Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer

ilustraciones, diagramas

Autores:
Orjuela Rocha, Adrian Leonardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86226
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86226
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
610 - Medicina y salud::615 - Farmacología y terapéutica
Hierro/análisis
Placa Amiloide/prevención & control
Enfermedad de Alzheimer/tratamiento farmacológico
Iron/analysis
Plaque, Amyloid/prevention & control
Alzheimer Disease/drug therapy
Alzheimer
DFT
Hierro
Dinámica Molecular
Acoplamiento molecular
Productos naturales
Alzheimer
DFT
Iron
Molecular dynamics
Molecular docking
Natural products
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_909cf285952b310ac8da5a27e6ee6b27
oai_identifier_str oai:repositorio.unal.edu.co:unal/86226
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
dc.title.translated.eng.fl_str_mv DFT studies of Fe2+/3+-Aβ model systems and antiaggregation properties of polyphenols and carotenoids in Alzheimer's disease
title Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
spellingShingle Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
540 - Química y ciencias afines::541 - Química física
610 - Medicina y salud::615 - Farmacología y terapéutica
Hierro/análisis
Placa Amiloide/prevención & control
Enfermedad de Alzheimer/tratamiento farmacológico
Iron/analysis
Plaque, Amyloid/prevention & control
Alzheimer Disease/drug therapy
Alzheimer
DFT
Hierro
Dinámica Molecular
Acoplamiento molecular
Productos naturales
Alzheimer
DFT
Iron
Molecular dynamics
Molecular docking
Natural products
title_short Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
title_full Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
title_fullStr Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
title_full_unstemmed Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
title_sort Estudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de Alzheimer
dc.creator.fl_str_mv Orjuela Rocha, Adrian Leonardo
dc.contributor.advisor.spa.fl_str_mv Alí Torres, Jorge Isaac
Núñez Zarur, Francisco
dc.contributor.author.spa.fl_str_mv Orjuela Rocha, Adrian Leonardo
dc.contributor.researchgroup.spa.fl_str_mv Química Cuántica y Computacional
dc.contributor.orcid.spa.fl_str_mv 0000-0003-2789-3948
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
610 - Medicina y salud::615 - Farmacología y terapéutica
topic 540 - Química y ciencias afines::541 - Química física
610 - Medicina y salud::615 - Farmacología y terapéutica
Hierro/análisis
Placa Amiloide/prevención & control
Enfermedad de Alzheimer/tratamiento farmacológico
Iron/analysis
Plaque, Amyloid/prevention & control
Alzheimer Disease/drug therapy
Alzheimer
DFT
Hierro
Dinámica Molecular
Acoplamiento molecular
Productos naturales
Alzheimer
DFT
Iron
Molecular dynamics
Molecular docking
Natural products
dc.subject.decs.spa.fl_str_mv Hierro/análisis
Placa Amiloide/prevención & control
Enfermedad de Alzheimer/tratamiento farmacológico
dc.subject.decs.eng.fl_str_mv Iron/analysis
Plaque, Amyloid/prevention & control
Alzheimer Disease/drug therapy
dc.subject.proposal.spa.fl_str_mv Alzheimer
DFT
Hierro
Dinámica Molecular
Acoplamiento molecular
Productos naturales
dc.subject.proposal.eng.fl_str_mv Alzheimer
DFT
Iron
Molecular dynamics
Molecular docking
Natural products
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-11T21:27:57Z
dc.date.available.none.fl_str_mv 2024-06-11T21:27:57Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86226
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86226
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv J. Lakey-Beitia, Y. González, D. Doens, D. E. Stephens, R. Santamaría, E. Murillo, M. Gutírrez, P. L. Fernández, K. S. Rao, O. V. Larionov, and A. A. Durant-Archibold, “Assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-β aggregation in alzheimer’s disease,” J. Alzheimer’s Dis., vol. 60, pp. S59– S68, 2017
J. Lakey-Beitia, R. Berrocal, K. S. Rao, and A. A. Durant, “Polyphenols as therapeutic molecules in alzheimer’s disease through modulating amyloid pathways,” Molecular Neurobiology, vol. 51, pp. 466–479, 2015
K. P. Kepp, “Bioinorganic chemistry of Alzheimer’s disease,” Chemical reviews, vol. 112, p. 5193–5239, 2012
J. Alí-Torres, “Estudio teóico de la estructura electrónica y molecular de complejos de Cu1+/2+ y Fe2+/3+ relevantes en la enfermedad de Alzheimer,” Tesis Doctoral, 2011
J. Alí-Torres, L. Rodríguez, M. Sodupe, and A. Rauk, “Structures and stabilities of Fe2+/3+ complexes relevant to Alzheimer’s disease: An ab Initio study,” Journal of Phisycal Chemistry, vol. 115, pp. 12523–12530, 2011
A. Kramida, Yu.Ralchenko, and J. Reader, “NIST atomic spectra database ionization energies data,” 2021
A. L. Orjuela, F. Núnez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe2+/3+ − Aβ model systems relevant to alzheimer’s disease,” RSC Advances, vol. 12, pp. 24077–24087, 2022
A. Association, “2021 Alzheimer’s disease facts and figures,” Alzheimers Dement, vol. 13, pp. 325–373, 2021
C. R. de Sanchez, D. M. Nariño, and J. Fernando, “Epidemiologia y carga de la enfermedad de alzheimer,” Acta Neurologica Colombiana, vol. 26, pp. 87–94, 2010.
F. Lopera, M. Arcos, L. Madrigal, K. Kosik, W. Cornejo, and J. Ossa, “Demencia tipo Alzheimer con agregación familiar en Antioquia , Colombia,” Acta Neurológica Colombiana, vol. 10, pp. 173–187, 1994
P. V. Arriagada, J. H. Growdon, E. T. Hedley-Whyte, and B. T. Hyman, “Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease,” Neurology, vol. 42, pp. 631–631, 2012.
A. Mirats, J. Ali-Torres, L. Rodriguez-Santiago, M. Sodupe, and G. L. Penna, “Dioxygen activation in the Cu-amyloid β complex,” Phys. Chem. Chem. Phys., vol. 17, pp. 27270–27274, 2015
G. Waldemar, B. Dubois, M. Emre, J. Georges, I. G. McKeith, M. R. P. Schel-tens, P. Tariska, B. Winblad, , and EFNS, “Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: Efns guideline,” Eur. J . Neurol, vol. 14, pp. 1–26, 2007
A. Rauk, “The chemistry of Alzheimer’s disease,” Chemical Society Reviews, vol. 38, pp. 2698–2715, 2009
J. Kardos, I. Kovfics, F. Haj ́os, M. K ́alaman, and M. Simonyi, “Nerve endings from rat brain tissue release copper upon depolarization. a possible role in regulating neuronal excitability,” Neuroscience Letters, vol. 103, pp. 139–144, 1989
C. J. Maynard, R. Cappai, I. Volitakis, R. A. Cherny, A. R. White, K. Beyreuther, C. L. Masters, A. I. Bush, and Q. X. Li, “Overexpression of alzheimer’s disease amyloid- opposes the age-dependent elevations of brain copper and iron,” Journal of Biological Chemistry, vol. 277, pp. 44670–44676, 2002
M. Lovell, J. Robertson, W. Teesdale, J. Campbell, and W. Markesbery, “Copper, iron and zinc in alzheimer’s disease senile plaques,” Journal of the Neurological Sciences, vol. 158, pp. 47–52, 1998
F.-G. Pajonk, H. Kessler, T. Supprian, P. Hamzei, D. Bach, J. Schweickhardt, W. Herrmann, R. Obeid, A. Simons, P. Falkai, G. Multhaup, and T. A. Bayer, “Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 8, pp. 23–27, 2005
T. Borchardt, J. Camakaris, R. Cappai, C. L. Masters, K. Beyreuther, and G. Multhaup, “Copper inhibits β-amyloid production and stimulates the non- amyloidogenic pathway of amyloid-precursor-protein secretion,” Biochem. J, vol. 344, pp. 461–467, 1999.
J. H. Weiss, S. L. Sensi, and J. Y. Koh, “Zn2+: a novel ionic mediator of neural injury in brain disease,” Trends in Pharmacological Sciences, vol. 21, pp. 395–401, 2000
C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, “Importance of zinc in the central nervous system: The zinc-containing neuron,” The Journal of Nutrition, vol. 130, pp. 1471S–1483S, 2000.
L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, “Synchrotron-based infrared and x-ray imaging shows focalized accumulation of cu and zn co-localized with -amyloid deposits in alzheimer’s disease,” Journal of Structural Biology, vol. 155, pp. 30–37, 2006
J. R. Connor, S. L. Menzies, J. R. Burdo, and P. J. Boyer, “Iron and iron management proteins in neurobiology,” Pediatric Neurology, vol. 25, pp. 118–129, 2001.
J. L. Beard, J. R. Connor, and B. C. Jones, “Iron in the brian,” Nutrition Reviews, vol. 51, pp. 157,170, 1993
H. M. Schipper, “Heme oxygenase-1: role in brain aging and neurodegeneration,” Ex- perimental Gerontology, vol. 35, pp. 821–830, 2000
N. Puentes-Díaz, D. Chaparro, D. Morales-Morales, A. Flores-Gaspar, and J. Alí- Torres, “Role of metal cations of copper, iron, and aluminum and multifunctional ligands in Alzheimer’s disease: Experimental and computational insights,” ACS Omega, vol. 8, pp. 4508–4526, 2023.
C. C. Winterbourn, “Toxicity of iron and hydrogen peroxide: the Fenton reaction,” Toxicology Letters, vol. 82-83, pp. 969–974, 1995
A. A. Belaidi and A. I. Bush, “Iron neurochemistry in Alzheimer’s disease and par- kinson’s disease: targets for therapeutics,” Journal of Neurochemistry, pp. 179–197, 2016
A. A. Mamun, M. S. Uddin, B. Mathew, and G. M. Ashraf, “Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease,” Neural Regeneration Research, vol. 15, pp. 1417–1420, 2020
J. T. Rogers, J. D. Randall, C. M. Cahill, P. S. Eder, X. Huang, H. Gunshin, L. Leiter, J. McPhee, S. S. Sarang, T. Utsuki, N. H. Greig, D. K. Lahiri, R. E. Tanzi, A. I. Bush, T. Giordano, and S. R. Gullans, “An iron-responsive element type II in the 5- untranslated region of the Alzheimer’s amyloid precursor protein transcript,” Journal of Biological Chemistry, vol. 277, pp. 45518–45528, 2002
D. J. Pinero and J. R. Connor, “Iron in the brain: An important contributor in normal and diseased states,” Neuroscientist, vol. 6, pp. 435–453, 2000
G. P. Kumar and F. Khanum, “Neuroprotective potential of phytochemicals.,” Pharmacogn Rev, vol. 6, pp. 81–90, 2012
M. Iranshahi, M. G. Chini, M. Masullo, A. Sahebkar, A. Javidnia, M. C. Yazdi, C. Per- gola, A. Koeberle, O. Werz, C. Pizza, S. Terracciano, S. Piacente, and G. Bifulco, “Can small chemical modifications of natural pan-inhibitors modulate the biological selectivity? the case of curcumin prenylated derivatives acting as hdac or mpges-1 inhibitors,” Journal of Natural Products, vol. 78, pp. 2867–2879, 2015
I. Morales, C. Cerda-Troncoso, V. Andrade, and R. B. Maccioni, “The natural product curcumin as a potential coadjuvant in Alzheimer’s treatment,” Journal of Alzheimer’s Disease, vol. 60, pp. 451–460, 2017
M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radical Biology and Medicine, vol. 51, pp. 1014–1026, 2011
J. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. S. Rao, “Polyphe- nols as potential metal chelation compounds against Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S335–S357, 2021
D. Chaparro, A. Flores-Gaspar, and J. Alí-Torres, “Computational design of copper ligands with controlled metal chelating, pharmacokinetics, and redox properties for Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S179–S193, 2021
K. Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, and M. Yamada, “Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease,” J Neurochem, vol. 87, pp. 172–181, 2003
C. Rivière, T. Richard, X. Vitrac, J. M. Mérillon, J. Valls, and J. P. Monti, “New polyphenols active on β-amyloid aggregation,” Bioorg. Med. Chem. Lett, vol. 18, pp. 828–831, 2008
K. I. Priyadarsini, “The chemistry of curcumin: From extraction to therapeutic agent,” Molecules, vol. 19, pp. 20091–20112, 2014
A. Marchiani, S. Mammi, G. Siligardi, R. Hussain, I. Tessari, L. Bubacco, G. Delogu, D. Fabbri, and P. Ruzza, “Small molecules interacting with alpha -synuclein: antiaggregating and cytoprotective properties,” Amino Acids, vol. 45, pp. 327–338, 2013.
J. Wu, Y. Zhang, Y. Cai, J. Wang, B. Weng, Q. Tang, X. Chen, Z. Pan, G. Liang, and S. Yang, “Discovery and evaluation of piperid-4-one-containing mono-carbonyl analogs of curcumin as anti-inflammatory agents,” Bioorganic and Medicinal Chemistry, vol. 21, pp. 3058–3065, 2013.
F. Arrigoni, T. Prosdocimi, L. Mollica, L. D. Gioia, G. Zampella, and L. Bertini, “Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling,” Metallomics, vol. 10, pp. 1618–1630, 2018
D. J. Lane, S. Ayton, and A. I. Bush, “Iron and Alzheimer’s disease: An update on emerging mechanisms,” Journal of Alzheimer’s Disease, vol. 64, pp. S379–S395, 2018
M. Radón, “Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data,” Physical Chemistry Chemical Physics, vol. 21, pp. 4854–4870, 2019
G. M. Sandala, K. H. Hopmann, A. Ghosh, and L. Noodleman, “Calibration of dft functionals for the prediction of 57 Fe m ̈ossbauer spectral parameters in iron-nitrosyl and iron-sulfur complexes: Accurate geometries prove essential,” Journal of Chemical Theory and Computation, vol. 7, pp. 3232–3247, 2011
S. Song, M.-C. Kim, E. Sim, A. Benali, O. Heinonen, and K. Burke, “Benchmarks and reliable DFT results for spin-crossover complexes,” arXiv: Chemical Physics, 2017
J. Conradie and A. Ghosh, “DFT calculations on the spin-crossover complex Fe(salen)(NO): A quest for the best functional,” Journal of Physical Chemistry B, vol. 111, pp. 12621–12624, 2007
K. Arumugam and U. Becker, “Computational redox potential predictions: Applications to inorganic and organic aqueous complexes, and complexes adsorbed to mineral surfaces,” Minerals, vol. 4, pp. 345–387, 2014
L. E. Roy, E. Jakubikova, M. G. Guthrie, and E. R. Batista, “Calculation of one- electron redox potentials revisited. is it possible to calculate accurate potentials with density functional methods?,” Journal of Physical Chemistry A, vol. 113, pp. 6745– 6750, 2009.
M. A. Rizvi, M. Mane, M. A. Khuroo, and G. M. Peerzada, “Computational survey of ligand properties on iron(III)–iron(II) redox potential: exploring natural attenuation of nitroaromatic compounds,” Monatshefte fur Chemie, vol. 148, pp. 655–668, 2017.
M. Horch, “Rational redox tuning of transition metal sites: Learning from superoxide reductase,” Chemical Communications, vol. 55, pp. 9148–9151, 2019
K. M. Saravanan, H. Zhang, H. Zhang, W. Xi, and Y. Wei, “On the conformational dynamics of -amyloid forming peptides: A computational perspective,” Frontiers in Bioengineering and Biotechnology, vol. 8, pp. 1–19, 2020
K. Teilum, J. G. Olsen, and B. B. Kragelund, “Protein stability, flexibility and fun- ction,” Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1814, pp. 969– 976, 2011.
E. Schrödinger, “Quantisierung als eigenwertproblem,” Annalen der Physik, vol. 385, no. 13, pp. 437–490, 1926
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: : Introduction to Advanced Electronic Structure Theory. Dover Publications, 1 ed., 1996
W. J. Hehre, “Ab initio molecular orbital theory,” Accounts of Chemical Research, vol. 9, pp. 399–406, 1976
B. Nagy and F. Jensen, Basis Sets in Quantum Chemistry, ch. 3, pp. 93–149. John Wiley Sons, Ltd, 2017
M. Dolg, U. Wedig, H. Stoll, and H. Preuss, “Energy-adjusted abinitio pseudopotentials for the first row transition elements,” The Journal of Chemical Physics, vol. 86, no. 2, pp. 866–872, 1987
P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calcula- tions. Potentials for the transition metal atoms Sc to Hg,” The Journal of Chemical Physics, vol. 82, no. 1, pp. 270–283, 1985
P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871, 1964.
W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, pp. A1133–A1138, 1965
J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approxi- mations for many-electron systems,” Phys. Rev. B, vol. 23, pp. 5048–5079
J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, pp. 13244–13249
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” physical review letters, vol. 77, pp. 3865–3868, 1996.
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett., vol. 91, p. 146401
A. V. Arbuznikov, “Hybrid exchange correlation functionals and potentials: Concept elaboration,” Journal of Structural Chemistry, vol. 48, pp. S1–S21, 2007.
J. M. L. Martin and G. Santra, “Empirical double-hybrid density functional theory: A ‘third way’ in between wft and dft,” Israel Journal of Chemistry, vol. 60, no. 8-9, pp. 787–804, 2020
D. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002.
C. J. Cramer and D. G. Truhlar, “Implicit solvation models: equilibria, structure, spectra, and dynamics,” Chemical Reviews, vol. 99, pp. 2161–2200, 1999
I. N. Levine, D. H. Busch, and H. Shull, Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ, 6 ed., 2009
J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews, vol. 105, pp. 2999–3093, 2005
H. M. Senn and W. Thiel, “Qm/mm methods for biomolecular systems,” Angewandte Chemie - International Edition, vol. 48, pp. 1198–1229, 2009
B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, and P. J. Stephens, “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” The Journal of Physical Chemistry A, vol. 106, pp. 6102–6113, 5 2002.
A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B., vol. 113, pp. 6378–6396, 2009
M. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,” Nature Structural Biology, vol. 9, pp. 646–652, 2002
R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, “Biomolecular simulation: A computational microscope for molecular biology,” Annual Review of Biophysics, vol. 41, pp. 429–452, 2012.
D. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002
A. R. Leach, B. K. Shoichet, and C. E. Peishoff, “Prediction of proteinligand interactions. docking and scoring: successes and gaps,” Journal of Medicinal Chemistry, vol. 49, pp. 5851–5855, 2006
D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nature Reviews Drug Discovery, vol. 3, pp. 935–949, 2004
R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and P. S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, pp. 1739–1749, 2004
G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, pp. 1639–1662, 1998
G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, pp. 727–748, 1997
M. L. Hegde, P. M. Hegde, K. S. Rao, and S. Mitra, “Oxidative genome damage and its repair in neurodegenerative diseases: Function of transition metals as a double-edged sword,” Journal of Alzheimer’s Disease, vol. 24, pp. 183–198, 2011.
B. J. Tabner, S. Turnbull, R. O. M. El-Agnaf, and D. Allsop, “Production of reactive oxygen species from aggregating proteins implicated in alzheimers disease, parkinsons disease and other neurodegenerative diseases,” Current Topics in Medicinal Chemistry, vol. 1, pp. 507–517, 2005
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Chee- seman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hrat- chian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. To- yota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Mar- tin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, “Gaussian 16 revision D.01,” 2016. Gaussian Inc. Wallingford CT
V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms K through Zn,” Journal of Chemical Physics, vol. 109, pp. 1223–1229, 1998
F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Physical Chemistry Chemical Physics, vol. 7, pp. 3297–3305, 2005
T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, pp. 1007–1023, 1989
W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms,” Canadian Journal of Chemistry, vol. 70, pp. 612–630, 1990
N. E. Schultz, Y. Zhao, and D. G. Truhlar, “Density functional for inorganometallic and organometallic chemistry,” Journal of Physical Chemistry A, vol. 109, pp. 11127– 11143, 2005
J. Tomasi and M. Persico, “Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent,” Chemical Reviews, vol. 94, pp. 2027– 2094, 1994
K. Hyungjun, P. Joungwon, and L. Y. Sup, “A protocol to evaluate one electron redox potential for iron complexes,” Journal of Computational Chemistry, vol. 34, pp. 2233– 2241, 2013
S. G. Bratsch, “Standard electrode potentials and temperature coefficients in water at 298.15 k,” Journal of Physical and Chemical Reference Data, vol. 18, pp. 1–21, 1989
M. Cossi, N. Rega, G. Scalmani, and V. Barone, “Energies, structures, and electro- nic properties of molecules in solution with the C-PCM solvation model,” Journal of Computational Chemistry, vol. 24, pp. 669–681, 2003.
A. N. Masliy, T. N. Grishaeva, and A. M. Kuznetsov, “Standard redox potentials of Fe(III) aqua complexes included into the cavities of cucurbit[n]urils (n = 6-8): A DFT forecast,” Journal of Physical Chemistry A, vol. 123, pp. 1341–1346, 2019.
M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, “The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-ion solvation data,” vol. 102, pp. 7787–7794, 1998
B. H. Solis and S. Hammes-Schiffer, “Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution,” Journal of the American Chemical Society, vol. 133, pp. 19036–19039, 2011
L. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts,” Journal of Physical Che- mistry C, vol. 116, pp. 3171–3180, 2012
D. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” Journal of Molecular Modeling, vol. 23, p. 283, 2017
A. Galstyan and E. W. Knapp, “Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes,” Journal of Computational Chemistry, vol. 30, pp. 203–211, 2009
T. Miura, K. Suzuki, and H. Takeuchi, “Binding of iron(III) to the single tyrosine residue of amyloid beta-peptide probed by raman spectroscopy,” Journal of Molecular Structure, vol. 598, pp. 79–84, 2001
T. Miura, K. Suzuki, N. Kohata, and H. Takeuchi, “Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes,” Biochemistry, vol. 39, pp. 7024–7031, 2000
D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry. W. H Freeman, 2005
E. J. Shin, Y. H. Chung, N. Sharma, B. T. Nguyen, S. H. Lee, S. W. Kang, S. Y. Nah, M. B. Wie, T. Nabeshima, J. H. Jeong, and H. C. Kim, “Glutathione peroxidase- 1 knockout facilitates memory impairment induced by -amyloid (1–42) in mice via inhibition of pkc ii-mediated erk signaling; application with glutathione peroxidase-1 gene-encoded adenovirus vector,” Neurochemical Research, vol. 45, pp. 2991–3002, 12 2020
C. Behl, Oxidative stress in Alzheimer’s Disease: Implications for Prevention and Therapy, pp. 65–78. Boston, MA: Springer US, 2005
M. N. Glukhovtsev, R. D. Bach, and C. J. Nagel, “Performance of the B3LYP/ECP DFT calculations of iron-containing compounds,” Journal of Physical Chemistry A, 1997
P. Pracht, F. Bohle, and S. Grimme, “Automated exploration of the low-energy chemical space with fast quantum chemical methods,” Phys. Chem. Chem. Phys., vol. 22, pp. 7169–7192, 2020
K. A. Wollen, “Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners,” Alternative Medicine Review, vol. 15, pp. 223–244, 2010
E. L. Cooper and M. J. Ma, “Alzheimer disease: Clues from traditional and com- plementary medicine,” Journal of Traditional and Complementary Medicine, vol. 7, pp. 380–385, 2017.
A. A. Starkov and F. M. Beal, “Portal to Alzheimer’s disease,” Nature Medicine, vol. 14, pp. 1020–1021, 2008
V. Calsolaro and P. Edison, “Neuroinflammation in Alzheimer’s disease: Current evidence and future directions,” Alzheimer’s and Dementia, vol. 12, pp. 719–732, 2016
H. Sticht, P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuther, R. W. Frank, and P. Rosch, “Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease,” Eur. J. Biochem, vol. 233, pp. 293–298, 1995
M. Coles, W. Bicknell, a a Watson, D. P. Fairlie, and D. J. Craik, “Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment.,” Biochemistry, vol. 37, pp. 11064–77, 1998
T. Darden, D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, I. T.E. Cheatham, V. Cru- zeiro, Y. Huang, R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer, D. S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. L. amd R. Luo, R. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, D. York, P. K. Qi, D. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, R. Sa- lomonFerrer, J. Swails, R. Walker, J. Wang, H. Wei, R. Wolf, X. Wu, and L. Xiao, “Amber 18,” 2018
C. Simmerling, “ff 14sb: Improving the accuracy of protein side chain and backbone parameters from ff 99sb,” J. Chem. Theory Comput, vol. 11, p. 3696–3713, 2015
W. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular dynamics,” Journal of molecular graphics, vol. 14, pp. 33–38, 1996
D. R. Roe and T. E. C. III, “Ptraj and cpptraj: software for processing and analysis of molecular synamics trajectory data,” J Chem Theory Com, vol. 9, pp. 3084–3095, 2013
X. Jin and J. Han, “K-medoids clustering,” Encyclopedia of Machine Learning and Data Mining, pp. 697–700, 2017
L. Schrodinger, “The PyMol molecular graphics system,” 2015
G. Morris and R. Huey, “Autodock4 and autodocktools4: Automated docking with selective receptor flexibility,” Journal of computational chemistry, vol. 30, pp. 2785– 2791, 2009
O. Trott and A. J. Olson, “Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” Journal of computational chemistry, vol. 31, pp. 455–461, 2010.
D. R. Koes, M. P. Baumgartner, and C. J. Camacho, “Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise,” Journal of Chemical Information and Modeling, vol. 53, pp. 1893–1904, 2013
L. Schrodinger, “Maestro,” 2023
C. N. Cavasotto and R. A. Abagyan, “Protein flexibility in ligand docking and virtual screening to protein kinases,” Journal of Molecular Biology, vol. 337, pp. 209–225, 2004.
K. Palacio-Rodr ́ıguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking,” Scientific Reports, vol. 9, pp. 1–14, 2019
C. Ritter, M. Adrian, D. Riek-loher, B. Bohrmann, H. Do, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-beta(1–42) fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 17342–17347, 2005
I. Lans, K. Palacio-Rodr ́ıguez, C. N. Cavasotto, and P. Cossio, “Flexi-pharma: a molecule-ranking strategy for virtual screening using pharmacophores from ligand- free conformational ensembles,” Journal of Computer-Aided Molecular Design, vol. 34, pp. 1063–1077, 2020.
I. Lans, E. Anoz-Carbonell, K. Palacio-Rodr ́ıguez, J. A. A ́ınsa, M. Medina, and P. Cossio, “In silico discovery and biological validation of ligands of fad synthase, a promising new antimicrobial target,” PLOS Computational Biology, vol. 16, p. e1007898, 2020
M. Wieder, A. Garon, U. Perricone, S. Boresch, T. Seidel, A. M. Almerico, and T. Langer, “Common hits approach: Combining pharmacophore modeling and molecular dynamics simulations,” Journal of Chemical Information and Modeling, vol. 57, pp. 365– 385, 2017.
P. H. Reddy, M. Manczak, X. Yin, M. C. Grady, A. Mitchell, R. Kandimalla, and C. S. Kuruva, “Protective effects of a natural product, curcumin, against amyloid induced mitochondrial and synaptic toxicities in alzheimer’s disease,” Journal of Investigative Medicine, vol. 64, pp. 1220–1234, 2016
L. O. Tjernberg, J. N ̈aslundt, F. Lindqvist, J. Johansson, A. R. Karlstr ̈om, J. Thyberg, L. Tereniust, and C. Nordstedt, “Arrest of -amyloid fibril formation by a pentapeptide ligand,” Journal of Biological Chemistry, vol. 271, pp. 8545–8548, 1996.
J. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. Rao, “Polyphe- nols as potential metal chelation compounds against alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–23, 2020
A. Orjuela, J. Lakey-Beitia, R. Mojica-Flores, M. L. Hegde, I. Lans, J. Alí-Torres, and K. Rao, “Computational evaluation of interaction between curcumin derivatives and amyloid- monomers and fibrils: Relevance to alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–13, 2020
J. Lakey-Beitia, A. A. Durant-Archibold, D. Doens, P. L. Fernandez, and E. Murillo, “Anti-amyloid aggregation activity of novel carotenoids: Implications for alzheimer’s drug discovery,” Clinical Interventions in Aging, vol. 12, pp. 815–822, 2017
J. Lakey-Beitia, J. K. D, and M. L. Hegde, “Carotenoids as novel therapeutic molecules against neurodegenerative disorders : Chemistry and molecular docking analysis,” International Journal of Molecular Sciences, vol. 20, pp. 1–22, 2019
S. Katayama, H. Ogawa, and S. Nakamura, “Apricot carotenoids possess potent anti- amyloidogenic activity in vitro,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 12691–12696, 2011.
D. Hornero-Méndez, R. G.-L. de Guevara, and M. I. Mínguez-Mosquera, “Carotenoid biosynthesis changes in five red pepper (capsicum annuum l.) cultivars during ripening. cultivar selection for breeding,” Journal of Agricultural and Food Chemistry, vol. 48, pp. 3857–3864, 2000
G. Maiani, M. J. Periago Castón, G. Catasta, E. Toti, I. G. Cambrodón, A. Bysted, F. Granado-Lorencio, B. Olmedilla-Alonso, P. Knuthsen, M. Valoti, V. Böhm, E. Mayer-Miebach, D. Behsnilian, and U. Schlemmer, “Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans,” Molecular Nutrition & Food Research, vol. 53, no. S2, pp. S194–S218, 2009
E. Murillo, D. Giuffrida, D. Menchaca, P. Dugo, G. Torre, A. J. Meléndez-Martinez, and L. Mondello, “Native carotenoids composition of some tropical fruits,” Food Che- mistry, vol. 140, pp. 825–836, 2013
J. Lakey-Beitia, V. Vasquez, A. L. F. C. Randy Mojica-Flores and, E. Murillo, M. L. Hegde, and K. S. Rao, “Pouteria sapota (red mamey fruit): Chemistry and biological activity of carotenoids,” Comb Chem High Throughput Screen, vol. 25, pp. 1134–1147, 2022
E. Murillo, R. McLean, G. Britton, A. Agócs, V. Nagy, and J. Deli, “Sapotexanthin, an A-provitamin carotenoid from red mamey (Pouteria sapota).,” J Nat Prod, vol. 74, p. 283–285
M. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett, “Virtual screening for HIV protease inhibitors : A comparison of AutoDock4 and Vina,” PLoS One, pp. 1–9
A. Alhossary, S. D. Handoko, Y. Mu, and C.-K. Kwoh, “Fast, accurate, and reliable molecular docking with quickvina 2,” Bioinformatics, vol. 31, pp. 2214–2216, 2015
N. M. Hassan, A. A. Alhossary, Y. Mu, and C. K. Kwoh, “Protein-ligand blind docking using quickvina-w with inter-process spatio-temporal integration,” Scientific Reports, vol. 7, pp. 15451–15464, 2017
H. K. Tai, S. A. Jusoh, and S. W. Siu, “Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening,” Journal of Cheminformatics, vol. 10, pp. 1–13, 2018
D. R. Lide, G. Baysinger, L. I. Berger, R. N. Goldberg, H. V. Kehiaian, K. Kuchitsu, D. L. Roth, and D. Zwillinger, CRC Handbook of Chemistry and Physics. CRC Press Inc., 1992
A. Cabort, A. Michel, B. Therrien, H. Stoeckli-Evans, K. Bernauer, G. Suss-Fink, A. F. Williams, and G. Stupka, “Iron, cobalt, nickel and ruthenium complexes of 2,6- bis(3,4-dihydro-2h- pyrrol-5-yl)pyridine, a pybox analogue,” Inorganica Chimica Acta, vol. 350, pp. 193–200, 2003
X. Tao, D. W.Stephan, and P. K. Mascharak, “Synthetic analogue approach to metallobleomycins. 2. synthesis, structure, and properties of the low-spin iron(III) complex of N-(2-(4-imidazolyl)ethyl)pyridine- 2-carboxamide,” J. Inorg. Chem., vol. 26, pp. 755– 759, 1986
S. J. Brown, M. M. Olmstead, and P. K. Mascharak, “Iron(II) and iron(III) complexes of N-(2-(4-imidazolyl)ethyl)pyrimidine-4-carboxamide, a ligand resembling part of the metal-binding domain of bleomycin,” Inorg. Chem, vol. 29, pp. 3229–3234, 1990
D. S. Marlin, M. M. Olmstead, and P. K. Mascharak, “Spin states and stability of Fe(III) complexes of ligands with carboxamido nitrogen and phenolato oxygen donors,” European Journal of inorganic chemistry, pp. 859–865, 2002
R. F. Carina, L. Verzegnassi, G. Bernardinelli, and A. F. Williams, “Modulation of iron reduction potential by deprotonation at a remote site,” Chemical Communications, pp. 2681–2682, 1998
P. V. Bernhardt, P. Comba, T. W. Hamble, and G. A. Lawrance, “Coordination of the sexidentate macrocycle 6,13-dimethyl- 1,4,8,11- tetraazacyclotetradecane-6,13-diamine to iron(III),” J inorg Chem, vol. 30, pp. 942–946, 1991
K. Wieghardt, W. Schmidt, W. Herrmann, and H.-J. Kuppers, “Redox potentials of bis(1,4,7-triazacyclononane) complexes of some first transition series metals(II,III). preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate,” J Inorg Chem, vol. 22, pp. 2953–2956, 1983
K. Wieghardt, E. Schoffmann, B. Nuber, and J. Weiss2, “Syntheses, properties, and electrochemistry of transition-metal complexes of the macrocycle 1,4,7- tris(2-pyridylmethyl)-1,4,7-triazacyclononane (L). crystal structures of [NiL](Cl04)2, [MnL](Cl04)2, and [PdL](PF6)2 containing a distorted-square-base-pyramidal pdIIN5 core,” Inorg. Chem, vol. 25, pp. 4877–4883, 1986.
B. P. George, G. I. H. Hanania, and D. H. Irvine, “Potentiometric studies of some dipyridyl complexes,” Journal of chemical society, pp. 2548–2554, 1959.
J. Shearer, H. L. Jackson, D. Schweitzer, D. K. Rittenberg, T. M. Leavy, W. Kaminsky, R. C. Scarrow, and J. A. Kovacs, “The first example of a nitrile hydratase model complex that reversibly binds nitriles,” Journal of the American Chemical Society, vol. 124, pp. 11417–11428, 2002
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 129 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86226/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86226/2/Tesis_Adrian__Final.pdf
https://repositorio.unal.edu.co/bitstream/unal/86226/3/Tesis_Adrian__Final.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
68fceff587d28c035f601e9a7d509088
213eb57959234221f6210fb26701a5a8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089352207138816
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alí Torres, Jorge Isaac5ad92e519d0adeb5c7ce64cdd274cafaNúñez Zarur, Franciscoabd9d4b3b6c73fc01d3377ebac80d00b600Orjuela Rocha, Adrian Leonardo20e701ba93ace42abb60d060be3ed6c7Química Cuántica y Computacional0000-0003-2789-39482024-06-11T21:27:57Z2024-06-11T21:27:57Z2024https://repositorio.unal.edu.co/handle/unal/86226Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa enfermedad de Alzheimer, una compleja afección multifactorial, implica una serie de factores entre los cuales destaca la hipótesis del papel del hierro en los procesos de neurodegeneración y en la formación de placas amiloides. En este contexto, el presente estudio se enfocó en el uso de métodos computacionales para predecir el potencial estándar de reducción y la generación de especies reactivas mediante complejos Fe-Aβ Los resultados incluyen el desarrollo de una metodología avanzada para el tratamiento de complejos de hierro, así como una propuesta sobre la reactividad y la formación de peroxído de hidrógeno. Además, se elaboró una metodología específica para investigar el potencial antiagregante de derivados de curcumina. Esta misma técnica se aplicó para evaluar la actividad antiagregante de varios carotenoides presentes en el mamey rojo, ampliando así el espectro de posibles intervenciones terapéuticas en la lucha contra la enfermedad de Alzheimer. Estos avances representan un paso significativo en la comprensión y tratamiento de esta enfermedad, abriendo nuevas vías de investigación para combatir sus efectos neurodegenerativos. (Texto tomado de la fuente).Alzheimer’s disease, a complex multifactorial condition, involves a series of factors among which the hypothesis of iron’s role in neurodegeneration processes and amyloid plaque formation stands out. In this context, the present study focused on the use of computational methods to predict the standard reduction potential and the generation of reactive species through Fe-Aβ complexes. The results include the development of an advanced methodology for the treatment of iron complexes, as well as a proposal on reactivity and the formation of H2O2. Additionally, a specific methodology was developed to investigate the antiaggregating potential of curcumin derivatives. This same technique was applied to evaluate the anti-aggregating activity of various carotenoids present in red mamey, thus expanding the spectrum of possible therapeutic interventions in the fight against Alzheimer’s disease. These advances represent a significant step in the understanding and treatment of this disease, opening new avenues of research to combat its neurodegenerative effects.DoctoradoDoctor en Ciencias - QuímicaQuímica computacionalxix, 129 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química física610 - Medicina y salud::615 - Farmacología y terapéuticaHierro/análisisPlaca Amiloide/prevención & controlEnfermedad de Alzheimer/tratamiento farmacológicoIron/analysisPlaque, Amyloid/prevention & controlAlzheimer Disease/drug therapyAlzheimerDFTHierroDinámica MolecularAcoplamiento molecularProductos naturalesAlzheimerDFTIronMolecular dynamicsMolecular dockingNatural productsEstudios DFT de sistemas modelo de complejos Fe2+/3+-Aβ y propiedades antiagregantes de polifenoles y carotenoides en la enfermedad de AlzheimerDFT studies of Fe2+/3+-Aβ model systems and antiaggregation properties of polyphenols and carotenoids in Alzheimer's diseaseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBiremeJ. Lakey-Beitia, Y. González, D. Doens, D. E. Stephens, R. Santamaría, E. Murillo, M. Gutírrez, P. L. Fernández, K. S. Rao, O. V. Larionov, and A. A. Durant-Archibold, “Assessment of novel curcumin derivatives as potent inhibitors of inflammation and amyloid-β aggregation in alzheimer’s disease,” J. Alzheimer’s Dis., vol. 60, pp. S59– S68, 2017J. Lakey-Beitia, R. Berrocal, K. S. Rao, and A. A. Durant, “Polyphenols as therapeutic molecules in alzheimer’s disease through modulating amyloid pathways,” Molecular Neurobiology, vol. 51, pp. 466–479, 2015K. P. Kepp, “Bioinorganic chemistry of Alzheimer’s disease,” Chemical reviews, vol. 112, p. 5193–5239, 2012J. Alí-Torres, “Estudio teóico de la estructura electrónica y molecular de complejos de Cu1+/2+ y Fe2+/3+ relevantes en la enfermedad de Alzheimer,” Tesis Doctoral, 2011J. Alí-Torres, L. Rodríguez, M. Sodupe, and A. Rauk, “Structures and stabilities of Fe2+/3+ complexes relevant to Alzheimer’s disease: An ab Initio study,” Journal of Phisycal Chemistry, vol. 115, pp. 12523–12530, 2011A. Kramida, Yu.Ralchenko, and J. Reader, “NIST atomic spectra database ionization energies data,” 2021A. L. Orjuela, F. Núnez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe2+/3+ − Aβ model systems relevant to alzheimer’s disease,” RSC Advances, vol. 12, pp. 24077–24087, 2022A. Association, “2021 Alzheimer’s disease facts and figures,” Alzheimers Dement, vol. 13, pp. 325–373, 2021C. R. de Sanchez, D. M. Nariño, and J. Fernando, “Epidemiologia y carga de la enfermedad de alzheimer,” Acta Neurologica Colombiana, vol. 26, pp. 87–94, 2010.F. Lopera, M. Arcos, L. Madrigal, K. Kosik, W. Cornejo, and J. Ossa, “Demencia tipo Alzheimer con agregación familiar en Antioquia , Colombia,” Acta Neurológica Colombiana, vol. 10, pp. 173–187, 1994P. V. Arriagada, J. H. Growdon, E. T. Hedley-Whyte, and B. T. Hyman, “Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease,” Neurology, vol. 42, pp. 631–631, 2012.A. Mirats, J. Ali-Torres, L. Rodriguez-Santiago, M. Sodupe, and G. L. Penna, “Dioxygen activation in the Cu-amyloid β complex,” Phys. Chem. Chem. Phys., vol. 17, pp. 27270–27274, 2015G. Waldemar, B. Dubois, M. Emre, J. Georges, I. G. McKeith, M. R. P. Schel-tens, P. Tariska, B. Winblad, , and EFNS, “Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: Efns guideline,” Eur. J . Neurol, vol. 14, pp. 1–26, 2007A. Rauk, “The chemistry of Alzheimer’s disease,” Chemical Society Reviews, vol. 38, pp. 2698–2715, 2009J. Kardos, I. Kovfics, F. Haj ́os, M. K ́alaman, and M. Simonyi, “Nerve endings from rat brain tissue release copper upon depolarization. a possible role in regulating neuronal excitability,” Neuroscience Letters, vol. 103, pp. 139–144, 1989C. J. Maynard, R. Cappai, I. Volitakis, R. A. Cherny, A. R. White, K. Beyreuther, C. L. Masters, A. I. Bush, and Q. X. Li, “Overexpression of alzheimer’s disease amyloid- opposes the age-dependent elevations of brain copper and iron,” Journal of Biological Chemistry, vol. 277, pp. 44670–44676, 2002M. Lovell, J. Robertson, W. Teesdale, J. Campbell, and W. Markesbery, “Copper, iron and zinc in alzheimer’s disease senile plaques,” Journal of the Neurological Sciences, vol. 158, pp. 47–52, 1998F.-G. Pajonk, H. Kessler, T. Supprian, P. Hamzei, D. Bach, J. Schweickhardt, W. Herrmann, R. Obeid, A. Simons, P. Falkai, G. Multhaup, and T. A. Bayer, “Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 8, pp. 23–27, 2005T. Borchardt, J. Camakaris, R. Cappai, C. L. Masters, K. Beyreuther, and G. Multhaup, “Copper inhibits β-amyloid production and stimulates the non- amyloidogenic pathway of amyloid-precursor-protein secretion,” Biochem. J, vol. 344, pp. 461–467, 1999.J. H. Weiss, S. L. Sensi, and J. Y. Koh, “Zn2+: a novel ionic mediator of neural injury in brain disease,” Trends in Pharmacological Sciences, vol. 21, pp. 395–401, 2000C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, “Importance of zinc in the central nervous system: The zinc-containing neuron,” The Journal of Nutrition, vol. 130, pp. 1471S–1483S, 2000.L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, “Synchrotron-based infrared and x-ray imaging shows focalized accumulation of cu and zn co-localized with -amyloid deposits in alzheimer’s disease,” Journal of Structural Biology, vol. 155, pp. 30–37, 2006J. R. Connor, S. L. Menzies, J. R. Burdo, and P. J. Boyer, “Iron and iron management proteins in neurobiology,” Pediatric Neurology, vol. 25, pp. 118–129, 2001.J. L. Beard, J. R. Connor, and B. C. Jones, “Iron in the brian,” Nutrition Reviews, vol. 51, pp. 157,170, 1993H. M. Schipper, “Heme oxygenase-1: role in brain aging and neurodegeneration,” Ex- perimental Gerontology, vol. 35, pp. 821–830, 2000N. Puentes-Díaz, D. Chaparro, D. Morales-Morales, A. Flores-Gaspar, and J. Alí- Torres, “Role of metal cations of copper, iron, and aluminum and multifunctional ligands in Alzheimer’s disease: Experimental and computational insights,” ACS Omega, vol. 8, pp. 4508–4526, 2023.C. C. Winterbourn, “Toxicity of iron and hydrogen peroxide: the Fenton reaction,” Toxicology Letters, vol. 82-83, pp. 969–974, 1995A. A. Belaidi and A. I. Bush, “Iron neurochemistry in Alzheimer’s disease and par- kinson’s disease: targets for therapeutics,” Journal of Neurochemistry, pp. 179–197, 2016A. A. Mamun, M. S. Uddin, B. Mathew, and G. M. Ashraf, “Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease,” Neural Regeneration Research, vol. 15, pp. 1417–1420, 2020J. T. Rogers, J. D. Randall, C. M. Cahill, P. S. Eder, X. Huang, H. Gunshin, L. Leiter, J. McPhee, S. S. Sarang, T. Utsuki, N. H. Greig, D. K. Lahiri, R. E. Tanzi, A. I. Bush, T. Giordano, and S. R. Gullans, “An iron-responsive element type II in the 5- untranslated region of the Alzheimer’s amyloid precursor protein transcript,” Journal of Biological Chemistry, vol. 277, pp. 45518–45528, 2002D. J. Pinero and J. R. Connor, “Iron in the brain: An important contributor in normal and diseased states,” Neuroscientist, vol. 6, pp. 435–453, 2000G. P. Kumar and F. Khanum, “Neuroprotective potential of phytochemicals.,” Pharmacogn Rev, vol. 6, pp. 81–90, 2012M. Iranshahi, M. G. Chini, M. Masullo, A. Sahebkar, A. Javidnia, M. C. Yazdi, C. Per- gola, A. Koeberle, O. Werz, C. Pizza, S. Terracciano, S. Piacente, and G. Bifulco, “Can small chemical modifications of natural pan-inhibitors modulate the biological selectivity? the case of curcumin prenylated derivatives acting as hdac or mpges-1 inhibitors,” Journal of Natural Products, vol. 78, pp. 2867–2879, 2015I. Morales, C. Cerda-Troncoso, V. Andrade, and R. B. Maccioni, “The natural product curcumin as a potential coadjuvant in Alzheimer’s treatment,” Journal of Alzheimer’s Disease, vol. 60, pp. 451–460, 2017M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radical Biology and Medicine, vol. 51, pp. 1014–1026, 2011J. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. S. Rao, “Polyphe- nols as potential metal chelation compounds against Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S335–S357, 2021D. Chaparro, A. Flores-Gaspar, and J. Alí-Torres, “Computational design of copper ligands with controlled metal chelating, pharmacokinetics, and redox properties for Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 82, pp. S179–S193, 2021K. Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, and M. Yamada, “Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease,” J Neurochem, vol. 87, pp. 172–181, 2003C. Rivière, T. Richard, X. Vitrac, J. M. Mérillon, J. Valls, and J. P. Monti, “New polyphenols active on β-amyloid aggregation,” Bioorg. Med. Chem. Lett, vol. 18, pp. 828–831, 2008K. I. Priyadarsini, “The chemistry of curcumin: From extraction to therapeutic agent,” Molecules, vol. 19, pp. 20091–20112, 2014A. Marchiani, S. Mammi, G. Siligardi, R. Hussain, I. Tessari, L. Bubacco, G. Delogu, D. Fabbri, and P. Ruzza, “Small molecules interacting with alpha -synuclein: antiaggregating and cytoprotective properties,” Amino Acids, vol. 45, pp. 327–338, 2013.J. Wu, Y. Zhang, Y. Cai, J. Wang, B. Weng, Q. Tang, X. Chen, Z. Pan, G. Liang, and S. Yang, “Discovery and evaluation of piperid-4-one-containing mono-carbonyl analogs of curcumin as anti-inflammatory agents,” Bioorganic and Medicinal Chemistry, vol. 21, pp. 3058–3065, 2013.F. Arrigoni, T. Prosdocimi, L. Mollica, L. D. Gioia, G. Zampella, and L. Bertini, “Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling,” Metallomics, vol. 10, pp. 1618–1630, 2018D. J. Lane, S. Ayton, and A. I. Bush, “Iron and Alzheimer’s disease: An update on emerging mechanisms,” Journal of Alzheimer’s Disease, vol. 64, pp. S379–S395, 2018M. Radón, “Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data,” Physical Chemistry Chemical Physics, vol. 21, pp. 4854–4870, 2019G. M. Sandala, K. H. Hopmann, A. Ghosh, and L. Noodleman, “Calibration of dft functionals for the prediction of 57 Fe m ̈ossbauer spectral parameters in iron-nitrosyl and iron-sulfur complexes: Accurate geometries prove essential,” Journal of Chemical Theory and Computation, vol. 7, pp. 3232–3247, 2011S. Song, M.-C. Kim, E. Sim, A. Benali, O. Heinonen, and K. Burke, “Benchmarks and reliable DFT results for spin-crossover complexes,” arXiv: Chemical Physics, 2017J. Conradie and A. Ghosh, “DFT calculations on the spin-crossover complex Fe(salen)(NO): A quest for the best functional,” Journal of Physical Chemistry B, vol. 111, pp. 12621–12624, 2007K. Arumugam and U. Becker, “Computational redox potential predictions: Applications to inorganic and organic aqueous complexes, and complexes adsorbed to mineral surfaces,” Minerals, vol. 4, pp. 345–387, 2014L. E. Roy, E. Jakubikova, M. G. Guthrie, and E. R. Batista, “Calculation of one- electron redox potentials revisited. is it possible to calculate accurate potentials with density functional methods?,” Journal of Physical Chemistry A, vol. 113, pp. 6745– 6750, 2009.M. A. Rizvi, M. Mane, M. A. Khuroo, and G. M. Peerzada, “Computational survey of ligand properties on iron(III)–iron(II) redox potential: exploring natural attenuation of nitroaromatic compounds,” Monatshefte fur Chemie, vol. 148, pp. 655–668, 2017.M. Horch, “Rational redox tuning of transition metal sites: Learning from superoxide reductase,” Chemical Communications, vol. 55, pp. 9148–9151, 2019K. M. Saravanan, H. Zhang, H. Zhang, W. Xi, and Y. Wei, “On the conformational dynamics