Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea

ilustraciones, gráficos

Autores:
Moreno Florez, Ana Isabel
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86049
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86049
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea
660 - Ingeniería química::666 - Cerámica y tecnologías afines
680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadas
Regeneración Ósea
Osteomielitis
Productos con Acción Antimicrobiana
Ingeniería de Tejidos
Própolis
Antimicrobianos
Antiinfecciosos
Impresión Tridimensional
Impresion 3D
Regeneración ósea
Actividad antimicrobiana
Propóleos
3D printing
Bone regeneration
Wollastonite
Antimicrobial activity
Propolis
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_91912733b2158364a5a413084f42b791
oai_identifier_str oai:repositorio.unal.edu.co:unal/86049
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
dc.title.translated.eng.fl_str_mv Production by additive manufacturing of scaffolds with antimicrobial properties from Propolis from Tame (Arauca) for bone regeneration.
title Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
spellingShingle Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea
660 - Ingeniería química::666 - Cerámica y tecnologías afines
680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadas
Regeneración Ósea
Osteomielitis
Productos con Acción Antimicrobiana
Ingeniería de Tejidos
Própolis
Antimicrobianos
Antiinfecciosos
Impresión Tridimensional
Impresion 3D
Regeneración ósea
Actividad antimicrobiana
Propóleos
3D printing
Bone regeneration
Wollastonite
Antimicrobial activity
Propolis
title_short Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
title_full Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
title_fullStr Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
title_full_unstemmed Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
title_sort Producción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración ósea
dc.creator.fl_str_mv Moreno Florez, Ana Isabel
dc.contributor.advisor.none.fl_str_mv García, Claudia Patricia
Pelaez Vargas, Alejandro
dc.contributor.author.none.fl_str_mv Moreno Florez, Ana Isabel
dc.contributor.financer.none.fl_str_mv Minciencias Plan Bienal de Convocatorias 2019
Minciencias Convocatoria de proyectos que conectan el conocimiento - Proyecto 2019 852-2019. Número de contrato 80740-476-2020.
dc.contributor.researchgroup.spa.fl_str_mv Materiales Cerámicos y Vítreos
dc.contributor.orcid.spa.fl_str_mv Moreno Florez, Ana Isabel [0000-0003-2823-8822]
dc.contributor.cvlac.spa.fl_str_mv MORENO FLOREZ, ANA ISABEL https://scienti.minciencias.gov.co/cvlac/jsp/report-index.jsp
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Isabel-Moreno-4
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea
660 - Ingeniería química::666 - Cerámica y tecnologías afines
680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadas
topic 600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea
660 - Ingeniería química::666 - Cerámica y tecnologías afines
680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadas
Regeneración Ósea
Osteomielitis
Productos con Acción Antimicrobiana
Ingeniería de Tejidos
Própolis
Antimicrobianos
Antiinfecciosos
Impresión Tridimensional
Impresion 3D
Regeneración ósea
Actividad antimicrobiana
Propóleos
3D printing
Bone regeneration
Wollastonite
Antimicrobial activity
Propolis
dc.subject.decs.none.fl_str_mv Regeneración Ósea
Osteomielitis
Productos con Acción Antimicrobiana
Ingeniería de Tejidos
Própolis
Antimicrobianos
Antiinfecciosos
Impresión Tridimensional
dc.subject.proposal.spa.fl_str_mv Impresion 3D
Regeneración ósea
Actividad antimicrobiana
Propóleos
dc.subject.proposal.eng.fl_str_mv 3D printing
Bone regeneration
Wollastonite
Antimicrobial activity
Propolis
description ilustraciones, gráficos
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-08T18:45:43Z
dc.date.available.none.fl_str_mv 2024-05-08T18:45:43Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86049
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86049
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Nickolas TL, Leonard MB, Shane E. Chronic kidney disease and bone fracture: a growing concern. Kidney Int. 2008;74(6):721-31
Iqbal MM. Osteoporosis: Epidemiology, Diagnosis, and Treatment: South Med J. 2000;93(1):2-19
Compston J. HIV infection and bone disease. J Intern Med. 2016;280(4):350-8
Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385-97
Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, et al. Osteoporosis: A Review of Treatment Options. P T Peer-Rev J Formul Manag. 2018;43(2):92-104
Levy S, Feduska JM, Sawant A, Gilbert SR, Hensel JA, Ponnazhagan S. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone. 2016;93:113-24
Miranda LL, Guimarães-Lopes VDP, Altoé LS, Sarandy MM, Melo FCSA, Novaes RD, et al. Plant Extracts in the Bone Repair Process: A Systematic Review. Mediators Inflamm. 2019;2019:1-22
Hoexter DL. Bone Regeneration Graft Materials. J Oral Implantol. 2002;28(6):290-4
Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y, Yan C. 3D-printed cellular structures for bone biomimetic implants. Addit Manuf. 2017;15:93-101
Kashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a review. Biomater Sci. 2019;7(10):3961-83
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-62
Venkatraman SK, Swamiappan S. Review on calcium‐ and magnesium‐based silicates for bone tissue engineering applications. J Biomed Mater Res A. 2020;108(7):1546-62
Liu A, Sun M, Shao H, Yang X, Ma C, He D, et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. J Mater Chem B. 2016;4(22):3945-58
Shao H, Liu A, Ke X, Sun M, He Y, Yang X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B. 2017;5(16):2941-51
Saleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers. 2021;13(5):753
Jorge LS, Chueire AG, Rossit ARB. Osteomyelitis: a current challenge. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2010;14(3):310-5
Carek P, Dickerson L, Sack J. Diagnosis and Management of Osteomyelitis. Am Fam Physician. 2001; 63(12):2413-20
Healy B, Freedman A. Infections. BMJ. 2006;332(7545):838-41.
Ciampolini J. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479-83
Hesham M, Elshishtawy H, El Kady S, Wahied D. Antibacterial Effect of Pre-constructed 3D Bone Scaffolds before and after Modification with Propolis. Open Access Maced J Med Sci. 2022;10(A):295-300
Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26(2):83-99
El Menyiy N, Bakour M, El Ghouizi A, El Guendouz S, Lyoussi B. Influence of Geographic Origin and Plant Source on Physicochemical Properties, Mineral Content, and Antioxidant and Antibacterial Activities of Moroccan Propolis. Alencar SMD, editor. Int J Food Sci. 2021;2021:1-12
Hegazi AG, El Hady FKA. Egyptian Propolis: 3. Antioxidant, Antimicrobial Activities and Chemical Composition Of Propolis From Reclaimed Lands. Z Für Naturforschung C. 2002;57(3-4):395-402.
Sabir A, Sumidarti A. Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia. Saudi J Biol Sci. 2017;24(5):1034-7
Forma E, Bryś M. Anticancer Activity of Propolis and Its Compounds. Nutrients. 2021;13(8):2594
Machado CS, Mokochinski JB, Lira TOD, De Oliveira FDCE, Cardoso MV, Ferreira RG, et al. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evid Based Complement Alternat Med. 2016;2016:1-11
Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N. A review of: Application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C. 2015;48:556-65.
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater.2019;84:16-33.
Farré-Guasch E, Wolff J, Helder MN, Schulten EAJM, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg. 2015;73(12):2408-18.
Bhumiratana S, Vunjak-Novakovic G. Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Transl Med. 2012;1(1):64-9.
Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C. 2017;70:913-29.
Mallick M Are RP, Babu AR. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia. 2022;22:101391.
Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12(3):211-23.
Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Res. 2013;1(3):216-48.
Peacock ZS. Controversies in Oral and Maxillofacial Pathology. Oral Maxillofac Surg Clin N Am. 2017;29(4):475-86.
Rao N, Ziran BH, Lipsky BA. Treating Osteomyelitis: Antibiotics and Surgery: Plast Reconstr Surg. 2011;127:177S-187S.
Fischbach MA, Walsh CT. Antibiotics for Emerging Pathogens. Science. 2009;325(5944):1089-93.
Harvey A. Natural products in drug discovery. Drug Discov Today. 2008;13(19-20):894-901.
Butler MS, Buss AD. Natural products — The future scaffolds for novel antibiotics? Biochem Pharmacol. 2006;71(7):919-29.
Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59(4-5):339-59.
O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration. Tissue Eng Part B Rev. 2015;21(1):103-14.
D. S, C. R. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001;10(0):S86-95.
Gong H, Zhu D, Gao J, Lv L, Zhang X. An adaptation model for trabecular bone at different mechanical levels. Biomed Eng OnLine. 2010;9(1):32.
Greene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G. Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab. 2012;30(5):580-7.
Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114-39.
Belavý DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, Bock O, et al. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. 2011;22(5):1581-91.
Lanyon LE. Bone: The Architecture of Bone and How it is Influenced by External Loading. En: Older J, editor. Implant Bone Interface [Internet]. London: Springer London; 1990 [citado 6 de noviembre de 2023]. p. 101-13. Disponible en: http://link.springer.com/10.1007/978-1-4471-1811-4_15
Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 2001;22(19):2581-93.
Bilezikian JP, Bouillon R, Clemens T, Compston J, Bauer DC, Ebeling PR, et al., editores. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism [Internet]. 1.a ed. Wiley; 2018 [citado 12 de octubre de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119266594
Davies, J.E. Bone Engineering. First Edition. Toronto: EM Squared Inc.; 2000. 454 p. (1; vol. 1).
Bilezikian JP, Martin TJ, Clemens TL, Rosen CJ, editores. Principles of bone biology. Fourth edition. London: Academic Press, an imprint of Elsevier; 2020. p. 51
Ducy P, Schinke T, Karsenty G. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science. 2000;289(5484):1501-4.
Cowan JA, Dimick JB, Wainess R, Upchurch GR, Chandler WF, La Marca F. Changes in Utilization of Spinal Fusionin the United States. Neurosurgery. 2006;59(1):15-20.
Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.
Soucacos PN, Johnson EO. Current concepts and applications in the musculoskeletal and peripheral nervous systems. Curr Orthop. 2005;19(6):453-60.
Frohlich M, Grayson W, Wan L, Marolt D, Drobnic M, Vunjak- Novakovic G. Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Curr Stem Cell Res Ther. 2008;3(4):254-64.
Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: The bone bioreactor. Proc Natl Acad Sci. 2005;102(32):11450-5.
Calvo R, Figueroa D, Díaz-Ledezma C, Vaisman A, Figueroa F. Aloinjertos óseos y la función del banco de huesos. Rev Médica Chile. 2011;139(5):660-6.
Petite H, Viateau V, Bensaïd W, Meunier A, De Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959-63.
Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021;173:349-73.
Ashley S. Rapid prototyping Systems. Mech Eng. 1991;113(4):34.
Guo Y, Patanwala HS, Bognet B, Ma AWK. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J.2017;23(3):562-76.
Cooper K. Rapid Prototyping Technology: selection and application. CRC press.; 2001.
Horvath D, Noorani R, Mendelson M. Improvement of Surface Roughness on ABS 400 Polymer Using Design of Experiments (DOE). Mater Sci Forum. 2007;561-565:2389-92.
Kruth JP. Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Ann. 1991;40(2):603-14.
Kim H, Choi J, Wicker R. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp J. 2010;16(4):232-40.
Halloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, et al. Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc. 2011;31(14):2613-9.
Bandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. 2020;18(5):505-14.
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J Mater Chem B. 2020;8(4):607-28.
Wong KV, Hernandez A. A Review of Additive Manufacturing. ISRN Mech Eng. 2012;2012:1-10.
Tang HH, Chiu ML, Yen HC. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc. 2011;31(8):1383-8.
Salmoria GV, Paggi RA, Lago A, Beal VE. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test. 2011;30(6):611-5.
Krznar M, Dolinsek S. Selective laser sintering of composite materials technologies. 2010; 1527-1529 p.
Song SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, et al. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System: THOUGHTS AND PROGRESS. Artif Organs. 2011;35(11):1132-6.
Chu T, Park S, Fu K (Kelvin). 3D printing‐enabled advanced electrode architecture design. Carbon Energy. 2021;3(3):424-39.
Karkun MS, Dharmalinga S. 3D Printing Technology in Aerospace Industry – A Review. Int J Aviat Aeronaut Aerosp [Internet]. 2022 [citado 12 de octubre de 2023]; Disponible en: https://commons.erau.edu/ijaaa/vol9/iss2/4/
James WJ, Slabbekoorn MA, Edgin WA, Hardin CK. Correction of congenital malar hypoplasia using stereolithography for presurgical planning. J Oral Maxillofac Surg. 1998;56(4):512-7.
Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Relucenti M, editor. Scanning. 2021;2021:1-19
Hrusak D, Bolek M, Bolek L. On site 3D printing in oral and maxilofacial surgery for trauma and oncological bone reconstruction. Int J Oral Maxillofac Surg. 2015;44:e225-6.
Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28(2):113-22
Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med. 2009;20(6):1281-9.
Katalinic B, Danube Adria Association for Automation & Manufacturing, editores. Annals of DAAAM for 2010 & proceedings of the 21st International DAAAM Symposium «Intelligent Manufacturing & Automation», 20 - 23rd October 2010, Zadar, Croatia: & 4th European DAAAM International Young Researchers’ and Scientists Conference] ; [the 21st DAAAM world symposium. 2010. 1618 p.
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-24.
Wang J, Dai X, Peng Y, Liu M, Lu F, Yang X, et al. Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Appl Mater Today. 2021;22:100889.
Hua J, Ng PF, Fei B. High‐strength hydrogels: Microstructure design, characterization and applications. J Polym Sci Part B Polym Phys. 2018;56(19):1325-35.
Manavitehrani I, Le TYL, Daly S, Wang Y, Maitz PK, Schindeler A, et al. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater Sci Eng C. 2019;96:824-30.
Kazimierczak P, Benko A, Palka K, Canal C, Kolodynska D, Przekora A. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J Mater Sci Technol. 2020;43:52-63.
Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, et al. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater. 2017;13(1):015012.
Nahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi‐Barough S. Design and fabrication of bone tissue scaffolds based on PCL / PHBV CONTAINING hydroxyapatite nanoparticles: DUAL‐LEACHING technique. J Biomed Mater Res A. 2021;109(6):981-93.
Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457-68.
Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun. 2021;12(1):1291.
Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature. 2021;590(7847):594-9.
Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater 2020;5(1):82-91.
Aldana AA, Valente F, Dilley R, Doyle B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting. 2021;21:e00105.
Rajzer I, Rom M, Menaszek E, Pasierb P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater Lett. 2015;138:60-3.
Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Ann Biomed Eng. 2016;44(6):2090-102.
Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, et al. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Adv Mater. 2018;30(36):1706539.
Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020.
Wei Y, Zhao D, Cao Q, Wang J, Wu Y, Yuan B, et al. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System. ACS Biomater Sci Eng. 2020;6(3):1787-97.
Abudhahir M, Saleem A, Paramita P, Kumar SD, Tze‐Wen C, Selvamurugan N, et al. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2021;109(5):654-64.
Curti F, Stancu IC, Voicu G, Iovu H, Dobrita CI, Ciocan LT, et al. Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite–Gelatin Inks. Polymers. 2020;12(10):2420.
Kamboj N, Kazantseva J, Rahmani R, Rodríguez MA, Hussainova I. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater Sci Eng C. 2020;116:111223.
Palakurthy S, K. VGR, Samudrala RK, P. AA. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater Sci Eng C. 2019;98:109-17.
Ge R, Xun C, Yang J, Jia W, Li Y. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomed Mater. 2019;14(6):065013.
Wei J, Chen F, Shin JW, Hong H, Dai C, Su J, et al. Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold. Biomaterials. 2009;30(6):1080-8.
Emadi R, Roohani Esfahani SI, Tavangarian F. A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater Lett. 2010;64(8):993-6.
Lew DP, Waldvogel FA. Osteomyelitis. The Lancet. 2004;364(9431):369-79.
Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol. 2008;52(1):13-22.
Garcia Del Pozo E, Collazos J, Carton JA, Camporro D, Asensi V. Factors predictive of relapse in adult bacterial osteomyelitis of long bones. BMC Infect Dis. 2018;18(1):635.
Donlan RM, Costerton JW. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin Microbiol Rev. 2002;15(2):167-93.
Kristian SA, Golda T, Ferracin F, Cramton SE, Neumeister B, Peschel A, et al. The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog. 2004;36(5):237-45.
Chan C, Burrows LL, Deber CM. Helix Induction in Antimicrobial Peptides by Alginate in Biofilms. J Biol Chem. 2004;279(37):38749-54.
Dental implants and osteomyelitis in a patient with osteopetrosis. Quintessence Int. 2014;45(9):765-8.
Semel G, Wolff A, Shilo D, Akrish S, Emodi O, Rachmiel A. Mandibular osteomyelitis associated with dental implants. A case series. Eur J Oral Implantol. 2016;9(4):435-42.
Shnaiderman-Shapiro A, Dayan D, Buchner A, Schwartz I, Yahalom R, Vered M. Histopathological Spectrum of Bone Lesions Associated with Dental Implant Failure: Osteomyelitis and Beyond. Head Neck Pathol. 2015;9(1):140-6.
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules. 2020;25(13):3048.
Fair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Med Chem. 2014;6:PMC.S14459.
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985-98.
Makowski M, Silva ÍC, Pais Do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 8 de 2019;11(11):588.
Zurawski DV, McLendon MK. Monoclonal Antibodies as an Antibacterial Approach Against Bacterial Pathogens. Antibiotics. 2020;9(4):155.
Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;93:2-11.
Patrascu JM, Nedelcu IA, Sonmez M, Ficai D, Ficai A, Vasile BS, et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J Nanomater. 2015;2015:1-8.
Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-29.
López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta. febrero de 2013;763:1-10.
Cowan MM. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. octubre de 1999;12(4):564-82.
Clark AM. Natural products as a resource for new drugs. Pharm Res. 1996;13(8):1133-41.
Ugur A, Barlas M, Ceyhan N, Turkmen V. Antimicrobial Effects of Propolis Extracts on Escherichia coli and Staphylococcus aureus Strains Resistant to Various Antibiotics and Some Microorganisms. J Med Food. 2000;3(4):173-80.
Mattigatti S, Jain D, Ratnakar P, Moturi S, Varma S, Rairam S. Antimicrobial Effect of Conventional Root Canal Medicaments vs Propolis against Enterococcus faecalis, Staphylococcus aureus and Candida albicans. J Contemp Dent Pract. 2012;13(3):305-9.
Oda H, Nakagawa T, Maruyama K, Dono Y, Katsuragi H, Sato S. Effect of Brazilian green propolis on oral pathogens and human periodontal fibroblasts. J Oral Biosci. 2016;58(2):50-4.
Meimandi-Parizi A, Oryan A, Sayahi E, Bigham-Sadegh A. Propolis extract a new reinforcement material in improving bone healing: An in vivo study. Int J Surg. 2018;56:94-101.
Elkhenany H, El-Badri N, Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed Pharmacother. 2019;115:108861.
Afrouzan H, Tahghighi A, Zakeri S, Es-haghi A. Chemical Composition and Antimicrobial Activities of Iranian Propolis. Iran Biomed J [Internet]. enero de 2018 [citado 13 de octubre de 2023];22(1). Disponible en: https://doi.org/10.22034/ibj.22.1.50
Oryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98:469-83.
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid Med Cell Longev. 2017;2017:1-21.
Popova M, Giannopoulou E, Skalicka-Woźniak K, Graikou K, Widelski J, Bankova V, et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules. 2017;22(7):1159.
Veiga RS, De Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, et al. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol. 2017;122(4):911-20.
Pazin WM, Mônaco LDM, Egea Soares AE, Miguel FG, Berretta AA, Ito AS. Antioxidant activities of three stingless bee propolis and green propolis types. J Apic Res. 2017;56(1):40-9.
Cuesta-Rubio O, Piccinelli AL, Campo Fernandez M, Márquez Hernández I, Rosado A, Rastrelli L. Chemical Characterization of Cuban Propolis by HPLC−PDA, HPLC−MS, and NMR: the Brown , Red , and Yellow Cuban Varieties of Propolis. J Agric Food Chem. 2007;55(18):7502-9.
Ribeiro VP, Arruda C, Aldana‐Mejia JA, Bastos JK, Tripathi SK, Khan SI, et al. Phytochemical, Antiplasmodial, Cytotoxic and Antimicrobial Evaluation of a Southeast Brazilian Brown Propolis Produced by Apis mellifera Bees. Chem Biodivers. 2021;18(9):e2100288.
Ribeiro VP, Arruda C, Mejía JAA, Candido ACBB, Dos Santos RA, Magalhães LG, et al. Brazilian southeast brown propolis: gas chromatography method development for its volatile oil analysis, its antimicrobial and leishmanicidal activities evaluation. Phytochem Anal. 2021;32(3):404-11.
AOAC. Official methods of analysis of the AOAC. 15th ed. Vol. 1. Arlington, VA: The Association; 1990.
Martinez J, Garcia C, Durango D, Gil J. Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección. Rev MVZ Cordoba [Internet]. 17(1). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682012000100008
Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004;84(3):329-39.
Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144-58.
Andonian MR, Barrett AS, Vinogradov SN. Physical properties and subunits of Haemopis grandis erythrocruorin. Biochim Biophys Acta. 1975;412(2):202-13.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7.
Phiri N, Mainda G, Mukuma M, Sinyangwe NN, Banda LJ, Kwenda G, et al. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs and open markets in selected districts of Zambia [Internet]. Scientific Communication and Education; 2020 [citado 20 de noviembre de 2023]. Disponible en: http://biorxiv.org/lookup/doi/10.1101/2020.04.20.050914
Kowalska-Krochmal B, Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165.
Seidel V, Peyfoon E, Watson DG, Fearnley J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: ANTIBACTERIAL ACTIVITY OF PROPOLIS FROM DIFFERENT ZONES. Phytother Res. 2008;22(9):1256-63.
Lozina L analía, Peichoto ME, Acosta O, Granero G. Estandarización y caracterización organoléptica y fisicoquímica de 15 propóleos argentinos. Acta Farm Bonaer. 2010;29(1):102-10.
Marly SS, Maria LMFE, Carlos ALDC, Karina TMG, Rosane FS, Rogeria CDCA. Propolis as natural additive: A systematic review. Afr J Biotechnol. 2018;17(41):1282-91.
Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol. 2021;115:297-306.
Viloria J, Gil J, Durango D, Garcia C. Physicochemical characterization and antimicrobial activity of propolis from municipality of la union (antioquia, colombia). Rev Biotecnol En El Sect Agropecu Agroindustrial. 2010;63(1):5373-83.
Barrientos‐Lezcano JC, Gallo‐Machado J, Marin‐Palacio LD, Builes S. Extraction kinetics and physicochemical characteristics of Colombian propolis. J Food Process Eng. 2023;46(11):e14272.
Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159.
Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159
Devequi-Nunes D, Machado BAS, Barreto GDA, Rebouças Silva J, Da Silva DF, Da Rocha JLC, et al. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. Lightfoot DA, editor. PLOS ONE. 2018;13(12):e0207676.
Park YK, Alencar SM, Aguiar CL. Botanical Origin and Chemical Composition of Brazilian Propolis. J Agric Food Chem. 2002;50(9):2502-6.
Wagh VD. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv Pharmacol Sci. 2013;2013:1-11.
Silva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid Based Complement Alternat Med. 2015;2015:1-29.
Vera N, Solorzano E, Ordoñez R, Maldonado L, Bedascarrasbure E, Isla MI. Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities. Nat Prod Commun. 2011;6(6):1934578X1100600618.
Andrade JKS, Denadai M, De Oliveira CS, Nunes ML, Narain N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int. 2017;101:129-38
Kudo D, Inden M, Sekine S ichiro, Tamaoki N, Iida K, Naito E, et al. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro. Neurosci Lett. 2015;589:92-7.
Alshaher A, Wallace J, Agarwal S, Bretz W, Baugh D. Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament. J Endod. 2004;30(5):359-61
Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998;36(4):347-63.
Cottica SM, Sawaya ACHF, Eberlin MN, Franco SL, Zeoula LM, Visentainer JV. Antioxidant activity and composition of propolis obtained by different methods of extraction. J Braz Chem Soc. 2011;22(5):929-35.
Pobiega K, Kraśniewska K, Derewiaka D, Gniewosz M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J Food Sci Technol. 2019;56(12):5386-95.
Trusheva B, Trunkova D, Bankova V. Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J. 2007;1(1):13.
Heinrich M, Modarai M, Kortenkamp A. Herbal Extracts used for Upper Respiratory Tract Infections: Are there Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008;74(6):657-60.
Ahn MR, Kumazawa S, Hamasaka T, Bang KS, Nakayama T. Antioxidant Activity and Constituents of Propolis Collected in Various Areas of Korea. J Agric Food Chem. 2004;52(24):7286-92.
Akhir RAM, Bakar MFA, Sanusi SB. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. En Kedah, Malaysia; 2017 [citado 13 de octubre de 2023]. p. 0200901-7. Disponible en: https://pubs.aip.org/aip/acp/article/886523
Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, et al. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023;15(12):2629.
Gonsales GZ, Orsi RO, Fernandes Júnior A, Rodrigues P, Funari SRC. Antibacterial activity of propolis collected in different regions of Brazil. J Venom Anim Toxins Trop Dis [Internet]. 2006 [citado 13 de octubre de 2023];12(2). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992006000200009&lng=en&nrm=iso&tlng=en
Lu LC, Chen YW, Chou CC. Antibacterial activity of propolis against Staphylococcus aureus. Int J Food Microbiol. 2005;102(2):213-20.
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals. 2022;15(11):1419.
Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72.
Horna Quintana G, Silva Diaz M, Vicente Taboada W, Tamariz Ortiz J. Concentración mínima inhibitoria y concentración mínima bactericida de ciprofloxacina en bacterias uropatógenas aisladas en el Instituto Nacional de Enfermedades Neoplásicas. Rev Medica Hered. 2012;16(1):39.
Moussaoui S, Lahouel M. Propolis Extract: A Potent Bacteria Efflux Pump Inhibitor. J Biol Act Prod Nat. 2014;4(3):216-23
Da Cruz Almeida ET, Da Silva MCD, Oliveira JMDS, Kamiya RU, Arruda RE dos S, Vieira DA, et al. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J Pharm Anal. 2017;7(5):280-7.
Van Der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4):042003.
Bakhsheshi-Rad HR, Hamzah E, Daroonparvar M, Ebrahimi-Kahrizsangi R, Medraj M. In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications. Ceram Int. 2014;40(6):7971-82.
Ratner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.
Hench LL. Bioceramics. J Am Ceram Soc. 2005;81(7):1705-28.
Ratner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.
Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34(5):740-53.
Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater. de 2013;8(3):032001.
Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96.
Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59.
Yang C, Wang X, Ma B, Zhu H, Huan Z, Ma N, et al. 3D-Printed Bioactive Ca 3 SiO 5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration. ACS Appl Mater Interfaces. 2017;9(7):5757-67.
Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5.
Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic–Angiogenic Coupling Effect for Bone Regeneration. Small. 2021;17(14):2006598.
Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of Skeletal Repair (Fracture Healing and Its Assessment). En: Hilton MJ, editor. Skeletal Development and Repair [Internet]. Totowa, NJ: Humana Press; 2014 [citado 1 de noviembre de 2023]. p. 13-31. (Methods in Molecular Biology; vol. 1130). Disponible en: https://link.springer.com/10.1007/978-1-62703-989-5_2
Restrepo S, Ocampo S, Ramírez JA, Paucar C, García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J Phys Conf Ser. 2017;935:012036.
Dong Z, Zhao X. Application of TPMS structure in bone regeneration. Eng Regen. 2021;2:154-62.
Fantini M, Curto M, De Crescenzio F. TPMS for interactive modelling of trabecular scaffolds for Bone Tissue Engineering. En: Eynard B, Nigrelli V, Oliveri SM, Peris-Fajarnes G, Rizzuti S, editores. Advances on Mechanics, Design Engineering and Manufacturing [Internet]. Cham: Springer International Publishing; 2017 [citado 1 de noviembre de 2023]. p. 425-35. (Lecture Notes in Mechanical Engineering). Disponible en: http://link.springer.com/10.1007/978-3-319-45781-9_43
Vijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl Bio Mater. 2018;1(2):259-69.
Fogden A, Haeberlein M, Lidin S. Generalizations of the gyroid surface. J Phys I. 1993;3(12):2371-85.
Shao H, He Y, Fu J, He D, Yang X, Xie J, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc. 2016;36(6):1495-503.
Pita Migueléz I. Diseño, sinterización y caracterización de estructuras 3D con porosidad gradual de Wollastonite y Fosfato tricálcico para regeneración ósea [Internet]. [Madrid]: Politécnica de Madrid; 2019. Disponible en: https://oa.upm.es/72060/3/TFG_Ines_Pita_Miguelez.pdf
C21 Committee. Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?C373-88R06
Liu J, Miao X. Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads. J Mater Sci. 2005;40(23):6145-50.
D04 Committee. Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method) [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?D70D70M-21
Yang T, Van Olmen R. Robust design for a multilayer ceramic capacitor screen-printing process case study. J Eng Des. 2004;15(5):447-57.
Yoon DH, Lee BI. Processing of barium titanate tapes with different binders for MLCC applications—Part I: Optimization using design of experiments. J Eur Ceram Soc. 2004;24(5):739-52.
Renteria A, Fontes H, Diaz JA, Regis JE, Chavez LA, Tseng TL (Bill), et al. Optimization of 3D printing parameters for BaTiO 3 piezoelectric ceramics through design of experiments. Mater Res Express. 2019;6(8):085706.
Prasad PSRK, Reddy AV, Rajesh PK, Ponnambalam P, Prakasan K. Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing. J Mater Process Technol. 2006;176(1-3):222-9.
Jayathilakage R, Rajeev P, Sanjayan J. Rheometry for Concrete 3D Printing: A Review and an Experimental Comparison. Buildings. 2022;12(8):1190.
Mott RL, Untener JA. Applied fluid mechanics. Seventh edition. Boston: Pearson; 2015. 531 p.
Lilliman M. Control of mortar rheology for 3D concrete printing. [Internet]. Loughborough; 2017. Disponible en: https://hdl.handle.net/2134/25216
Chan SSL, Pennings RM, Edwards L, Franks GV. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit Manuf. 2020;35:101335.
Sainz MA, Pena P, Serena S, Caballero A. Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010;6(7):2797-807.
Teixeira S, Rodriguez MA, Pena P, De Aza AH, De Aza S, Ferraz MP, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng C. 2009;29(5):1510-4.
Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.
Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.
Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition. Tissue Eng. 2001;7(5):557-72.
Kramschuster A, Turng LS. Fabrication of Tissue Engineering Scaffolds. 17.a ed. Boston: William Andrew Publishing; 2013. 427-446 p.
Del Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial Properties of Chitosan Nanoparticles and Propolis Associated with Calcium Hydroxide against Single- and Multispecies Biofilms: An In Vitro and In Situ Study. J Endod. 2017;43(8):1332-6.
Delgado Aceves MDL, Andrade Ortega JÁ, Ramírez Barragán CA. Caracterización fisicoquímica de propóleos colectados en el Bosque La Primavera Zapopan, Jalisco. Rev Mex Cienc For. 2018;6(28):74-87.
Sedelnikova MB, Ugodchikova AV, Tolkacheva TV, Chebodaeva VV, Cluklhov IA, Khimich MA, et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals. 2021;11(5):754.
Chen W, Liang Y, Hou X, Zhang J, Ding H, Sun S, et al. Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments. Materials. 2018;11(4):593.
Dabiri G, Tumbarello DA, Turner CE, Van De Water L. Hic-5 Promotes the Hypertrophic Scar Myofibroblast Phenotype by Regulating the TGF-β1 Autocrine Loop. J Invest Dermatol. 2008;128(10):2518-25.
Hu J, Qu J, Xu D, Zhou J, Lu H. Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies. Int Orthop. 2013;37(2):311-20.
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev. 2015;84:45-67.
Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Controlled Release. 2015;219:119-28.
Kalinka J, Hachmeister M, Geraci J, Sordelli D, Hansen U, Niemann S, et al. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol. 2014;304(8):1038-49.
Wang X, Sparkman J, Gou J. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos Commun. 2017;3:1-6.
Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526-34.
