%20estructural%20de%20proteinas%20y%20glicoproteinas.pdf53d6e964bd9a65718937279d712a2effMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81133/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAILIntroducción al analisis estructural de proteinas y glicoproteinas.pdf.jpgIntroducción al analisis estructural de proteinas y glicoproteinas.pdf.jpgGenerated Thumbnailimage/jpeg10079https://repositorio.unal.edu.co/bitstream/unal/81133/4/Introducci%c3%b3n%20al%20analisis%20estructural%20de%20proteinas%20y%20glicoproteinas.pdf.jpgd48ed544462b2e5be9356e67eec2bcc6MD54unal/81133oai:repositorio.unal.edu.co:unal/811332024-08-04 23:09:53.825Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK