Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.

ilustraciones, diagramas, fotografías

Autores:
Velandia Gomez, Jeison Joseph
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84963
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84963
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
530 - Física::537 - Electricidad y electrónica
Energía eólica
Turbinas de aire
Wind power
Air-turbines
micro generacion eolica
SymRM
FEA
AFPMG
IM
Micro wind generation
SymRM
FEA
AFPMG
IM
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_9134860df4b6aedf33d3af937addc517
oai_identifier_str oai:repositorio.unal.edu.co:unal/84963
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
dc.title.translated.eng.fl_str_mv Design and construction of an electrical generator and power drive for low-voltage electrical control and 1 kW power, oriented towards urban micro-wind power generation.
title Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
spellingShingle Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
530 - Física::537 - Electricidad y electrónica
Energía eólica
Turbinas de aire
Wind power
Air-turbines
micro generacion eolica
SymRM
FEA
AFPMG
IM
Micro wind generation
SymRM
FEA
AFPMG
IM
title_short Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
title_full Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
title_fullStr Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
title_full_unstemmed Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
title_sort Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.
dc.creator.fl_str_mv Velandia Gomez, Jeison Joseph
dc.contributor.advisor.none.fl_str_mv Rosero Garcia, Javier Alveiro
dc.contributor.author.none.fl_str_mv Velandia Gomez, Jeison Joseph
dc.contributor.researchgroup.spa.fl_str_mv Electrical Machines & Drives, Em&D
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
530 - Física::537 - Electricidad y electrónica
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
530 - Física::537 - Electricidad y electrónica
Energía eólica
Turbinas de aire
Wind power
Air-turbines
micro generacion eolica
SymRM
FEA
AFPMG
IM
Micro wind generation
SymRM
FEA
AFPMG
IM
dc.subject.lemb.spa.fl_str_mv Energía eólica
Turbinas de aire
dc.subject.lemb.eng.fl_str_mv Wind power
Air-turbines
dc.subject.proposal.spa.fl_str_mv micro generacion eolica
SymRM
FEA
AFPMG
IM
dc.subject.proposal.eng.fl_str_mv Micro wind generation
SymRM
FEA
AFPMG
IM
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T14:22:41Z
dc.date.available.none.fl_str_mv 2023-11-27T14:22:41Z
dc.date.issued.none.fl_str_mv 2023-11
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84963
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84963
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv R. Kumar, K. Raahemifar, and A. S. Fung, "A critical review of vertical axis wind turbines for urban applications," Renewable and Suslainable Energy Reviews, vol. 89, pp. 281-291, 6 2018.
L. S. Bianchin, D. Beck, and D. J. Seidel, "Influência do número de (Ftágios no torque estático da turbina eólica Savonius," Revista Thema, vol. 17, pp. 309—317, 6 2020.
W. Tjiu, T. Marnoto, S. Mac, M. H. RIFIan, and K. Sopian, "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, vol. 75, pp. 50-67, 3 2015.
R. Rajabi Moghaddam, Synchmnms Reluciance Machine (SynRM) in Variable spend (VSD) Applicalioms. KTH Royal Instituto of Technology, 2011.
Haataja J. Ph. D, A comparative performance sludy of four-pole, induclion molors and synchronous reluclance molors in variable spend drives. PhD t,hesis, Lappeenranta University of Technology, Lappeenrannan teknillinen yliopisto, 2003.
Brown J. E. and Jones B. L., "Electrical variable-speed drives" , , , IEEE Pmcendings A Physical Science, Measuremenl and Instrumenlalion Managemenl and Educalion, vol. 131, no. 7, pp. 51(Y558, 1984.
J. Ospina, Emplazamiento Sustentable de Sistemas de Micmgenemci "on Eolicn en Co- lombia desde la Perspectiva del Desarrollo Sustentable. PhD th(XSis, Universidad ECCI, Bogota, 2020.
"Historical Development of the Windrnill," in Wind Turbine, Technology: Fundamental Concepls in Wind Turbine Enqineering, Second Edilion, pp. 1—16, ASME Press, 2()()9.
H. Heidari, A. Rassõlkin, A. KalltFte, T. Vaimann, E. Andriushchenko, A. Belahcen, and D. V. Lukichev, "A review of synchronous reluctance motor-drive advancements," 1 2021.
M. Malinowski, A. Milczarek, R. Kot, Z. Goryca, and J. T. Szuster, "Optimized Energy-Conversion Syst,ems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems," IEEE Power Electronics Magazine, vol. 2, pp. 16-30, 9 2015.
F. Rossouw, Analysis and design of a:rial JIua: permanent magnet wind generalor syslem for direct ballery charying applicnlions. PhD thesis, Stellenbosch University, South Africa, 2009.
R. Lacal-Arántegui, "Materials use in electricity generators in wind turbines state-oL the-art and futuro specifications," Journal of Clenner Produclion, vol. 87, pp. 275—283, 1 2015.
UPME and Minenergía, "Plan Nacional (le Energía 2020 - 2050," tech. rep., Bogota, 2019.
J. C. Kappatou, G. D. Zaloi«xsttus, and D. A. Spyratos, "3-1) FEM Analysis, Prototy- ping and Tests of an Axial Flux Permanent-Magnet Wind Generator," 2017.
Javier Muntó Puig, Desarrollo y análisis de un generador de inducción de doble de- vanado en el eslálor aplicndo en sistemas eólicos de velocidad variable. PhD thesis, Universitat Rovira 1 Virgili, Tarragona, 2015.
N. Mendoza, Diseño de un generador eólico de eje vertical lipo darrieus helicoidal de 3 kW. PhD th€xsis, Instituto tecnológico de Pachuca, Pachuca de Soto, 2017.
"Historical Development of the Windmill," in Wind Turbine Technology: Fundamental Concrpls in Wind Turbine Engineering, Second Edilion, pp. IM6, ASME Press, 2()()9.
L. V. Clementi and G. P. Jacinto, "Energía eólica distribuida: oportunidad(xs y desafíos en Argentina," Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, pp. 48454, 3 2021.
J. Saenz and D. Macias, Diseño y cnnslrucr,ión de un prototipo de aerogenerador eólico de eje verticnl soportado por cojinetes magnéticos. PhD thesis, Universidad Distrital Francisco José de Caldas, Bogota, 2016.
C. Espejo Marín and R. García Marín, "La energía eólica en la producción de electri- cidad en España," Revista de geografía Norte Grande, pp. 115—136, 5 2()12.
M. Islam, S. Mekhilef, and R. Saidur, "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, vol. 21, pp. 456 468, 5
WWEA, 'WWEA 2013 Small Wind World Report Update," tech. rep., World Wind Energy Association, 2013.
F. Toja-Silva, A. Colmenar-Santos, and M. Castro-Gil, "Urban wind energy exploi- tation systems: Behaviour under multidirectional flow conditions—()pportunities and challenges," Renewable and Suslainable Energy Reviews, vol. 24, pp. 364—378, 8 2()13.
S. R. Allen, G. P. Hammond, and M. C. McManus, "Prospectas for and barriers to domestic micro-generation: A United Kingdom perspectivo," Appliexl Energy, vol. 85, pp. 528-544, 6 2008.