Gama E Silva GL, Sato De Souza Bustamante Monteiro M, Dos Santos Matos AP, Santos-Oliveira R, Kenechukwu FC, Ricci-Júnior E. Nanofibers in the treatment of osteomyelitis and bone regeneration. J Drug Deliv Sci Technol. 2022;67:102999.
Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, et al. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994;62(1):152-61.
Gordon RJ, Lowy FD. Pathogenesis of Methicillin‐Resistant Staphylococcus aureus Infection. Clin Infect Dis. 2008;46(S5):S350-9.
Zhou M, Luo H, Li Z, Wu F, Huang C, Ding Z, et al. Recent Advances in Screening of Natural Products for Antimicrobial Agents. Comb Chem High Throughput Screen. 2012;15(4):306-15.
Almuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci. 2020;27(11):3079-86.
Yildirim Z, Hacievliyagil S, Kutlu NO, Aydin NE, Kurkcuoglu M, Iraz M, et al. Effect of water extract of Turkish propolis on tuberculosis infection in guinea-pigs. Pharmacol Res. 2004;49(3):287-92.
Uzel A, Sorkun K, Önçağ Ö, Çoğulu D, Gençay Ö, Sali˙h B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res. 2005;160(2):189-95.
Qureshi UA, Khatri Z, Ahmed F, Khatri M, Kim IS. Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase. ACS Sustain Chem Eng. 2017;5(5):4340-51.
Ito J, Chang FR, Wang HK, Park YK, Ikegaki M, Kilgore N, et al. Anti-AIDS Agents. Anti-HIV Activity of Moronic Acid Derivatives and the New Melliferone-Related Triterpenoid Isolated from Brazilian Propolis. J Nat Prod. 2001;64(10):1278-81.
Duke CC, Tran VH, Duke RK, Abu-Mellal A, Plunkett GT, King DI, et al. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry. 2017;134:87-97.
Mirzoeva OK, Grishanin RN, Calder PC. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res. 1997;152(3):239-46.
Zhang W, Margarita GE, Wu D, Yuan W, Yan S, Qi S, et al. Antibacterial Activity of Chinese Red Propolis against Staphylococcus aureus and MRSA. Molecules. 2022;27(5):1693.
Saeed F, Ahmad RS, Arshad MU, Niaz B, Batool R, Naz R, et al. Propolis to Curb Lifestyle Related Disorders: An Overview. Int J Food Prop. 2016;19(2):420-37.
Demir S, Aliyazicioglu Y, Turan I, Misir S, Mentese A, Yaman SO, et al. Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutr Cancer. 2016;68(1):165-72.
Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007;2(3):323-34.
Periasamy S, Chatterjee SS, Cheung GYC, Otto M. Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol. 2012;5(3):275-7.
Eladli MG, Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS, Alyahya SA. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J Biol Sci. 2019;26(6):1285-90.
Iyer V, Raut J, Dasgupta A. Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J Med Microbiol [Internet]. 2021 [citado 1 de noviembre de 2023];70(9). Disponible en: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001421
Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020;5(1):1-9.
Clarke B. Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. 2008;3(Supplement_3):S131-9.
Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292-304.
Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol [Internet]. marzo de 1997 [citado 17 de noviembre de 2023];21(1). Disponible en: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471142735.ima03bs21
Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, et al. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J Cell Death. 2017;10:117967071769125.
Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology. 2013;24(17):175501.
Nakatsu MN, Gonzalez S, Mei H, Deng SX. Human Limbal Mesenchymal Cells Support the Growth of Human Corneal Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2014;55(10):6953-9.
Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, et al. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma. 2023;260(2):349-69.
Longhin EM, El Yamani N, Rundén-Pran E, Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol. 2022;4:981701.
O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-6.
Arora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, et al. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J. 2022;55(S1):3-13.
Schneider MR. Von Kossa and his staining technique. Histochem Cell Biol [Internet]. 20 de noviembre de 2021 [citado 17 de noviembre de 2023]; Disponible en: https://link.springer.com/10.1007/s00418-021-02051-3
Wang YH, Liu Y, Maye P, Rowe DW. Examination of Mineralized Nodule Formation in Living Osteoblastic Cultures Using Fluorescent Dyes. Biotechnol Prog. 2006;22(6):1697-701.
Stucki U, Schmid J, Hämmerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration: A descriptive histochemical study in humans. Clin Oral Implants Res. 2001;12(2):121-7.
Pelaez-Vargas A, Gallego-Perez D, Higuita-Castro N, Carvalho A, Grenho L, Arismendi JA, et al. Micropatterned Coatings for Guided Tissue Regeneration in Dental Implantology. En: Gowder S, editor. Cell Interaction [Internet]. InTech; 2012 [citado 17 de noviembre de 2023]. Disponible en: http://www.intechopen.com/books/cell-interaction/micropatterned-coatings-for-guided-tissue-regeneration-in-dental-implantology
Leal-Marin S, Gallaway G, Höltje K, Lopera-Sepulveda A, Glasmacher B, Gryshkov O. Scaffolds with Magnetic Nanoparticles for Tissue Stimulation. Curr Dir Biomed Eng. 2021;7(2):460-3.
Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res. 2020;24(1):2.
Sundaram B, C. John Milton M. Porous Polycaprolactone Scaffold Engineered with Naringin Loaded Bovine Serum Albumin Nanoparticles for Bone Tissue Engineering. Biosci Biotechnol Res Asia. 2017;14(4):1355-62.
Gutiérrez-Prieto SJ, Perdomo-Lara SJ, Diaz-Peraza JM, Sequeda-Castañeda LG. Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry. Adv Pharmacol Sci. 2019;2019:1-9.
Qiu Y, Chen X, Hou Y, Hou Y, Tian S, Chen Y, et al. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep [Internet]. 2019 [citado 17 de noviembre de 2023]; Disponible en: http://www.spandidos-publications.com/10.3892/mmr.2019.10066
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, et al. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng. 2021;7(12):5397-431.
Huang S, Zhang CP, Wang K, Li G, Hu FL. Recent Advances in the Chemical Composition of Propolis. Molecules. 2014;19(12):19610-32.
Búfalo MC, Candeias JMG, Sforcin JM. In Vitro Cytotoxic Effect of Brazilian Green Propolis on Human Laryngeal Epidermoid Carcinoma (HEp-2) Cells. Evid Based Complement Alternat Med. 2009;6(4):483-7.
Ahn MR, Kumazawa S, Usui Y, Nakamura J, Matsuka M, Zhu F, et al. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007;101(4):1383-92.
Fung C, Mohamad H, Hashim S, Htun A, Ahmad A. Proliferative Effect of Malaysian Propolis on Stem Cells from Human Exfoliated Deciduous Teeth: An In vitro Study. Br J Pharm Res. 2015;8(1):1-8.
Gandolfi MG, Perut F, Ciapetti G, Mongiorgi R, Prati C. New Portland Cement–based Materials for Endodontics Mixed with Articaine Solution: A Study of Cellular Response. J Endod. 2008;34(1):39-44.
Higuita‐Castro N, Gallego‐Perez D, Pelaez‐Vargas A, García Quiroz F, Posada OM, López LE, et al. Reinforced Portland cement porous scaffolds for load‐bearing bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2012;100B(2):501-7.
Venkatraman SK, Choudhary R, Genasan K, Murali MR, Raghavendran HRB, Kamarul T, et al. Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. J Sol-Gel Sci Technol. 2021;100(3):506-16.
Matsuoka H, Akiyama H, Okada Y, Ito H, Shigeno C, Konishi J, et al. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic: Released calcium ions promote osteogenic differentiation in osteoblastic ROS17/2.8 cells. J Biomed Mater Res. 1999;47(2):176-88.
Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001;15(7):561-71.
Tyszka-Czochara M, Paśko P, Reczyński W, Szlósarczyk M, Bystrowska B, Opoka W. Zinc and Propolis Reduces Cytotoxicity and Proliferation in Skin Fibroblast Cell Culture: Total Polyphenol Content and Antioxidant Capacity of Propolis. Biol Trace Elem Res. 2014;160(1):123-31.
Banskota AH, Tezuka Y, Prasain JK, Matsushige K, Saiki I, Kadota S. Chemical Constituents of Brazilian Propolis and Their Cytotoxic Activities. J Nat Prod. 1998;61(7):896-900.
Su J, Hua S, Chen A, Chen P, Yang L, Yuan X, et al. Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Biomater Adv. 2022;133:112595.
Battulga B, Shiizaki K, Miura Y, Osanai Y, Yamazaki R, Shinohara Y, et al. Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet. 2023;852.
Kanwar S, Vijayavenkataraman S. 3D printable bone-mimicking functionally gradient stochastic scaffolds for tissue engineering and bone implant applications. Mater Des. 2022;223:111199.
Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001.
Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int. 2011;37(6):1825-31.
Gomes PS, Fernandes MH. Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol. 2007;52(3):251-9.
Song K, Kong Q, Li L, Wang Y, Parungao R, Zheng S, et al. In Vitro Fabrication and Biocompatibility Assay of a Biomimetic Osteoblastic Niche. Appl Biochem Biotechnol. 2019;189(2):471-84.
Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int.2011;37(6):1825-31.
Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B Biointerfaces. 2017;160:553-63.
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 2009;8(3):195-208.
Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3(7):3867-910.
Kaur G, Kumar V, Baino F, Mauro JC, Pickrell G, Evans I, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C. 2019;104:109895.
Abueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.
Abueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 174 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellin
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86049/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86049/2/1116795956.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86049/3/1116795956.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
4b4872217890ee2c1373e8fd787ea3fe
0178874db35ba7fc61c7387b9e706c85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089451680301056
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García, Claudia Patriciad70ae25bb5cde065d68e8defb6f204b5Pelaez Vargas, Alejandro0424215de61b6e760a210221c3b44382Moreno Florez, Ana Isabel59b5b06b5d9108d39c55eed5ada7978dMinciencias Plan Bienal de Convocatorias 2019Minciencias Convocatoria de proyectos que conectan el conocimiento - Proyecto 2019 852-2019. Número de contrato 80740-476-2020.Materiales Cerámicos y VítreosMoreno Florez, Ana Isabel [0000-0003-2823-8822]MORENO FLOREZ, ANA ISABEL https://scienti.minciencias.gov.co/cvlac/jsp/report-index.jsphttps://www.researchgate.net/profile/Isabel-Moreno-42024-05-08T18:45:43Z2024-05-08T18:45:43Z2023https://repositorio.unal.edu.co/handle/unal/86049Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosUna alternativa para solucionar la problemática de los defectos es la manufactura aditiva, específicamente en el diseño y fabricación de dispositivos de reemplazamiento óseo. Sin embrago, la posibilidad de fallo debido a infecciones requiere mejoras en el potencial antimicrobiano de estos dispositivos. En esta tesis se propuso desarrollar por manufactura aditiva andamios antimicrobianos potencializados con extractos de propóleos para regeneración ósea. Se utilizó un diseño de experimentos factorial fraccional en la formulación de una pasta cerámica empleada como tinta de impresión 3D para fabricar andamios con geometría TPMS Gyroid, los cuales se impregnaron con extractos etanólicos de propóleos (EEP). Se evaluó la actividad antimicrobiana de los EEP y de los andamios impregnados con EEP (AI) frente a Staphylococcus aureus, Staphylococcus epidermidis y su co-cultivo midiendo zonas de inhibición y la viabilidad de biopelículas. En pruebas in vitro se evaluó la interacción de los andamios con cultivos celulares de osteosarcoma humano (SaOS) y células madre mesenquimales humanas (bmMSC) en términos de proliferación celular (Ensayo alamar blue) y actividad metabólica (Tinciones de Alizarin red, Von kossa y Actividad de la ALP). Los resultados mostraron que la manufactura aditiva posibilitó la fabricación de andamios cerámicos con geometrías complejas que se impregnaron exitosamente con extractos de propóleos provenientes de la Orinoquía Colombiana, los cuales mostraron inhibición considerable de las cepas estudiadas y reducción significativa en la viabilidad del co-cultivo por parte de los AI. La evaluación in vitro mostró una proliferación en los andamios superior al 90 % de las SaOS y cercano al 50 % de las bmMSC, además se encontraron zonas con señales de mineralización. En conclusión, los andamios fabricados son aptos para la reparación y regeneración ósea y presentan un potencial antibacteriano contra cepas relacionadas con el desarrollo de osteomielitis. (Tomado de la fuente)The problem of bone defects has been addressed through additive manufacturing, specifically with bone replacement devices. However, the potential for failure due to infection makes it necessary to improve the antimicrobial potential of these devices. The aim of this thesis is to develop antimicrobial scaffolds by additive manufacturing, enhanced with propolis extract for bone regeneration. A fractional factorial design of experiments was used to formulate a ceramic paste used as a 3D printing ink to fabricate scaffolds with TPMS gyroid geometry. These were impregnated with ethanolic extracts of propolis (EEP). The antimicrobial activity of EEP and EEP-impregnated scaffolds (AI) was evaluated against Staphylococcus aureus, Staphylococcus epidermidis and their co-cultures by measuring inhibition zones and biofilm viability. In vitro assays evaluated the interaction of the scaffolds with cultures of human osteosarcoma cells (SaOS) and human mesenchymal stem cells (bmMSC) in terms of cell proliferation (Alamar blue assay) and metabolic activity (Alizarin red, Von Kossa staining and ALP activity). The results showed that additive manufacturing made possible the fabrication of ceramic scaffolds with complex geometries that were successfully impregnated with propolis extracts from the Colombian Orinoco region, which showed considerable inhibition of the studied strains and significant reduction in the viability of the co-culture by the IAs. The in vitro evaluation showed a proliferation in the scaffolds higher than 90 % of the SaOS and close to 50 % of the bmMSC, in addition, areas with signs of mineralization were found. In conclusion, the fabricated scaffolds are suitable for bone repair and regeneration and present antibacterial potential against strains related to the development of osteomyelitis.Minciencias ColombiaUniversidad Nacional de ColombiaUniversidad Cooperativa de ColombiaUniversidad EafitLeibniz University HannoverDoctoradoDoctor en BiotecnologíaBiotecnología.Sede Medellín174 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellinMedellín - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín600 - Tecnología (Ciencias aplicadas)::602 - Miscelánea660 - Ingeniería química::666 - Cerámica y tecnologías afines680 - Manufactura para usos específicos::686 - Imprenta y actividades relacionadasRegeneración ÓseaOsteomielitisProductos con Acción AntimicrobianaIngeniería de TejidosPrópolisAntimicrobianosAntiinfecciososImpresión TridimensionalImpresion 3DRegeneración óseaActividad antimicrobianaPropóleos3D printingBone regenerationWollastoniteAntimicrobial activityPropolisProducción por manufactura aditiva de andamios con propiedades antimicrobianas a partir de Propóleos de Tame (Arauca) para regeneración óseaProduction by additive manufacturing of scaffolds with antimicrobial properties from Propolis from Tame (Arauca) for bone regeneration.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaNickolas TL, Leonard MB, Shane E. Chronic kidney disease and bone fracture: a growing concern. Kidney Int. 2008;74(6):721-31Iqbal MM. Osteoporosis: Epidemiology, Diagnosis, and Treatment: South Med J. 2000;93(1):2-19Compston J. HIV infection and bone disease. J Intern Med. 2016;280(4):350-8Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385-97Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, et al. Osteoporosis: A Review of Treatment Options. P T Peer-Rev J Formul Manag. 2018;43(2):92-104Levy S, Feduska JM, Sawant A, Gilbert SR, Hensel JA, Ponnazhagan S. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone. 2016;93:113-24Miranda LL, Guimarães-Lopes VDP, Altoé LS, Sarandy MM, Melo FCSA, Novaes RD, et al. Plant Extracts in the Bone Repair Process: A Systematic Review. Mediators Inflamm. 2019;2019:1-22Hoexter DL. Bone Regeneration Graft Materials. J Oral Implantol. 2002;28(6):290-4Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y, Yan C. 3D-printed cellular structures for bone biomimetic implants. Addit Manuf. 2017;15:93-101Kashirina A, Yao Y, Liu Y, Leng J. Biopolymers as bone substitutes: a review. Biomater Sci. 2019;7(10):3961-83Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-62Venkatraman SK, Swamiappan S. Review on calcium‐ and magnesium‐based silicates for bone tissue engineering applications. J Biomed Mater Res A. 2020;108(7):1546-62Liu A, Sun M, Shao H, Yang X, Ma C, He D, et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. J Mater Chem B. 2016;4(22):3945-58Shao H, Liu A, Ke X, Sun M, He Y, Yang X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B. 2017;5(16):2941-51Saleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers. 2021;13(5):753Jorge LS, Chueire AG, Rossit ARB. Osteomyelitis: a current challenge. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2010;14(3):310-5Carek P, Dickerson L, Sack J. Diagnosis and Management of Osteomyelitis. Am Fam Physician. 2001; 63(12):2413-20Healy B, Freedman A. Infections. BMJ. 2006;332(7545):838-41.Ciampolini J. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76(898):479-83Hesham M, Elshishtawy H, El Kady S, Wahied D. Antibacterial Effect of Pre-constructed 3D Bone Scaffolds before and after Modification with Propolis. Open Access Maced J Med Sci. 2022;10(A):295-300Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995;26(2):83-99El Menyiy N, Bakour M, El Ghouizi A, El Guendouz S, Lyoussi B. Influence of Geographic Origin and Plant Source on Physicochemical Properties, Mineral Content, and Antioxidant and Antibacterial Activities of Moroccan Propolis. Alencar SMD, editor. Int J Food Sci. 2021;2021:1-12Hegazi AG, El Hady FKA. Egyptian Propolis: 3. Antioxidant, Antimicrobial Activities and Chemical Composition Of Propolis From Reclaimed Lands. Z Für Naturforschung C. 2002;57(3-4):395-402.Sabir A, Sumidarti A. Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia. Saudi J Biol Sci. 2017;24(5):1034-7Forma E, Bryś M. Anticancer Activity of Propolis and Its Compounds. Nutrients. 2021;13(8):2594Machado CS, Mokochinski JB, Lira TOD, De Oliveira FDCE, Cardoso MV, Ferreira RG, et al. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evid Based Complement Alternat Med. 2016;2016:1-11Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N. A review of: Application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C. 2015;48:556-65.Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater.2019;84:16-33.Farré-Guasch E, Wolff J, Helder MN, Schulten EAJM, Forouzanfar T, Klein-Nulend J. Application of Additive Manufacturing in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg. 2015;73(12):2408-18.Bhumiratana S, Vunjak-Novakovic G. Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Transl Med. 2012;1(1):64-9.Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C. 2017;70:913-29.Mallick M Are RP, Babu AR. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia. 2022;22:101391.Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12(3):211-23.Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Res. 2013;1(3):216-48.Peacock ZS. Controversies in Oral and Maxillofacial Pathology. Oral Maxillofac Surg Clin N Am. 2017;29(4):475-86.Rao N, Ziran BH, Lipsky BA. Treating Osteomyelitis: Antibiotics and Surgery: Plast Reconstr Surg. 2011;127:177S-187S.Fischbach MA, Walsh CT. Antibiotics for Emerging Pathogens. Science. 2009;325(5944):1089-93.Harvey A. Natural products in drug discovery. Drug Discov Today. 2008;13(19-20):894-901.Butler MS, Buss AD. Natural products — The future scaffolds for novel antibiotics? Biochem Pharmacol. 2006;71(7):919-29.Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59(4-5):339-59.O’Brien CM, Holmes B, Faucett S, Zhang LG. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration. Tissue Eng Part B Rev. 2015;21(1):103-14.D. S, C. R. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001;10(0):S86-95.Gong H, Zhu D, Gao J, Lv L, Zhang X. An adaptation model for trabecular bone at different mechanical levels. Biomed Eng OnLine. 2010;9(1):32.Greene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G. Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab. 2012;30(5):580-7.Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114-39.Belavý DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, Bock O, et al. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. 2011;22(5):1581-91.Lanyon LE. Bone: The Architecture of Bone and How it is Influenced by External Loading. En: Older J, editor. Implant Bone Interface [Internet]. London: Springer London; 1990 [citado 6 de noviembre de 2023]. p. 101-13. Disponible en: http://link.springer.com/10.1007/978-1-4471-1811-4_15Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 2001;22(19):2581-93.Bilezikian JP, Bouillon R, Clemens T, Compston J, Bauer DC, Ebeling PR, et al., editores. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism [Internet]. 1.a ed. Wiley; 2018 [citado 12 de octubre de 2023]. Disponible en: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119266594Davies, J.E. Bone Engineering. First Edition. Toronto: EM Squared Inc.; 2000. 454 p. (1; vol. 1).Bilezikian JP, Martin TJ, Clemens TL, Rosen CJ, editores. Principles of bone biology. Fourth edition. London: Academic Press, an imprint of Elsevier; 2020. p. 51Ducy P, Schinke T, Karsenty G. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science. 2000;289(5484):1501-4.Cowan JA, Dimick JB, Wainess R, Upchurch GR, Chandler WF, La Marca F. Changes in Utilization of Spinal Fusionin the United States. Neurosurgery. 2006;59(1):15-20.Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.Soucacos PN, Johnson EO. Current concepts and applications in the musculoskeletal and peripheral nervous systems. Curr Orthop. 2005;19(6):453-60.Frohlich M, Grayson W, Wan L, Marolt D, Drobnic M, Vunjak- Novakovic G. Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Curr Stem Cell Res Ther. 2008;3(4):254-64.Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: The bone bioreactor. Proc Natl Acad Sci. 2005;102(32):11450-5.Calvo R, Figueroa D, Díaz-Ledezma C, Vaisman A, Figueroa F. Aloinjertos óseos y la función del banco de huesos. Rev Médica Chile. 2011;139(5):660-6.Petite H, Viateau V, Bensaïd W, Meunier A, De Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959-63.Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021;173:349-73.Ashley S. Rapid prototyping Systems. Mech Eng. 1991;113(4):34.Guo Y, Patanwala HS, Bognet B, Ma AWK. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J.2017;23(3):562-76.Cooper K. Rapid Prototyping Technology: selection and application. CRC press.; 2001.Horvath D, Noorani R, Mendelson M. Improvement of Surface Roughness on ABS 400 Polymer Using Design of Experiments (DOE). Mater Sci Forum. 2007;561-565:2389-92.Kruth JP. Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Ann. 1991;40(2):603-14.Kim H, Choi J, Wicker R. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp J. 2010;16(4):232-40.Halloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, et al. Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc. 2011;31(14):2613-9.Bandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. 2020;18(5):505-14.Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J Mater Chem B. 2020;8(4):607-28.Wong KV, Hernandez A. A Review of Additive Manufacturing. ISRN Mech Eng. 2012;2012:1-10.Tang HH, Chiu ML, Yen HC. Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc. 2011;31(8):1383-8.Salmoria GV, Paggi RA, Lago A, Beal VE. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test. 2011;30(6):611-5.Krznar M, Dolinsek S. Selective laser sintering of composite materials technologies. 2010; 1527-1529 p.Song SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, et al. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System: THOUGHTS AND PROGRESS. Artif Organs. 2011;35(11):1132-6.Chu T, Park S, Fu K (Kelvin). 3D printing‐enabled advanced electrode architecture design. Carbon Energy. 2021;3(3):424-39.Karkun MS, Dharmalinga S. 3D Printing Technology in Aerospace Industry – A Review. Int J Aviat Aeronaut Aerosp [Internet]. 2022 [citado 12 de octubre de 2023]; Disponible en: https://commons.erau.edu/ijaaa/vol9/iss2/4/James WJ, Slabbekoorn MA, Edgin WA, Hardin CK. Correction of congenital malar hypoplasia using stereolithography for presurgical planning. J Oral Maxillofac Surg. 1998;56(4):512-7.Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Relucenti M, editor. Scanning. 2021;2021:1-19Hrusak D, Bolek M, Bolek L. On site 3D printing in oral and maxilofacial surgery for trauma and oncological bone reconstruction. Int J Oral Maxillofac Surg. 2015;44:e225-6.Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28(2):113-22Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med. 2009;20(6):1281-9.Katalinic B, Danube Adria Association for Automation & Manufacturing, editores. Annals of DAAAM for 2010 & proceedings of the 21st International DAAAM Symposium «Intelligent Manufacturing & Automation», 20 - 23rd October 2010, Zadar, Croatia: & 4th European DAAAM International Young Researchers’ and Scientists Conference] ; [the 21st DAAAM world symposium. 2010. 1618 p.Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-24.Wang J, Dai X, Peng Y, Liu M, Lu F, Yang X, et al. Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Appl Mater Today. 2021;22:100889.Hua J, Ng PF, Fei B. High‐strength hydrogels: Microstructure design, characterization and applications. J Polym Sci Part B Polym Phys. 2018;56(19):1325-35.Manavitehrani I, Le TYL, Daly S, Wang Y, Maitz PK, Schindeler A, et al. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater Sci Eng C. 2019;96:824-30.Kazimierczak P, Benko A, Palka K, Canal C, Kolodynska D, Przekora A. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J Mater Sci Technol. 2020;43:52-63.Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, et al. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater. 2017;13(1):015012.Nahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi‐Barough S. Design and fabrication of bone tissue scaffolds based on PCL / PHBV CONTAINING hydroxyapatite nanoparticles: DUAL‐LEACHING technique. J Biomed Mater Res A. 2021;109(6):981-93.Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457-68.Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun. 2021;12(1):1291.Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature. 2021;590(7847):594-9.Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater 2020;5(1):82-91.Aldana AA, Valente F, Dilley R, Doyle B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting. 2021;21:e00105.Rajzer I, Rom M, Menaszek E, Pasierb P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater Lett. 2015;138:60-3.Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Ann Biomed Eng. 2016;44(6):2090-102.Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, et al. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Adv Mater. 2018;30(36):1706539.Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020.Wei Y, Zhao D, Cao Q, Wang J, Wu Y, Yuan B, et al. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System. ACS Biomater Sci Eng. 2020;6(3):1787-97.Abudhahir M, Saleem A, Paramita P, Kumar SD, Tze‐Wen C, Selvamurugan N, et al. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2021;109(5):654-64.Curti F, Stancu IC, Voicu G, Iovu H, Dobrita CI, Ciocan LT, et al. Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite–Gelatin Inks. Polymers. 2020;12(10):2420.Kamboj N, Kazantseva J, Rahmani R, Rodríguez MA, Hussainova I. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater Sci Eng C. 2020;116:111223.Palakurthy S, K. VGR, Samudrala RK, P. AA. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater Sci Eng C. 2019;98:109-17.Ge R, Xun C, Yang J, Jia W, Li Y. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomed Mater. 2019;14(6):065013.Wei J, Chen F, Shin JW, Hong H, Dai C, Su J, et al. Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold. Biomaterials. 2009;30(6):1080-8.Emadi R, Roohani Esfahani SI, Tavangarian F. A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater Lett. 2010;64(8):993-6.Lew DP, Waldvogel FA. Osteomyelitis. The Lancet. 2004;364(9431):369-79.Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol. 2008;52(1):13-22.Garcia Del Pozo E, Collazos J, Carton JA, Camporro D, Asensi V. Factors predictive of relapse in adult bacterial osteomyelitis of long bones. BMC Infect Dis. 2018;18(1):635.Donlan RM, Costerton JW. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin Microbiol Rev. 2002;15(2):167-93.Kristian SA, Golda T, Ferracin F, Cramton SE, Neumeister B, Peschel A, et al. The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection model. Microb Pathog. 2004;36(5):237-45.Chan C, Burrows LL, Deber CM. Helix Induction in Antimicrobial Peptides by Alginate in Biofilms. J Biol Chem. 2004;279(37):38749-54.Dental implants and osteomyelitis in a patient with osteopetrosis. Quintessence Int. 2014;45(9):765-8.Semel G, Wolff A, Shilo D, Akrish S, Emodi O, Rachmiel A. Mandibular osteomyelitis associated with dental implants. A case series. Eur J Oral Implantol. 2016;9(4):435-42.Shnaiderman-Shapiro A, Dayan D, Buchner A, Schwartz I, Yahalom R, Vered M. Histopathological Spectrum of Bone Lesions Associated with Dental Implant Failure: Osteomyelitis and Beyond. Head Neck Pathol. 2015;9(1):140-6.Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules. 2020;25(13):3048.Fair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Med Chem. 2014;6:PMC.S14459.Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985-98.Makowski M, Silva ÍC, Pais Do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 8 de 2019;11(11):588.Zurawski DV, McLendon MK. Monoclonal Antibodies as an Antibacterial Approach Against Bacterial Pathogens. Antibiotics. 2020;9(4):155.Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;93:2-11.Patrascu JM, Nedelcu IA, Sonmez M, Ficai D, Ficai A, Vasile BS, et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J Nanomater. 2015;2015:1-8.Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46:412-29.López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta. febrero de 2013;763:1-10.Cowan MM. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. octubre de 1999;12(4):564-82.Clark AM. Natural products as a resource for new drugs. Pharm Res. 1996;13(8):1133-41.Ugur A, Barlas M, Ceyhan N, Turkmen V. Antimicrobial Effects of Propolis Extracts on Escherichia coli and Staphylococcus aureus Strains Resistant to Various Antibiotics and Some Microorganisms. J Med Food. 2000;3(4):173-80.Mattigatti S, Jain D, Ratnakar P, Moturi S, Varma S, Rairam S. Antimicrobial Effect of Conventional Root Canal Medicaments vs Propolis against Enterococcus faecalis, Staphylococcus aureus and Candida albicans. J Contemp Dent Pract. 2012;13(3):305-9.Oda H, Nakagawa T, Maruyama K, Dono Y, Katsuragi H, Sato S. Effect of Brazilian green propolis on oral pathogens and human periodontal fibroblasts. J Oral Biosci. 2016;58(2):50-4.Meimandi-Parizi A, Oryan A, Sayahi E, Bigham-Sadegh A. Propolis extract a new reinforcement material in improving bone healing: An in vivo study. Int J Surg. 2018;56:94-101.Elkhenany H, El-Badri N, Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed Pharmacother. 2019;115:108861.Afrouzan H, Tahghighi A, Zakeri S, Es-haghi A. Chemical Composition and Antimicrobial Activities of Iranian Propolis. Iran Biomed J [Internet]. enero de 2018 [citado 13 de octubre de 2023];22(1). Disponible en: https://doi.org/10.22034/ibj.22.1.50Oryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98:469-83.Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid Med Cell Longev. 2017;2017:1-21.Popova M, Giannopoulou E, Skalicka-Woźniak K, Graikou K, Widelski J, Bankova V, et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules. 2017;22(7):1159.Veiga RS, De Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, et al. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol. 2017;122(4):911-20.Pazin WM, Mônaco LDM, Egea Soares AE, Miguel FG, Berretta AA, Ito AS. Antioxidant activities of three stingless bee propolis and green propolis types. J Apic Res. 2017;56(1):40-9.Cuesta-Rubio O, Piccinelli AL, Campo Fernandez M, Márquez Hernández I, Rosado A, Rastrelli L. Chemical Characterization of Cuban Propolis by HPLC−PDA, HPLC−MS, and NMR: the Brown , Red , and Yellow Cuban Varieties of Propolis. J Agric Food Chem. 2007;55(18):7502-9.Ribeiro VP, Arruda C, Aldana‐Mejia JA, Bastos JK, Tripathi SK, Khan SI, et al. Phytochemical, Antiplasmodial, Cytotoxic and Antimicrobial Evaluation of a Southeast Brazilian Brown Propolis Produced by Apis mellifera Bees. Chem Biodivers. 2021;18(9):e2100288.Ribeiro VP, Arruda C, Mejía JAA, Candido ACBB, Dos Santos RA, Magalhães LG, et al. Brazilian southeast brown propolis: gas chromatography method development for its volatile oil analysis, its antimicrobial and leishmanicidal activities evaluation. Phytochem Anal. 2021;32(3):404-11.AOAC. Official methods of analysis of the AOAC. 15th ed. Vol. 1. Arlington, VA: The Association; 1990.Martinez J, Garcia C, Durango D, Gil J. Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección. Rev MVZ Cordoba [Internet]. 17(1). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682012000100008Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004;84(3):329-39.Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144-58.Andonian MR, Barrett AS, Vinogradov SN. Physical properties and subunits of Haemopis grandis erythrocruorin. Biochim Biophys Acta. 1975;412(2):202-13.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7.Phiri N, Mainda G, Mukuma M, Sinyangwe NN, Banda LJ, Kwenda G, et al. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs and open markets in selected districts of Zambia [Internet]. Scientific Communication and Education; 2020 [citado 20 de noviembre de 2023]. Disponible en: http://biorxiv.org/lookup/doi/10.1101/2020.04.20.050914Kowalska-Krochmal B, Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165.Seidel V, Peyfoon E, Watson DG, Fearnley J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: ANTIBACTERIAL ACTIVITY OF PROPOLIS FROM DIFFERENT ZONES. Phytother Res. 2008;22(9):1256-63.Lozina L analía, Peichoto ME, Acosta O, Granero G. Estandarización y caracterización organoléptica y fisicoquímica de 15 propóleos argentinos. Acta Farm Bonaer. 2010;29(1):102-10.Marly SS, Maria LMFE, Carlos ALDC, Karina TMG, Rosane FS, Rogeria CDCA. Propolis as natural additive: A systematic review. Afr J Biotechnol. 2018;17(41):1282-91.Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol. 2021;115:297-306.Viloria J, Gil J, Durango D, Garcia C. Physicochemical characterization and antimicrobial activity of propolis from municipality of la union (antioquia, colombia). Rev Biotecnol En El Sect Agropecu Agroindustrial. 2010;63(1):5373-83.Barrientos‐Lezcano JC, Gallo‐Machado J, Marin‐Palacio LD, Builes S. Extraction kinetics and physicochemical characteristics of Colombian propolis. J Food Process Eng. 2023;46(11):e14272.Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159.Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, et al. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci. 2022;101(12):102159Devequi-Nunes D, Machado BAS, Barreto GDA, Rebouças Silva J, Da Silva DF, Da Rocha JLC, et al. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. Lightfoot DA, editor. PLOS ONE. 2018;13(12):e0207676.Park YK, Alencar SM, Aguiar CL. Botanical Origin and Chemical Composition of Brazilian Propolis. J Agric Food Chem. 2002;50(9):2502-6.Wagh VD. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv Pharmacol Sci. 2013;2013:1-11.Silva-Carvalho R, Baltazar F, Almeida-Aguiar C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid Based Complement Alternat Med. 2015;2015:1-29.Vera N, Solorzano E, Ordoñez R, Maldonado L, Bedascarrasbure E, Isla MI. Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities. Nat Prod Commun. 2011;6(6):1934578X1100600618.Andrade JKS, Denadai M, De Oliveira CS, Nunes ML, Narain N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int. 2017;101:129-38Kudo D, Inden M, Sekine S ichiro, Tamaoki N, Iida K, Naito E, et al. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro. Neurosci Lett. 2015;589:92-7.Alshaher A, Wallace J, Agarwal S, Bretz W, Baugh D. Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament. J Endod. 2004;30(5):359-61Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998;36(4):347-63.Cottica SM, Sawaya ACHF, Eberlin MN, Franco SL, Zeoula LM, Visentainer JV. Antioxidant activity and composition of propolis obtained by different methods of extraction. J Braz Chem Soc. 2011;22(5):929-35.Pobiega K, Kraśniewska K, Derewiaka D, Gniewosz M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J Food Sci Technol. 2019;56(12):5386-95.Trusheva B, Trunkova D, Bankova V. Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J. 2007;1(1):13.Heinrich M, Modarai M, Kortenkamp A. Herbal Extracts used for Upper Respiratory Tract Infections: Are there Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008;74(6):657-60.Ahn MR, Kumazawa S, Hamasaka T, Bang KS, Nakayama T. Antioxidant Activity and Constituents of Propolis Collected in Various Areas of Korea. J Agric Food Chem. 2004;52(24):7286-92.Akhir RAM, Bakar MFA, Sanusi SB. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts. En Kedah, Malaysia; 2017 [citado 13 de octubre de 2023]. p. 0200901-7. Disponible en: https://pubs.aip.org/aip/acp/article/886523Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, et al. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023;15(12):2629.Gonsales GZ, Orsi RO, Fernandes Júnior A, Rodrigues P, Funari SRC. Antibacterial activity of propolis collected in different regions of Brazil. J Venom Anim Toxins Trop Dis [Internet]. 2006 [citado 13 de octubre de 2023];12(2). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992006000200009&lng=en&nrm=iso&tlng=enLu LC, Chen YW, Chou CC. Antibacterial activity of propolis against Staphylococcus aureus. Int J Food Microbiol. 2005;102(2):213-20.Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals. 2022;15(11):1419.Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18(1):241-72.Horna Quintana G, Silva Diaz M, Vicente Taboada W, Tamariz Ortiz J. Concentración mínima inhibitoria y concentración mínima bactericida de ciprofloxacina en bacterias uropatógenas aisladas en el Instituto Nacional de Enfermedades Neoplásicas. Rev Medica Hered. 2012;16(1):39.Moussaoui S, Lahouel M. Propolis Extract: A Potent Bacteria Efflux Pump Inhibitor. J Biol Act Prod Nat. 2014;4(3):216-23Da Cruz Almeida ET, Da Silva MCD, Oliveira JMDS, Kamiya RU, Arruda RE dos S, Vieira DA, et al. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J Pharm Anal. 2017;7(5):280-7.Van Der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4):042003.Bakhsheshi-Rad HR, Hamzah E, Daroonparvar M, Ebrahimi-Kahrizsangi R, Medraj M. In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications. Ceram Int. 2014;40(6):7971-82.Ratner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.Hench LL. Bioceramics. J Am Ceram Soc. 2005;81(7):1705-28.Ratner BD, editor. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam ; Boston: Elsevier Academic Press; 2004. 851 p.Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34(5):740-53.Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater. de 2013;8(3):032001.Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96.Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59.Yang C, Wang X, Ma B, Zhu H, Huan Z, Ma N, et al. 3D-Printed Bioactive Ca 3 SiO 5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration. ACS Appl Mater Interfaces. 2017;9(7):5757-67.Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5.Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic–Angiogenic Coupling Effect for Bone Regeneration. Small. 2021;17(14):2006598.Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of Skeletal Repair (Fracture Healing and Its Assessment). En: Hilton MJ, editor. Skeletal Development and Repair [Internet]. Totowa, NJ: Humana Press; 2014 [citado 1 de noviembre de 2023]. p. 13-31. (Methods in Molecular Biology; vol. 1130). Disponible en: https://link.springer.com/10.1007/978-1-62703-989-5_2Restrepo S, Ocampo S, Ramírez JA, Paucar C, García C. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J Phys Conf Ser. 2017;935:012036.Dong Z, Zhao X. Application of TPMS structure in bone regeneration. Eng Regen. 2021;2:154-62.Fantini M, Curto M, De Crescenzio F. TPMS for interactive modelling of trabecular scaffolds for Bone Tissue Engineering. En: Eynard B, Nigrelli V, Oliveri SM, Peris-Fajarnes G, Rizzuti S, editores. Advances on Mechanics, Design Engineering and Manufacturing [Internet]. Cham: Springer International Publishing; 2017 [citado 1 de noviembre de 2023]. p. 425-35. (Lecture Notes in Mechanical Engineering). Disponible en: http://link.springer.com/10.1007/978-3-319-45781-9_43Vijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS Appl Bio Mater. 2018;1(2):259-69.Fogden A, Haeberlein M, Lidin S. Generalizations of the gyroid surface. J Phys I. 1993;3(12):2371-85.Shao H, He Y, Fu J, He D, Yang X, Xie J, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc. 2016;36(6):1495-503.Pita Migueléz I. Diseño, sinterización y caracterización de estructuras 3D con porosidad gradual de Wollastonite y Fosfato tricálcico para regeneración ósea [Internet]. [Madrid]: Politécnica de Madrid; 2019. Disponible en: https://oa.upm.es/72060/3/TFG_Ines_Pita_Miguelez.pdfC21 Committee. Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?C373-88R06Liu J, Miao X. Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads. J Mater Sci. 2005;40(23):6145-50.D04 Committee. Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method) [Internet]. ASTM International; [citado 1 de noviembre de 2023]. Disponible en: http://www.astm.org/cgi-bin/resolver.cgi?D70D70M-21Yang T, Van Olmen R. Robust design for a multilayer ceramic capacitor screen-printing process case study. J Eng Des. 2004;15(5):447-57.Yoon DH, Lee BI. Processing of barium titanate tapes with different binders for MLCC applications—Part I: Optimization using design of experiments. J Eur Ceram Soc. 2004;24(5):739-52.Renteria A, Fontes H, Diaz JA, Regis JE, Chavez LA, Tseng TL (Bill), et al. Optimization of 3D printing parameters for BaTiO 3 piezoelectric ceramics through design of experiments. Mater Res Express. 2019;6(8):085706.Prasad PSRK, Reddy AV, Rajesh PK, Ponnambalam P, Prakasan K. Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing. J Mater Process Technol. 2006;176(1-3):222-9.Jayathilakage R, Rajeev P, Sanjayan J. Rheometry for Concrete 3D Printing: A Review and an Experimental Comparison. Buildings. 2022;12(8):1190.Mott RL, Untener JA. Applied fluid mechanics. Seventh edition. Boston: Pearson; 2015. 531 p.Lilliman M. Control of mortar rheology for 3D concrete printing. [Internet]. Loughborough; 2017. Disponible en: https://hdl.handle.net/2134/25216Chan SSL, Pennings RM, Edwards L, Franks GV. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit Manuf. 2020;35:101335.Sainz MA, Pena P, Serena S, Caballero A. Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010;6(7):2797-807.Teixeira S, Rodriguez MA, Pena P, De Aza AH, De Aza S, Ferraz MP, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng C. 2009;29(5):1510-4.Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med. 2010;21(8):2255-61.Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of Pore Size and Void Fraction on Cellular Adhesion, Proliferation, and Matrix Deposition. Tissue Eng. 2001;7(5):557-72.Kramschuster A, Turng LS. Fabrication of Tissue Engineering Scaffolds. 17.a ed. Boston: William Andrew Publishing; 2013. 427-446 p.Del Carpio-Perochena A, Kishen A, Felitti R, Bhagirath AY, Medapati MR, Lai C, et al. Antibacterial Properties of Chitosan Nanoparticles and Propolis Associated with Calcium Hydroxide against Single- and Multispecies Biofilms: An In Vitro and In Situ Study. J Endod. 2017;43(8):1332-6.Delgado Aceves MDL, Andrade Ortega JÁ, Ramírez Barragán CA. Caracterización fisicoquímica de propóleos colectados en el Bosque La Primavera Zapopan, Jalisco. Rev Mex Cienc For. 2018;6(28):74-87.Sedelnikova MB, Ugodchikova AV, Tolkacheva TV, Chebodaeva VV, Cluklhov IA, Khimich MA, et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals. 2021;11(5):754.Chen W, Liang Y, Hou X, Zhang J, Ding H, Sun S, et al. Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments. Materials. 2018;11(4):593.Dabiri G, Tumbarello DA, Turner CE, Van De Water L. Hic-5 Promotes the Hypertrophic Scar Myofibroblast Phenotype by Regulating the TGF-β1 Autocrine Loop. J Invest Dermatol. 2008;128(10):2518-25.Hu J, Qu J, Xu D, Zhou J, Lu H. Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies. Int Orthop. 2013;37(2):311-20.Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev. 2015;84:45-67.Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Controlled Release. 2015;219:119-28.Kalinka J, Hachmeister M, Geraci J, Sordelli D, Hansen U, Niemann S, et al. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol. 2014;304(8):1038-49.Wang X, Sparkman J, Gou J. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos Commun. 2017;3:1-6.Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526-34.Gama E Silva GL, Sato De Souza Bustamante Monteiro M, Dos Santos Matos AP, Santos-Oliveira R, Kenechukwu FC, Ricci-Júnior E. Nanofibers in the treatment of osteomyelitis and bone regeneration. J Drug Deliv Sci Technol. 2022;67:102999.Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, et al. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994;62(1):152-61.Gordon RJ, Lowy FD. Pathogenesis of Methicillin‐Resistant Staphylococcus aureus Infection. Clin Infect Dis. 2008;46(S5):S350-9.Zhou M, Luo H, Li Z, Wu F, Huang C, Ding Z, et al. Recent Advances in Screening of Natural Products for Antimicrobial Agents. Comb Chem High Throughput Screen. 2012;15(4):306-15.Almuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci. 2020;27(11):3079-86.Yildirim Z, Hacievliyagil S, Kutlu NO, Aydin NE, Kurkcuoglu M, Iraz M, et al. Effect of water extract of Turkish propolis on tuberculosis infection in guinea-pigs. Pharmacol Res. 2004;49(3):287-92.Uzel A, Sorkun K, Önçağ Ö, Çoğulu D, Gençay Ö, Sali˙h B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol Res. 2005;160(2):189-95.Qureshi UA, Khatri Z, Ahmed F, Khatri M, Kim IS. Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase. ACS Sustain Chem Eng. 2017;5(5):4340-51.Ito J, Chang FR, Wang HK, Park YK, Ikegaki M, Kilgore N, et al. Anti-AIDS Agents. Anti-HIV Activity of Moronic Acid Derivatives and the New Melliferone-Related Triterpenoid Isolated from Brazilian Propolis. J Nat Prod. 2001;64(10):1278-81.Duke CC, Tran VH, Duke RK, Abu-Mellal A, Plunkett GT, King DI, et al. A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes. Phytochemistry. 2017;134:87-97.Mirzoeva OK, Grishanin RN, Calder PC. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res. 1997;152(3):239-46.Zhang W, Margarita GE, Wu D, Yuan W, Yan S, Qi S, et al. Antibacterial Activity of Chinese Red Propolis against Staphylococcus aureus and MRSA. Molecules. 2022;27(5):1693.Saeed F, Ahmad RS, Arshad MU, Niaz B, Batool R, Naz R, et al. Propolis to Curb Lifestyle Related Disorders: An Overview. Int J Food Prop. 2016;19(2):420-37.Demir S, Aliyazicioglu Y, Turan I, Misir S, Mentese A, Yaman SO, et al. Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutr Cancer. 2016;68(1):165-72.Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007;2(3):323-34.Periasamy S, Chatterjee SS, Cheung GYC, Otto M. Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol. 2012;5(3):275-7.Eladli MG, Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS, Alyahya SA. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J Biol Sci. 2019;26(6):1285-90.Iyer V, Raut J, Dasgupta A. Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J Med Microbiol [Internet]. 2021 [citado 1 de noviembre de 2023];70(9). Disponible en: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001421Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020;5(1):1-9.Clarke B. Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. 2008;3(Supplement_3):S131-9.Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292-304.Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol [Internet]. marzo de 1997 [citado 17 de noviembre de 2023];21(1). Disponible en: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471142735.ima03bs21Méry B, Guy JB, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, et al. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J Cell Death. 2017;10:117967071769125.Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology. 2013;24(17):175501.Nakatsu MN, Gonzalez S, Mei H, Deng SX. Human Limbal Mesenchymal Cells Support the Growth of Human Corneal Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2014;55(10):6953-9.Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, et al. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. Protoplasma. 2023;260(2):349-69.Longhin EM, El Yamani N, Rundén-Pran E, Dusinska M. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol. 2022;4:981701.O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-6.Arora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, et al. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J. 2022;55(S1):3-13.Schneider MR. Von Kossa and his staining technique. Histochem Cell Biol [Internet]. 20 de noviembre de 2021 [citado 17 de noviembre de 2023]; Disponible en: https://link.springer.com/10.1007/s00418-021-02051-3Wang YH, Liu Y, Maye P, Rowe DW. Examination of Mineralized Nodule Formation in Living Osteoblastic Cultures Using Fluorescent Dyes. Biotechnol Prog. 2006;22(6):1697-701.Stucki U, Schmid J, Hämmerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration: A descriptive histochemical study in humans. Clin Oral Implants Res. 2001;12(2):121-7.Pelaez-Vargas A, Gallego-Perez D, Higuita-Castro N, Carvalho A, Grenho L, Arismendi JA, et al. Micropatterned Coatings for Guided Tissue Regeneration in Dental Implantology. En: Gowder S, editor. Cell Interaction [Internet]. InTech; 2012 [citado 17 de noviembre de 2023]. Disponible en: http://www.intechopen.com/books/cell-interaction/micropatterned-coatings-for-guided-tissue-regeneration-in-dental-implantologyLeal-Marin S, Gallaway G, Höltje K, Lopera-Sepulveda A, Glasmacher B, Gryshkov O. Scaffolds with Magnetic Nanoparticles for Tissue Stimulation. Curr Dir Biomed Eng. 2021;7(2):460-3.Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res. 2020;24(1):2.Sundaram B, C. John Milton M. Porous Polycaprolactone Scaffold Engineered with Naringin Loaded Bovine Serum Albumin Nanoparticles for Bone Tissue Engineering. Biosci Biotechnol Res Asia. 2017;14(4):1355-62.Gutiérrez-Prieto SJ, Perdomo-Lara SJ, Diaz-Peraza JM, Sequeda-Castañeda LG. Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry. Adv Pharmacol Sci. 2019;2019:1-9.Qiu Y, Chen X, Hou Y, Hou Y, Tian S, Chen Y, et al. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep [Internet]. 2019 [citado 17 de noviembre de 2023]; Disponible en: http://www.spandidos-publications.com/10.3892/mmr.2019.10066Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, et al. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng. 2021;7(12):5397-431.Huang S, Zhang CP, Wang K, Li G, Hu FL. Recent Advances in the Chemical Composition of Propolis. Molecules. 2014;19(12):19610-32.Búfalo MC, Candeias JMG, Sforcin JM. In Vitro Cytotoxic Effect of Brazilian Green Propolis on Human Laryngeal Epidermoid Carcinoma (HEp-2) Cells. Evid Based Complement Alternat Med. 2009;6(4):483-7.Ahn MR, Kumazawa S, Usui Y, Nakamura J, Matsuka M, Zhu F, et al. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007;101(4):1383-92.Fung C, Mohamad H, Hashim S, Htun A, Ahmad A. Proliferative Effect of Malaysian Propolis on Stem Cells from Human Exfoliated Deciduous Teeth: An In vitro Study. Br J Pharm Res. 2015;8(1):1-8.Gandolfi MG, Perut F, Ciapetti G, Mongiorgi R, Prati C. New Portland Cement–based Materials for Endodontics Mixed with Articaine Solution: A Study of Cellular Response. J Endod. 2008;34(1):39-44.Higuita‐Castro N, Gallego‐Perez D, Pelaez‐Vargas A, García Quiroz F, Posada OM, López LE, et al. Reinforced Portland cement porous scaffolds for load‐bearing bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2012;100B(2):501-7.Venkatraman SK, Choudhary R, Genasan K, Murali MR, Raghavendran HRB, Kamarul T, et al. Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. J Sol-Gel Sci Technol. 2021;100(3):506-16.Matsuoka H, Akiyama H, Okada Y, Ito H, Shigeno C, Konishi J, et al. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic: Released calcium ions promote osteogenic differentiation in osteoblastic ROS17/2.8 cells. J Biomed Mater Res. 1999;47(2):176-88.Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001;15(7):561-71.Tyszka-Czochara M, Paśko P, Reczyński W, Szlósarczyk M, Bystrowska B, Opoka W. Zinc and Propolis Reduces Cytotoxicity and Proliferation in Skin Fibroblast Cell Culture: Total Polyphenol Content and Antioxidant Capacity of Propolis. Biol Trace Elem Res. 2014;160(1):123-31.Banskota AH, Tezuka Y, Prasain JK, Matsushige K, Saiki I, Kadota S. Chemical Constituents of Brazilian Propolis and Their Cytotoxic Activities. J Nat Prod. 1998;61(7):896-900.Su J, Hua S, Chen A, Chen P, Yang L, Yuan X, et al. Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Biomater Adv. 2022;133:112595.Battulga B, Shiizaki K, Miura Y, Osanai Y, Yamazaki R, Shinohara Y, et al. Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet. 2023;852.Kanwar S, Vijayavenkataraman S. 3D printable bone-mimicking functionally gradient stochastic scaffolds for tissue engineering and bone implant applications. Mater Des. 2022;223:111199.Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001.Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int. 2011;37(6):1825-31.Gomes PS, Fernandes MH. Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol. 2007;52(3):251-9.Song K, Kong Q, Li L, Wang Y, Parungao R, Zheng S, et al. In Vitro Fabrication and Biocompatibility Assay of a Biomimetic Osteoblastic Niche. Appl Biochem Biotechnol. 2019;189(2):471-84.Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int.2011;37(6):1825-31.Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B Biointerfaces. 2017;160:553-63.Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 2009;8(3):195-208.Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3(7):3867-910.Kaur G, Kumar V, Baino F, Mauro JC, Pickrell G, Evans I, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng C. 2019;104:109895.Abueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.Abueidda DW, Elhebeary M, Shiang CS (Andrew), Pang S, Abu Al-Rub RK, Jasiuk IM. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater Des. 2019;165:107597.Potencialización de los propóleos obtenidos de la apicultura de Tame (Arauca) como agentes bactericidas y antimicrobianos en andamios para regeneración ósea.Minciencias Plan Bienal de Convocatorias 2019EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86049/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1116795956.2023.pdf1116795956.2023.pdfTesis de Doctorado en Biotecnologíaapplication/pdf5449571https://repositorio.unal.edu.co/bitstream/unal/86049/2/1116795956.2023.pdf4b4872217890ee2c1373e8fd787ea3feMD52THUMBNAIL1116795956.2023.pdf.jpg1116795956.2023.pdf.jpgGenerated Thumbnailimage/jpeg5207https://repositorio.unal.edu.co/bitstream/unal/86049/3/1116795956.2023.pdf.jpg0178874db35ba7fc61c7387b9e706c85MD53unal/86049oai:repositorio.unal.edu.co:unal/860492024-08-24 23:13:41.055Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=