A. S. Bahaj, L. Myers, and P. A. James, "Urban energy generation: Influence of micro- wind turbine output on electricit,y consumption in buildings," Eneryy and Buildings, vol. 39, pp. 15E165, 2 2007.
A. L. Heagle, G. F. Naterer, and K. Pope, "Small wind turbine energy policies for resi- dential and small business usage in Ontario, Canada," Energy Policy, vol. 39, pp. 1988 1999, 4 2011.
B. Grieser, Y. Sunak, and R. Madlener, "Economic„s of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, vol. 78, pp. 334 350, 6 2015.
Q. S. Li, Z. R. Silll, and F. B. Chen, "Performance assessment of tall building-integratcd wind turbines for power generat,ion," Applied Eneryy, vol. 165, pp. 777 788, 3 2016.
G. M. Hopkins, R. S. Bridges, R. W. Dixon, J. H. Newman, E. B. Ptusey, H. P. Lid- don, and S. J. R. R. Reesl, The Collecled Works of Gerard Maniey Hopkins, Vol. 1: Cormspondence 1852—1881. Oxford University Press, 3 2013.
N. A. Ahmed and M. Cameron, "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the futuro," Renewable and Suslainable Energy Reviews, vol. 38, pp. 439—460, 1() 2014.
I. Khorsand, C. Kormos, E. G. Macdonald, and C. Crawford, "Wind energy in the city: An interurban comparison of social acceptance of wind energy projects," Energy Resenrch U Social Science, vol. 8, pp. 66-77, 7 2015.
Z. Simic, J. G. Havelka, and M. Bozicevic Vrhovcak, "Small wind turbines — A unique segment of the wind power market," Renewable Eneryy, vol. 5(), pp. 1()27 1036, 2 2013.
Anders Grauers, Design of Direcl-driven Permanent-magnel Generalors for Wind Turbines. PhD thesis, CHALMERS UNIVERSITY OF TECHNOLOGY, Góteborg, 1996.
J. M. Carrasco, E. Galván, and R. Portillo, "Wind Turbine Applications," Allernalive Energy in Power Elenlronics, pp. 177 23(), 1
A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, vol. 56, pp. 135H371, 4 2016.
S. Y. Liu and Y. F. Ho, "Wind energy applications for Taiwan buildings: are the challenges and strategies for small wind energy systems exploitation? " Renewable and Suslainable Energy Remiews, vol. 59, pp. 39—55, 6 2016.
S. Eriksson, H. Bernhoff, and M. Leijon, "Evaluation of different, turbine concepts for wind power," Renewable and Suslainable Energy Reviews, vol. 12, pp. 1419—1434, (5 2008.
D. S. Kumar, D. Srinivasan, and T. Reindl, "A Fast and Scalable Protection Scheme for Distribution Networks With Distributed Generation," IEEE Transaclions on Power Delivery, vol. 31, pp. 67 75, 2 2016.
G. Bodon, E. G. Antonini, S. De Bella, M. Raciti and E. Benini, "Evaluation of the different aerodynamic databases for vertical axis wind turbine simulations," Renewable and Sustainable Energy Reviews, vol. 4(), pp. 386—399, 12
M. Raciti Castelli, A. Englaro, and E. Benini, "The Darrieus wind turbine: Proposal for a new performance prediction model l)ased on CFD," Energy, vol. 36, pp. 4919—4934, 8 2011.
K. Sharma, A. Biswas, and R. Gupta, "Performance Mcasuremcnt of a Thrcc-Bladcd Combincd Darricus-savonius Rotor," INTERNATIONAL JOURNAL of RENEWA- BLE ENERGY RESEARCII, vol. 3, 2013.
A. Ghosh, A. Biswas, K. K. Sharma, and R. Gupta, "Computational analysis of flow physics of a combincd thrcc bladcd Darricus Savonius wind rotor," Journal of the Energy Institutc, vol. 88, pp. 425—437, 11 2015.
J. Serrano González, M. Burgos Payán, J. M. R. Santos, and F. Gonzálcz-Longatt, "A rcvicw and recent dcvclopmcnts in the optimal wind-turbinc micro-siting problcm," Renewable and Sustainable Energy Reviews, vol. 30, pp. 133—144, 2 2014.
G. R. Collccutt and R. G. Flay, "The economic optimisation of horizontal axis wind turbine design," Journal of Wind Engineering and Industrial Aerodynamics, vol. 61, PP. 87-97, 6 1996.
T. Christidis, G. Lewis, and P. Bigclow, "Undcrstanding support and opposition to wind turbine dcvclopmcnt in Ontario, Canada and possiblc stcps for futuro dcvclopmcnt," Remewable Energy, vol. 112, pp. 93—103, 11 2017.
X. Sun, Y. Chen, Y. Cao, G. Wu, Z. Zhcng, and D. Iluang, "Rcscarch on thc acrody- namic charactcristics of a lift drag hybrid vertical axis wind turbine," Advances in Mechanical Engineering, vol. 8, p. 168781401662934, 1 2016.
D. W. Wekcsa, C. Wang, Y. Wci, and W. Zhu, "Experimental and numerical study of turbulence cffcct on aerodynamic performance of a small-scalc vertical axis wind turbine," Journal of Wind Engineering and Industrial Aerodynamics, vol. 157, pp. 1 14, 10 2016.
J. L. Menet, "A doublc-stcp Savonius rotor for local production of electricity: a dcsigll study," Renewable Energy, vol. 29, pp. 1843—1862, 9 2004.
X. Jin, G. Zhao, K. Gao, and W. Ju, "Darricus vertical axis wind turbine: Basic rcscarch mcthods," Renewablc and Sustainable Energy Reviews, vol. 42, pp. 212—225, 2 2015.
F. Wenehenubun, A. Saputra, and II. Sutanto, "An Experimental Study on the Per- formancc of Savonius Wind Turbines Rclatcd With Thc Numbcr Of Blades," Energy Procedia, vol. 68, pp. 297—304, 4 2015.
Y. Wang, D. Ionel, D. G. Dorrell, and S. Strctz, "Establishing the Power Factor Li- mitations for Synchronous Reluctance Machines," IEEE Transactions on Magnetics, vol. 51, pp. 1-4, 11 2015.
E. M. Alave-Vargas, R. Orellana Lafuente, and D. F. Sempértegui-Tapia, "Estado del arte de aerogeneradores verticales (Monografía)," Investigacion u desarrollo, vol. 22, 7 2022.
P. J. Musgrove, "Energy form wind in rural and urban communities," pp. 290 309, 1 1985.
L. E. Arango Jiménez and J. J. Gutiérrez Granada, "Máquinas de corriente alterna," 2011.
M. Cheng and Y. Zhu, "The state of the art of wind energy conversion systems and technologies: A review," Energy Conversion and Management, vol. 88, pp. 332—347, 12 2014.
Z. Alnasir and M. Kazerani, "Performance comparison of standalone SCIG and P MSG- based wind energy conversion systems," in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. IS, IEEE, 5 2014.
K. Nakamura and O. Ichinokura, "Super-Multipolar Permanent Magnet Reluctance Generator Designed for Small-Scale Wind-Turbine Generation," IEEE Transactions on Magnetics, vol. 48, pp. 3311314, 11 2012.
M. Abarzadeh, H. Madadi, and L. Chang, "Power Electronics in Small Scale Wind Thirbine Systems," in Advances in Wind Power, InTech, 11 2012.
J. Solís-Chaves, C. Rocha-Osorio, A. Murari, V. M. Lira, and A. J. Sguarezi Filho, "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, vol. 121, pp. 102 115, 6 2018.
A. Arifin, I. Al-Bahadly, and S. C. Mukhopadhyay, "State of the Art of Switched Reluctance Generator," Energy and Power Engineering, vol. 04, no. 06, pp. 447 458, 2012.
L. H. Hansen, L. Helle, E. Blaabjerg, S. Ritchie, S. MunkNielsen, H. Bindner, P. So- rensen, and B. Bak-Jensen, Conceptual survey of Generators and Power Electronics for Wind Turbines. Risoe-R No. 1205, forskningscenter ed., 2001.
S. Tokunaga and K. Kesamaru, "FEM simulation of novel small wind turbine genera- tion system with synchronous reluctance generator," in 2011 International Conference on Electrical Machines and Systems, pp. 145, IEEE, 8 2011.
H. Khelifa, A. Bentounsi, F. Rebahi, and M. Machmoum, "FE Simulation and Expe- riment of a Self-Excited SynRel Generator Based on COMSOL Software," Journal of Electrical Engineering U Technology, vol. 16, pp. 899 905, 3 2021.
N. Tesla, "Electro-magnetic motor," 1888.
S. Khaliq, M. Modarres, T. A. Lipo, and B.-I. Kwon, "Design of Novel Axial-Flux Dual Stator Doubly Fed Reluctance Machine," IEEE Transactions on Magnetics, vol. 51, pp. IM, 11 2015.
F. Marignetti, A. Vahedi, and S. M. Mirimani, "An Analytical Approach to Eccentricity in Axial Flux Permanent Magnet Synchronous Generators for Wind Thirbines," Electric Power Components and Systems, vol. 43, pp. 1039 1050, 6 2015.
Chen, L. He, J. Li, X. Cheng, and H. Lu, "An inexact bi-level simula- tion—optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, vol. 183, pp. 969 983, 12 2016.
M. Aydin, "Magnet skew in cogging torque minimization of axial gap permanent mag- net motors," Procedings of the 2008 International Conference on Electrical Machines, ICEM'08, 2008.
F. Crescimbini, A. Lidozzi, and L. Solero, "High-Speed Generator and Multilevel Con- verter for Energy Recovery in Automotive Systems," IEEE Transactions on Industrial Electronics, vol. 59, pp. 2678 2688, 6 2012.
A. Di Gerlando, G. Foglia, M. F. lacchetti, and R. Perini, "Axial Flux PM Machines With Concentrated Armature Windings: Design Analysis and Test Validation of Wind Energy Generators," IEEE Transactions on Industrial Electronics, vol. 58, pp. 3795 3805, 9 2011.
M. Aydin and M. Gulec, "Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: A review of cost-effective magnet-skewing techniques with experimental verification," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5025 5034, 2014.
S. Kahourzade, A. Mahmoudi, H. W. Ping, and M. N. Uddin, "A Comprehensive Review of Axial-Flux Permanent-Magnet Machines," Canadian Journal of Electrical and Computer Engineering, vol. 37, pp. 19.33, 12 2014.
M. Aydin, Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, vol. 43, no. 9, pp. 3614 3622, 2007.
Yicheng Chen and P. Pillay, "Axial-flux PM wind generator with a soft magnetic composite core," in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. , pp. 231237, IEEE.
Y. Wang, W. X. C. Chen, and Z. Dong, "A parametric magnetic network model for axial flux permanent magnet machine with coreless stator," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 1108 1113, IEEE, 10 2014.
H. Lovatt, "Design of an in-wheel motor for a solar-powered electric vehicle," in Eighth International Conference on Electrical Machines and Drives, pp. 234-238, IEE, 1997.
F. Giulii Capponi, G. De Donato, and F. Caricchi, "Recent Advances in Axial-Flux Permanent-Magnet Machine Technology," IEEE Transactions on Industry Applica- tions, vol. 48, pp. 219(E2205, 11 2012.
Vicent and G. González, "Integracion de energias renovables en redes electricas inteligentes," tech. rep.
N. Chaker, I. B. Salah, S. Tounsi, and R. Neji, "Design of Axial-Flux Motor for 'fraction Application," Journal of Electromagnetic Analysis and Applications, vol. 01, no. 02, pp. 73 84, 2009.
A. Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison between low-speed axial-flux and radial-flux permanent-magnet machines including mechanical constraints," in IEEE International Conference on Electric Machines and Drives, 2005., pp. 1695 1702, IEEE, 2005.
A. B. Letelier, D. A. Gonzalez, J. A. Tapia, R. Wallace, and M. A. Valenzuela, "Cogging Torque Reduction in an Axial Flux PM Machine via Stator Slot Displacement and Skewing," IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 685-693, 2007.
I. Rahman, P. M. Vasant, B. S. Singh, M. Abdullah-Al-Wadud, and N. Adnan, "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle char- ging infrastructures," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039 1047, 5 2016.
Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison etween low-speed axial-flux and radial-flux permanent-magnet machines including echanical constraints," in IEEE International Conference on Electric Machines and mes, 2005., pp. 1695 1702, IEEE, 2005.
L.F. Garcia-Rodriguez, J. Diego Rosero Ariza, J. Luis Chacón Velazco, and J. Ernesto Jaramillo Ibarra, "Vertical Axis Wind Turbine Design and Installation at Chicamocha Canyon," in Entropy and Exergy in Renewable Energy, IntechOpen, 1 2022.
D. Han, Y. Heo, N. Choi, S. Nam, K. Choi, and K. Kim, "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind frrbine at Low Tip- Speed Ratio," Energies, vol. 11, p. 1517, 6 2018.
M. A. Miller, S. Duvvuri, I. Brownstein, M. Lee, J. O. Dabiri, and M. Hultmark, "Vertical-axis wind turbine experiments at full dynamic similarity," Journal of Fluid Mechanics, vol. 844, pp. 707 720, 6 2018.
T. Letcher, Wind Energy Engineering A Handbook for Onshore and Offshore Wind Turbines. KwaZulu: Academic Press, 2 ed., 2017.
E. A. Attia, H. Saber, and H. El Gamal, "Performance and dynamic characteristics of a multi stages vertical axis wind turbine," Journal of Vibroengineering, vol. 18, pp. 4015A032, 9 2016.
L. Pan, Z. Zhu, H. Xiao, and L. Wang, "Numerical Analysis and Parameter Optimi- zation of J-Shaped Blade on Offshore Vertical Axis Wind frrbine," Energies, vol. 14, p. 6426, 10 2021.
Y. Wang, Blade Design of Verticnl Axis Wind Turbine at Low Tip-speed-ratios. PhD thesis, The Ohio State University, Ohio State, 2018.
S. Brusca, R. Lanzafame, and M. Messina, "Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine's performance," International Journal of Energy and Environmental Engineering, vol. 5, pp. 333—340, 12 2014.
K. Pytel, S. Gumula, P. Dudek, S. Bielik, S. Szpin, W. Hudy, M. Piaskowska Silars- ka, and M. Kowalski, "Testing the performance characteristics of specific profiles for applications in wind turbines," E3S Web of Conferences, vol. 108, p. 01015, 7 2019.
D. Hilewit, E. A. Matida, A. Fereidooni, H. Abo el Ella, and F. Nitzsche, "Power coefficient measurements of a novel vertical axis wind turbine," Energy Science (Y Engineeñng, vol. 7, pp. 2373 2382, 12 2019.
F. Chabane, A. Arif, and M. Aymene Barkat, "Aerodynamic shape optimization of a vertical-axis wind turbine with effect number of blades," DYNA, vol. 89, pp. 154 162, 3 2022.
M. A. Miller, S. Duvvuri, and M. Hultmark, "Solidity effects on the performance of vertical-axis wind turbines," Flow, vol. 1, p. E9, 9 2021.
T. Mon and S. Worasinchai, "Performance modelling of the Darrieus wind turbine," E3S Web of Conferences, vol. 302, p. 01001, 9 2021.
H. Salem, A. Mohammedredha, and A. Alawadhi, "High Power Output Augmented Vertical Axis Wind 'Ihlrbine," Fluids, vol. 8, p. 70, 2 2023.
A. Bonfiglio, F. Delfino, F. Gonzalez-Longatt, and R. Procopio, "Steady-state assess- ments of PMSGs in wind generating units," International Journal of Electrical Power U Energy Systems, vol. 90, pp. 87 93, 9 2017.
G. Frias, G. Catuogno, R. Moncada, and G. García, "Torque control with MPC applied to a SynRM," in 2020 IEEE Congreso Bienal de Argentina, ARGENCON 2020 - 2020 IEEE Biennial Congress of Argentina, ARGENC()N 2020, Institute of Electrical and Electronics Engineers Inc., 12 2020.
G. Artetxe, J. Paredes, B. Prieto, M. Martinez-lturralde, and I. Elosegui, "Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines," Energies, vol. 11, 1 2018.
M. Bugsch and B. Piepenbreier, "High-Bandwidth Sensorless Control of Synchronous Reluctance Machines in the Low- and Zero-Speed Range," IEEE Transactions on In- dustry Applications, vol. 56, pp. 2663—2672, 5 2020.
F.-J. Lin, M.-S. Huang, S.-G. Chen, and C.-W. Hsu, "Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network," IEEE Transactions on Power Electronics, vol. 34, pp. 12080 12094, 12 2019.
F.-J. Lin, M.-S. Huang, S.-G. Chen, C.-W. Hsu, and C.-H. Liang, "Adaptive Backstep- ping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control," IEEE Transactions on Power Electronics, vol. 35, pp. 7465 7479, 7 2020.
V. Manzolini, D. Da Ru, and S. Bolognani, "An Effective Flux Weakening Control of a SylR,M Drive Including MTPV Operation," IEEE Transactions on Industry Applica- tions, vol. 55, pp. 270(E2709, 5 2019.
H. Mahmoud, G. Bacco, M. Degano, N. Bianchi, and C. Gerada, "Synchronous Re- luctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, F W, and M T PV Operating Conditions," IEEE Transactions on Energy Conversion, vol. 33, pp. 1402 1410, 9 2018.
M. Malinowski and A. Milczarek, "Monitoring and Control Algorithms Applied to Small Wind Turbine with Grid-Connected/Stand-Alone Mode of Operation," Prz. Elektrotechniczny, vol. 2, pp. 832S38, 2012.
S. Hansen, M. Malinowski, F. Blaabjerg, and M. P. Kazmierkowski, "Sensorless control strategies for P W M rectifier," Fifteenth Annual IEEE, vol. 2, pp. 832S38, 2000.
O. Gutfleisch, M. A. Willard, E. Briick, C. H. Chen, S. G. Sankar, and J. P. Liu, "Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient," Advanced Materials, vol. 23, pp. 821S42, 2 2011.
E. Martínez, F. Sanz, S. Pellegrini, E. Jiménez, and J. Blanco, "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, vol. 34, pp. 667 673, 3 2009.
I. Anderson, R. McCallurn, and M. Kramer, "Development of improved powder for bonded permanent magnets," in Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401), pp. FBEF07, IEEE.
D. Salazar, A. Martín-Cid, R. Madugundo, J. S. Garitaonandia, J. M. Barandiaran, and G. C. Hadjipanayis, "Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd WB alloys," Journal of Physics D: Applied Physics, vol. 50, p. 015305, 1 2017.
T. Vaimann, A. Kallaste, A. Kilk, and A. Belahcen, "Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines," in 2013 Africon, pp. 1<), IEEE, 9 2013.
Y. Yang, A. Walton, R. Sheridan, K. Giith, R. GauB, O. Gutfleisch, M. Buchert, B.-M. Steenari, T. Van Gerven, P. T. Jones, and K. Binnemans, "REE Recovery from End- of-Life NdFeB Permanent Magnet Scrap: A Critical Review," Journal of Sustainable Metallurgy, vol. 3, pp. 122 149, 3 2017.
L. Z. Zhao, H. Y. Yu, W. T. Guo, J. S. Zhang, Z. Y. Zhang, M. Hussain, Z. W. Liu, and J. M. Greneche, "Phase and Hyperfine Structures of Melt-spun Nanocrystalline IEEE Transactions on Magnetics, vol. 53, pp. 1 5, 11 2017.
P. J. Musgrove, “Wind energy conversion: Recent progress and future prospects,” Solar & Wind Technology, vol. 4, pp. 37–49, 1 1987.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 119 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84963/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84963/2/1026278217.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84963/3/1026278217.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e094e161d5f5737f379eab99d70c1b17
58e702332314abc36f38dd57face5bb7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886521729449984
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rosero Garcia, Javier Alveiro76c3208d41cd50bf54f17d2b8dcb3a1aVelandia Gomez, Jeison Josepha4e77c0ef5b9520324886191f1fc63e6Electrical Machines & Drives, Em&D2023-11-27T14:22:41Z2023-11-27T14:22:41Z2023-11https://repositorio.unal.edu.co/handle/unal/84963Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEste trabajo de grado explora aspectos de diseño, análisis electromagnético, construcción y pruebas experimentales para la construcción de un generador de microgeneración eólica orientado a ambientes urbanos. En primer lugar, se realizará una revisión del estado del arte de la generación eólica y de las máquinas de generación comúnmente utilizadas para la microgeneración eólica. A partir de esta revisión, se seleccionará la tecnología adecuada para implementarse en la ciudad de Bogotá y se diseñará un prototipo piloto en la ciudad universitaria de la sede Bogotá que permita cumplir las necesidades de potencia requeridas para obtener un generador eléctrico eficiente y de bajo costo para bajas velocidades de viento. Se evaluarán diferentes equipos de generación de tecnologías viables y adecuadas a los parámetros de la ciudad de Bogotá, incluyendo las ventajas y desventajas de la máquina de inducción IM y el generador de flujo axial de imanes permanentes (AFPMG), para uso en grupos de turbinas eólicas de eje vertical en ambientes urbanos de bajas velocidades de viento, u otros sistemas con pocas RPM y bajo par de arranque. La composición geométrica y los materiales de las máquinas eléctricas permitirán realizar una comparación con las topologías convencionales ya aplicadas y orientadas a determinadas aplicaciones de generación eléctrica. Sin embargo, es necesario revisar y utilizar métodos precisos para determinar el correcto diseño y análisis electromagnético. Uno de los propósitos de este trabajo es analizar y comparar un rango de métodos y el uso de análisis FEA 2D y FEA 3D para la tecnología seleccionada, los cuales pueden extenderse a diseños novedosos u optimizar los diseños actuales de acuerdo con las necesidades de potencia prevista de 1 kW. Para esto, se construirá y evaluará en laboratorio un prototipo con la tecnología seleccionada. El uso de análisis de elementos finitos (FEA) permitirá una mayor comprensión de estas máquinas y facilitará la ilustración y cuantificación de los aspectos electromagnéticos de su funcionamiento. A través de la verificación de una selección de enfoques analíticos y respectivos cálculos, se considerará el tipo de tecnología de la máquina que se ajusta a las necesidades planteadas. (Texto tomado de la fuente)This undergraduate thesis explores aspects of design, electromagnetic analysis, construction, and experimental testing for the development of a wind microgeneration generator aimed at urban environments. Firstly, a review of the state of the art in wind generation and machines commonly used for wind microgeneration will be conducted. Based on this review, the appropriate technology will be selected for implementation in the city of Bogotá, and a pilot prototype will be designed at the university campus in Bogotá to meet the power requirements for an efficient and low-cost electrical generator at low wind speeds. Different generation equipment technologies suitable for the parameters of Bogotá, including the advantages and disadvantages of the induction machine (IM) and the axial-flux permanent magnet generator (AFPMG), will be evaluated for use in groups of vertical-axis wind turbines in urban environments with low wind speeds, or other systems with low RPM and starting torque. The geometric composition and materials of the electric machines will allow for a comparison with conventional topologies already applied and oriented towards specific electrical generation applications. However, it is necessary to review and use precise methods to determine the correct design and electromagnetic analysis. One of the purposes of this work is to analyze and compare a range of methods and the use of 2D and 3D FEA analysis for the selected technology, which can be extended to novel designs or optimize current designs according to the anticipated power needs of 1 kW. To achieve this, a prototype with the selected technology will be constructed and evaluated in the laboratory. The use of finite element analysis (FEA) will provide a better understanding of these machines and facilitate the illustration and quantification of the electromagnetic aspects of their operation. Through the verification of a selection of analytical approaches and respective calculations, the type of machine technology that fits the outlined needs will be considered.MaestríaMagíster en Ingeniería - Ingeniería de Eléctricaxxiii, 119 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios530 - Física::537 - Electricidad y electrónicaEnergía eólicaTurbinas de aireWind powerAir-turbinesmicro generacion eolicaSymRMFEAAFPMGIMMicro wind generationSymRMFEAAFPMGIMDiseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.Design and construction of an electrical generator and power drive for low-voltage electrical control and 1 kW power, oriented towards urban micro-wind power generation.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMR. Kumar, K. Raahemifar, and A. S. Fung, "A critical review of vertical axis wind turbines for urban applications," Renewable and Suslainable Energy Reviews, vol. 89, pp. 281-291, 6 2018.L. S. Bianchin, D. Beck, and D. J. Seidel, "Influência do número de (Ftágios no torque estático da turbina eólica Savonius," Revista Thema, vol. 17, pp. 309—317, 6 2020.W. Tjiu, T. Marnoto, S. Mac, M. H. RIFIan, and K. Sopian, "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, vol. 75, pp. 50-67, 3 2015.R. Rajabi Moghaddam, Synchmnms Reluciance Machine (SynRM) in Variable spend (VSD) Applicalioms. KTH Royal Instituto of Technology, 2011.Haataja J. Ph. D, A comparative performance sludy of four-pole, induclion molors and synchronous reluclance molors in variable spend drives. PhD t,hesis, Lappeenranta University of Technology, Lappeenrannan teknillinen yliopisto, 2003.Brown J. E. and Jones B. L., "Electrical variable-speed drives" , , , IEEE Pmcendings A Physical Science, Measuremenl and Instrumenlalion Managemenl and Educalion, vol. 131, no. 7, pp. 51(Y558, 1984.J. Ospina, Emplazamiento Sustentable de Sistemas de Micmgenemci "on Eolicn en Co- lombia desde la Perspectiva del Desarrollo Sustentable. PhD th(XSis, Universidad ECCI, Bogota, 2020."Historical Development of the Windrnill," in Wind Turbine, Technology: Fundamental Concepls in Wind Turbine Enqineering, Second Edilion, pp. 1—16, ASME Press, 2()()9.H. Heidari, A. Rassõlkin, A. KalltFte, T. Vaimann, E. Andriushchenko, A. Belahcen, and D. V. Lukichev, "A review of synchronous reluctance motor-drive advancements," 1 2021.M. Malinowski, A. Milczarek, R. Kot, Z. Goryca, and J. T. Szuster, "Optimized Energy-Conversion Syst,ems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems," IEEE Power Electronics Magazine, vol. 2, pp. 16-30, 9 2015.F. Rossouw, Analysis and design of a:rial JIua: permanent magnet wind generalor syslem for direct ballery charying applicnlions. PhD thesis, Stellenbosch University, South Africa, 2009.R. Lacal-Arántegui, "Materials use in electricity generators in wind turbines state-oL the-art and futuro specifications," Journal of Clenner Produclion, vol. 87, pp. 275—283, 1 2015.UPME and Minenergía, "Plan Nacional (le Energía 2020 - 2050," tech. rep., Bogota, 2019.J. C. Kappatou, G. D. Zaloi«xsttus, and D. A. Spyratos, "3-1) FEM Analysis, Prototy- ping and Tests of an Axial Flux Permanent-Magnet Wind Generator," 2017.Javier Muntó Puig, Desarrollo y análisis de un generador de inducción de doble de- vanado en el eslálor aplicndo en sistemas eólicos de velocidad variable. PhD thesis, Universitat Rovira 1 Virgili, Tarragona, 2015.N. Mendoza, Diseño de un generador eólico de eje vertical lipo darrieus helicoidal de 3 kW. PhD th€xsis, Instituto tecnológico de Pachuca, Pachuca de Soto, 2017."Historical Development of the Windmill," in Wind Turbine Technology: Fundamental Concrpls in Wind Turbine Engineering, Second Edilion, pp. IM6, ASME Press, 2()()9.L. V. Clementi and G. P. Jacinto, "Energía eólica distribuida: oportunidad(xs y desafíos en Argentina," Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, pp. 48454, 3 2021.J. Saenz and D. Macias, Diseño y cnnslrucr,ión de un prototipo de aerogenerador eólico de eje verticnl soportado por cojinetes magnéticos. PhD thesis, Universidad Distrital Francisco José de Caldas, Bogota, 2016.C. Espejo Marín and R. García Marín, "La energía eólica en la producción de electri- cidad en España," Revista de geografía Norte Grande, pp. 115—136, 5 2()12.M. Islam, S. Mekhilef, and R. Saidur, "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, vol. 21, pp. 456 468, 5WWEA, 'WWEA 2013 Small Wind World Report Update," tech. rep., World Wind Energy Association, 2013.F. Toja-Silva, A. Colmenar-Santos, and M. Castro-Gil, "Urban wind energy exploi- tation systems: Behaviour under multidirectional flow conditions—()pportunities and challenges," Renewable and Suslainable Energy Reviews, vol. 24, pp. 364—378, 8 2()13.S. R. Allen, G. P. Hammond, and M. C. McManus, "Prospectas for and barriers to domestic micro-generation: A United Kingdom perspectivo," Appliexl Energy, vol. 85, pp. 528-544, 6 2008.A. S. Bahaj, L. Myers, and P. A. James, "Urban energy generation: Influence of micro- wind turbine output on electricit,y consumption in buildings," Eneryy and Buildings, vol. 39, pp. 15E165, 2 2007.A. L. Heagle, G. F. Naterer, and K. Pope, "Small wind turbine energy policies for resi- dential and small business usage in Ontario, Canada," Energy Policy, vol. 39, pp. 1988 1999, 4 2011.B. Grieser, Y. Sunak, and R. Madlener, "Economic„s of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, vol. 78, pp. 334 350, 6 2015.Q. S. Li, Z. R. Silll, and F. B. Chen, "Performance assessment of tall building-integratcd wind turbines for power generat,ion," Applied Eneryy, vol. 165, pp. 777 788, 3 2016.G. M. Hopkins, R. S. Bridges, R. W. Dixon, J. H. Newman, E. B. Ptusey, H. P. Lid- don, and S. J. R. R. Reesl, The Collecled Works of Gerard Maniey Hopkins, Vol. 1: Cormspondence 1852—1881. Oxford University Press, 3 2013.N. A. Ahmed and M. Cameron, "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the futuro," Renewable and Suslainable Energy Reviews, vol. 38, pp. 439—460, 1() 2014.I. Khorsand, C. Kormos, E. G. Macdonald, and C. Crawford, "Wind energy in the city: An interurban comparison of social acceptance of wind energy projects," Energy Resenrch U Social Science, vol. 8, pp. 66-77, 7 2015.Z. Simic, J. G. Havelka, and M. Bozicevic Vrhovcak, "Small wind turbines — A unique segment of the wind power market," Renewable Eneryy, vol. 5(), pp. 1()27 1036, 2 2013.Anders Grauers, Design of Direcl-driven Permanent-magnel Generalors for Wind Turbines. PhD thesis, CHALMERS UNIVERSITY OF TECHNOLOGY, Góteborg, 1996.J. M. Carrasco, E. Galván, and R. Portillo, "Wind Turbine Applications," Allernalive Energy in Power Elenlronics, pp. 177 23(), 1A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, vol. 56, pp. 135H371, 4 2016.S. Y. Liu and Y. F. Ho, "Wind energy applications for Taiwan buildings: are the challenges and strategies for small wind energy systems exploitation? " Renewable and Suslainable Energy Remiews, vol. 59, pp. 39—55, 6 2016.S. Eriksson, H. Bernhoff, and M. Leijon, "Evaluation of different, turbine concepts for wind power," Renewable and Suslainable Energy Reviews, vol. 12, pp. 1419—1434, (5 2008.D. S. Kumar, D. Srinivasan, and T. Reindl, "A Fast and Scalable Protection Scheme for Distribution Networks With Distributed Generation," IEEE Transaclions on Power Delivery, vol. 31, pp. 67 75, 2 2016.G. Bodon, E. G. Antonini, S. De Bella, M. Raciti and E. Benini, "Evaluation of the different aerodynamic databases for vertical axis wind turbine simulations," Renewable and Sustainable Energy Reviews, vol. 4(), pp. 386—399, 12M. Raciti Castelli, A. Englaro, and E. Benini, "The Darrieus wind turbine: Proposal for a new performance prediction model l)ased on CFD," Energy, vol. 36, pp. 4919—4934, 8 2011.K. Sharma, A. Biswas, and R. Gupta, "Performance Mcasuremcnt of a Thrcc-Bladcd Combincd Darricus-savonius Rotor," INTERNATIONAL JOURNAL of RENEWA- BLE ENERGY RESEARCII, vol. 3, 2013.A. Ghosh, A. Biswas, K. K. Sharma, and R. Gupta, "Computational analysis of flow physics of a combincd thrcc bladcd Darricus Savonius wind rotor," Journal of the Energy Institutc, vol. 88, pp. 425—437, 11 2015.J. Serrano González, M. Burgos Payán, J. M. R. Santos, and F. Gonzálcz-Longatt, "A rcvicw and recent dcvclopmcnts in the optimal wind-turbinc micro-siting problcm," Renewable and Sustainable Energy Reviews, vol. 30, pp. 133—144, 2 2014.G. R. Collccutt and R. G. Flay, "The economic optimisation of horizontal axis wind turbine design," Journal of Wind Engineering and Industrial Aerodynamics, vol. 61, PP. 87-97, 6 1996.T. Christidis, G. Lewis, and P. Bigclow, "Undcrstanding support and opposition to wind turbine dcvclopmcnt in Ontario, Canada and possiblc stcps for futuro dcvclopmcnt," Remewable Energy, vol. 112, pp. 93—103, 11 2017.X. Sun, Y. Chen, Y. Cao, G. Wu, Z. Zhcng, and D. Iluang, "Rcscarch on thc acrody- namic charactcristics of a lift drag hybrid vertical axis wind turbine," Advances in Mechanical Engineering, vol. 8, p. 168781401662934, 1 2016.D. W. Wekcsa, C. Wang, Y. Wci, and W. Zhu, "Experimental and numerical study of turbulence cffcct on aerodynamic performance of a small-scalc vertical axis wind turbine," Journal of Wind Engineering and Industrial Aerodynamics, vol. 157, pp. 1 14, 10 2016.J. L. Menet, "A doublc-stcp Savonius rotor for local production of electricity: a dcsigll study," Renewable Energy, vol. 29, pp. 1843—1862, 9 2004.X. Jin, G. Zhao, K. Gao, and W. Ju, "Darricus vertical axis wind turbine: Basic rcscarch mcthods," Renewablc and Sustainable Energy Reviews, vol. 42, pp. 212—225, 2 2015.F. Wenehenubun, A. Saputra, and II. Sutanto, "An Experimental Study on the Per- formancc of Savonius Wind Turbines Rclatcd With Thc Numbcr Of Blades," Energy Procedia, vol. 68, pp. 297—304, 4 2015.Y. Wang, D. Ionel, D. G. Dorrell, and S. Strctz, "Establishing the Power Factor Li- mitations for Synchronous Reluctance Machines," IEEE Transactions on Magnetics, vol. 51, pp. 1-4, 11 2015.E. M. Alave-Vargas, R. Orellana Lafuente, and D. F. Sempértegui-Tapia, "Estado del arte de aerogeneradores verticales (Monografía)," Investigacion u desarrollo, vol. 22, 7 2022.P. J. Musgrove, "Energy form wind in rural and urban communities," pp. 290 309, 1 1985.L. E. Arango Jiménez and J. J. Gutiérrez Granada, "Máquinas de corriente alterna," 2011.M. Cheng and Y. Zhu, "The state of the art of wind energy conversion systems and technologies: A review," Energy Conversion and Management, vol. 88, pp. 332—347, 12 2014.Z. Alnasir and M. Kazerani, "Performance comparison of standalone SCIG and P MSG- based wind energy conversion systems," in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. IS, IEEE, 5 2014.K. Nakamura and O. Ichinokura, "Super-Multipolar Permanent Magnet Reluctance Generator Designed for Small-Scale Wind-Turbine Generation," IEEE Transactions on Magnetics, vol. 48, pp. 3311314, 11 2012.M. Abarzadeh, H. Madadi, and L. Chang, "Power Electronics in Small Scale Wind Thirbine Systems," in Advances in Wind Power, InTech, 11 2012.J. Solís-Chaves, C. Rocha-Osorio, A. Murari, V. M. Lira, and A. J. Sguarezi Filho, "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, vol. 121, pp. 102 115, 6 2018.A. Arifin, I. Al-Bahadly, and S. C. Mukhopadhyay, "State of the Art of Switched Reluctance Generator," Energy and Power Engineering, vol. 04, no. 06, pp. 447 458, 2012.L. H. Hansen, L. Helle, E. Blaabjerg, S. Ritchie, S. MunkNielsen, H. Bindner, P. So- rensen, and B. Bak-Jensen, Conceptual survey of Generators and Power Electronics for Wind Turbines. Risoe-R No. 1205, forskningscenter ed., 2001.S. Tokunaga and K. Kesamaru, "FEM simulation of novel small wind turbine genera- tion system with synchronous reluctance generator," in 2011 International Conference on Electrical Machines and Systems, pp. 145, IEEE, 8 2011.H. Khelifa, A. Bentounsi, F. Rebahi, and M. Machmoum, "FE Simulation and Expe- riment of a Self-Excited SynRel Generator Based on COMSOL Software," Journal of Electrical Engineering U Technology, vol. 16, pp. 899 905, 3 2021.N. Tesla, "Electro-magnetic motor," 1888.S. Khaliq, M. Modarres, T. A. Lipo, and B.-I. Kwon, "Design of Novel Axial-Flux Dual Stator Doubly Fed Reluctance Machine," IEEE Transactions on Magnetics, vol. 51, pp. IM, 11 2015.F. Marignetti, A. Vahedi, and S. M. Mirimani, "An Analytical Approach to Eccentricity in Axial Flux Permanent Magnet Synchronous Generators for Wind Thirbines," Electric Power Components and Systems, vol. 43, pp. 1039 1050, 6 2015.Chen, L. He, J. Li, X. Cheng, and H. Lu, "An inexact bi-level simula- tion—optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, vol. 183, pp. 969 983, 12 2016.M. Aydin, "Magnet skew in cogging torque minimization of axial gap permanent mag- net motors," Procedings of the 2008 International Conference on Electrical Machines, ICEM'08, 2008.F. Crescimbini, A. Lidozzi, and L. Solero, "High-Speed Generator and Multilevel Con- verter for Energy Recovery in Automotive Systems," IEEE Transactions on Industrial Electronics, vol. 59, pp. 2678 2688, 6 2012.A. Di Gerlando, G. Foglia, M. F. lacchetti, and R. Perini, "Axial Flux PM Machines With Concentrated Armature Windings: Design Analysis and Test Validation of Wind Energy Generators," IEEE Transactions on Industrial Electronics, vol. 58, pp. 3795 3805, 9 2011.M. Aydin and M. Gulec, "Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: A review of cost-effective magnet-skewing techniques with experimental verification," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5025 5034, 2014.S. Kahourzade, A. Mahmoudi, H. W. Ping, and M. N. Uddin, "A Comprehensive Review of Axial-Flux Permanent-Magnet Machines," Canadian Journal of Electrical and Computer Engineering, vol. 37, pp. 19.33, 12 2014.M. Aydin, Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, vol. 43, no. 9, pp. 3614 3622, 2007.Yicheng Chen and P. Pillay, "Axial-flux PM wind generator with a soft magnetic composite core," in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. , pp. 231237, IEEE.Y. Wang, W. X. C. Chen, and Z. Dong, "A parametric magnetic network model for axial flux permanent magnet machine with coreless stator," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 1108 1113, IEEE, 10 2014.H. Lovatt, "Design of an in-wheel motor for a solar-powered electric vehicle," in Eighth International Conference on Electrical Machines and Drives, pp. 234-238, IEE, 1997.F. Giulii Capponi, G. De Donato, and F. Caricchi, "Recent Advances in Axial-Flux Permanent-Magnet Machine Technology," IEEE Transactions on Industry Applica- tions, vol. 48, pp. 219(E2205, 11 2012.Vicent and G. González, "Integracion de energias renovables en redes electricas inteligentes," tech. rep.N. Chaker, I. B. Salah, S. Tounsi, and R. Neji, "Design of Axial-Flux Motor for 'fraction Application," Journal of Electromagnetic Analysis and Applications, vol. 01, no. 02, pp. 73 84, 2009.A. Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison between low-speed axial-flux and radial-flux permanent-magnet machines including mechanical constraints," in IEEE International Conference on Electric Machines and Drives, 2005., pp. 1695 1702, IEEE, 2005.A. B. Letelier, D. A. Gonzalez, J. A. Tapia, R. Wallace, and M. A. Valenzuela, "Cogging Torque Reduction in an Axial Flux PM Machine via Stator Slot Displacement and Skewing," IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 685-693, 2007.I. Rahman, P. M. Vasant, B. S. Singh, M. Abdullah-Al-Wadud, and N. Adnan, "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle char- ging infrastructures," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039 1047, 5 2016.Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison etween low-speed axial-flux and radial-flux permanent-magnet machines including echanical constraints," in IEEE International Conference on Electric Machines and mes, 2005., pp. 1695 1702, IEEE, 2005.L.F. Garcia-Rodriguez, J. Diego Rosero Ariza, J. Luis Chacón Velazco, and J. Ernesto Jaramillo Ibarra, "Vertical Axis Wind Turbine Design and Installation at Chicamocha Canyon," in Entropy and Exergy in Renewable Energy, IntechOpen, 1 2022.D. Han, Y. Heo, N. Choi, S. Nam, K. Choi, and K. Kim, "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind frrbine at Low Tip- Speed Ratio," Energies, vol. 11, p. 1517, 6 2018.M. A. Miller, S. Duvvuri, I. Brownstein, M. Lee, J. O. Dabiri, and M. Hultmark, "Vertical-axis wind turbine experiments at full dynamic similarity," Journal of Fluid Mechanics, vol. 844, pp. 707 720, 6 2018.T. Letcher, Wind Energy Engineering A Handbook for Onshore and Offshore Wind Turbines. KwaZulu: Academic Press, 2 ed., 2017.E. A. Attia, H. Saber, and H. El Gamal, "Performance and dynamic characteristics of a multi stages vertical axis wind turbine," Journal of Vibroengineering, vol. 18, pp. 4015A032, 9 2016.L. Pan, Z. Zhu, H. Xiao, and L. Wang, "Numerical Analysis and Parameter Optimi- zation of J-Shaped Blade on Offshore Vertical Axis Wind frrbine," Energies, vol. 14, p. 6426, 10 2021.Y. Wang, Blade Design of Verticnl Axis Wind Turbine at Low Tip-speed-ratios. PhD thesis, The Ohio State University, Ohio State, 2018.S. Brusca, R. Lanzafame, and M. Messina, "Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine's performance," International Journal of Energy and Environmental Engineering, vol. 5, pp. 333—340, 12 2014.K. Pytel, S. Gumula, P. Dudek, S. Bielik, S. Szpin, W. Hudy, M. Piaskowska Silars- ka, and M. Kowalski, "Testing the performance characteristics of specific profiles for applications in wind turbines," E3S Web of Conferences, vol. 108, p. 01015, 7 2019.D. Hilewit, E. A. Matida, A. Fereidooni, H. Abo el Ella, and F. Nitzsche, "Power coefficient measurements of a novel vertical axis wind turbine," Energy Science (Y Engineeñng, vol. 7, pp. 2373 2382, 12 2019.F. Chabane, A. Arif, and M. Aymene Barkat, "Aerodynamic shape optimization of a vertical-axis wind turbine with effect number of blades," DYNA, vol. 89, pp. 154 162, 3 2022.M. A. Miller, S. Duvvuri, and M. Hultmark, "Solidity effects on the performance of vertical-axis wind turbines," Flow, vol. 1, p. E9, 9 2021.T. Mon and S. Worasinchai, "Performance modelling of the Darrieus wind turbine," E3S Web of Conferences, vol. 302, p. 01001, 9 2021.H. Salem, A. Mohammedredha, and A. Alawadhi, "High Power Output Augmented Vertical Axis Wind 'Ihlrbine," Fluids, vol. 8, p. 70, 2 2023.A. Bonfiglio, F. Delfino, F. Gonzalez-Longatt, and R. Procopio, "Steady-state assess- ments of PMSGs in wind generating units," International Journal of Electrical Power U Energy Systems, vol. 90, pp. 87 93, 9 2017.G. Frias, G. Catuogno, R. Moncada, and G. García, "Torque control with MPC applied to a SynRM," in 2020 IEEE Congreso Bienal de Argentina, ARGENCON 2020 - 2020 IEEE Biennial Congress of Argentina, ARGENC()N 2020, Institute of Electrical and Electronics Engineers Inc., 12 2020.G. Artetxe, J. Paredes, B. Prieto, M. Martinez-lturralde, and I. Elosegui, "Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines," Energies, vol. 11, 1 2018.M. Bugsch and B. Piepenbreier, "High-Bandwidth Sensorless Control of Synchronous Reluctance Machines in the Low- and Zero-Speed Range," IEEE Transactions on In- dustry Applications, vol. 56, pp. 2663—2672, 5 2020.F.-J. Lin, M.-S. Huang, S.-G. Chen, and C.-W. Hsu, "Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network," IEEE Transactions on Power Electronics, vol. 34, pp. 12080 12094, 12 2019.F.-J. Lin, M.-S. Huang, S.-G. Chen, C.-W. Hsu, and C.-H. Liang, "Adaptive Backstep- ping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control," IEEE Transactions on Power Electronics, vol. 35, pp. 7465 7479, 7 2020.V. Manzolini, D. Da Ru, and S. Bolognani, "An Effective Flux Weakening Control of a SylR,M Drive Including MTPV Operation," IEEE Transactions on Industry Applica- tions, vol. 55, pp. 270(E2709, 5 2019.H. Mahmoud, G. Bacco, M. Degano, N. Bianchi, and C. Gerada, "Synchronous Re- luctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, F W, and M T PV Operating Conditions," IEEE Transactions on Energy Conversion, vol. 33, pp. 1402 1410, 9 2018.M. Malinowski and A. Milczarek, "Monitoring and Control Algorithms Applied to Small Wind Turbine with Grid-Connected/Stand-Alone Mode of Operation," Prz. Elektrotechniczny, vol. 2, pp. 832S38, 2012.S. Hansen, M. Malinowski, F. Blaabjerg, and M. P. Kazmierkowski, "Sensorless control strategies for P W M rectifier," Fifteenth Annual IEEE, vol. 2, pp. 832S38, 2000.O. Gutfleisch, M. A. Willard, E. Briick, C. H. Chen, S. G. Sankar, and J. P. Liu, "Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient," Advanced Materials, vol. 23, pp. 821S42, 2 2011.E. Martínez, F. Sanz, S. Pellegrini, E. Jiménez, and J. Blanco, "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, vol. 34, pp. 667 673, 3 2009.I. Anderson, R. McCallurn, and M. Kramer, "Development of improved powder for bonded permanent magnets," in Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401), pp. FBEF07, IEEE.D. Salazar, A. Martín-Cid, R. Madugundo, J. S. Garitaonandia, J. M. Barandiaran, and G. C. Hadjipanayis, "Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd WB alloys," Journal of Physics D: Applied Physics, vol. 50, p. 015305, 1 2017.T. Vaimann, A. Kallaste, A. Kilk, and A. Belahcen, "Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines," in 2013 Africon, pp. 1<), IEEE, 9 2013.Y. Yang, A. Walton, R. Sheridan, K. Giith, R. GauB, O. Gutfleisch, M. Buchert, B.-M. Steenari, T. Van Gerven, P. T. Jones, and K. Binnemans, "REE Recovery from End- of-Life NdFeB Permanent Magnet Scrap: A Critical Review," Journal of Sustainable Metallurgy, vol. 3, pp. 122 149, 3 2017.L. Z. Zhao, H. Y. Yu, W. T. Guo, J. S. Zhang, Z. Y. Zhang, M. Hussain, Z. W. Liu, and J. M. Greneche, "Phase and Hyperfine Structures of Melt-spun Nanocrystalline IEEE Transactions on Magnetics, vol. 53, pp. 1 5, 11 2017.P. J. Musgrove, “Wind energy conversion: Recent progress and future prospects,” Solar & Wind Technology, vol. 4, pp. 37–49, 1 1987.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84963/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026278217.2023.pdf1026278217.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Electrónicaapplication/pdf3603511https://repositorio.unal.edu.co/bitstream/unal/84963/2/1026278217.2023.pdfe094e161d5f5737f379eab99d70c1b17MD52THUMBNAIL1026278217.2023.pdf.jpg1026278217.2023.pdf.jpgGenerated Thumbnailimage/jpeg4721https://repositorio.unal.edu.co/bitstream/unal/84963/3/1026278217.2023.pdf.jpg58e702332314abc36f38dd57face5bb7MD53unal/84963oai:repositorio.unal.edu.co:unal/849632023-11-27 23:03:39.14Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=