of -amyloid forming peptides: A computational perspective,” Frontiers in Bioengineering and Biotechnology, vol. 8, pp. 1–19, 2020K. Teilum, J. G. Olsen, and B. B. Kragelund, “Protein stability, flexibility and fun- ction,” Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1814, pp. 969– 976, 2011.E. Schrödinger, “Quantisierung als eigenwertproblem,” Annalen der Physik, vol. 385, no. 13, pp. 437–490, 1926A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: : Introduction to Advanced Electronic Structure Theory. Dover Publications, 1 ed., 1996W. J. Hehre, “Ab initio molecular orbital theory,” Accounts of Chemical Research, vol. 9, pp. 399–406, 1976B. Nagy and F. Jensen, Basis Sets in Quantum Chemistry, ch. 3, pp. 93–149. John Wiley Sons, Ltd, 2017M. Dolg, U. Wedig, H. Stoll, and H. Preuss, “Energy-adjusted abinitio pseudopotentials for the first row transition elements,” The Journal of Chemical Physics, vol. 86, no. 2, pp. 866–872, 1987P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calcula- tions. Potentials for the transition metal atoms Sc to Hg,” The Journal of Chemical Physics, vol. 82, no. 1, pp. 270–283, 1985P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871, 1964.W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, pp. A1133–A1138, 1965J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approxi- mations for many-electron systems,” Phys. Rev. B, vol. 23, pp. 5048–5079J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, vol. 45, pp. 13244–13249J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” physical review letters, vol. 77, pp. 3865–3868, 1996.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett., vol. 91, p. 146401A. V. Arbuznikov, “Hybrid exchange correlation functionals and potentials: Concept elaboration,” Journal of Structural Chemistry, vol. 48, pp. S1–S21, 2007.J. M. L. Martin and G. Santra, “Empirical double-hybrid density functional theory: A ‘third way’ in between wft and dft,” Israel Journal of Chemistry, vol. 60, no. 8-9, pp. 787–804, 2020D. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002.C. J. Cramer and D. G. Truhlar, “Implicit solvation models: equilibria, structure, spectra, and dynamics,” Chemical Reviews, vol. 99, pp. 2161–2200, 1999I. N. Levine, D. H. Busch, and H. Shull, Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ, 6 ed., 2009J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews, vol. 105, pp. 2999–3093, 2005H. M. Senn and W. Thiel, “Qm/mm methods for biomolecular systems,” Angewandte Chemie - International Edition, vol. 48, pp. 1198–1229, 2009B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, and P. J. Stephens, “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” The Journal of Physical Chemistry A, vol. 106, pp. 6102–6113, 5 2002.A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B., vol. 113, pp. 6378–6396, 2009M. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,” Nature Structural Biology, vol. 9, pp. 646–652, 2002R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, “Biomolecular simulation: A computational microscope for molecular biology,” Annual Review of Biophysics, vol. 41, pp. 429–452, 2012.D. Frenkel and B. Smit, Statistical Mechanics. Academic Press, 2 ed., 2002A. R. Leach, B. K. Shoichet, and C. E. Peishoff, “Prediction of proteinligand interactions. docking and scoring: successes and gaps,” Journal of Medicinal Chemistry, vol. 49, pp. 5851–5855, 2006D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nature Reviews Drug Discovery, vol. 3, pp. 935–949, 2004R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and P. S. Shenkin, “Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy,” Journal of Medicinal Chemistry, vol. 47, pp. 1739–1749, 2004G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function,” Journal of Computational Chemistry, vol. 19, pp. 1639–1662, 1998G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation of a genetic algorithm for flexible docking,” Journal of Molecular Biology, vol. 267, pp. 727–748, 1997M. L. Hegde, P. M. Hegde, K. S. Rao, and S. Mitra, “Oxidative genome damage and its repair in neurodegenerative diseases: Function of transition metals as a double-edged sword,” Journal of Alzheimer’s Disease, vol. 24, pp. 183–198, 2011.B. J. Tabner, S. Turnbull, R. O. M. El-Agnaf, and D. Allsop, “Production of reactive oxygen species from aggregating proteins implicated in alzheimers disease, parkinsons disease and other neurodegenerative diseases,” Current Topics in Medicinal Chemistry, vol. 1, pp. 507–517, 2005M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Chee- seman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hrat- chian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. To- yota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Mar- tin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, “Gaussian 16 revision D.01,” 2016. Gaussian Inc. Wallingford CTV. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms K through Zn,” Journal of Chemical Physics, vol. 109, pp. 1223–1229, 1998F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Physical Chemistry Chemical Physics, vol. 7, pp. 3297–3305, 2005T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, pp. 1007–1023, 1989W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms,” Canadian Journal of Chemistry, vol. 70, pp. 612–630, 1990N. E. Schultz, Y. Zhao, and D. G. Truhlar, “Density functional for inorganometallic and organometallic chemistry,” Journal of Physical Chemistry A, vol. 109, pp. 11127– 11143, 2005J. Tomasi and M. Persico, “Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent,” Chemical Reviews, vol. 94, pp. 2027– 2094, 1994K. Hyungjun, P. Joungwon, and L. Y. Sup, “A protocol to evaluate one electron redox potential for iron complexes,” Journal of Computational Chemistry, vol. 34, pp. 2233– 2241, 2013S. G. Bratsch, “Standard electrode potentials and temperature coefficients in water at 298.15 k,” Journal of Physical and Chemical Reference Data, vol. 18, pp. 1–21, 1989M. Cossi, N. Rega, G. Scalmani, and V. Barone, “Energies, structures, and electro- nic properties of molecules in solution with the C-PCM solvation model,” Journal of Computational Chemistry, vol. 24, pp. 669–681, 2003.A. N. Masliy, T. N. Grishaeva, and A. M. Kuznetsov, “Standard redox potentials of Fe(III) aqua complexes included into the cavities of cucurbit[n]urils (n = 6-8): A DFT forecast,” Journal of Physical Chemistry A, vol. 123, pp. 1341–1346, 2019.M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, “The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-ion solvation data,” vol. 102, pp. 7787–7794, 1998B. H. Solis and S. Hammes-Schiffer, “Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution,” Journal of the American Chemical Society, vol. 133, pp. 19036–19039, 2011L. E. Fernandez, S. Horvath, and S. Hammes-Schiffer, “Theoretical analysis of the sequential proton-coupled electron transfer mechanisms for H2 oxidation and production pathways catalyzed by nickel molecular electrocatalysts,” Journal of Physical Che- mistry C, vol. 116, pp. 3171–3180, 2012D. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” Journal of Molecular Modeling, vol. 23, p. 283, 2017A. Galstyan and E. W. Knapp, “Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes,” Journal of Computational Chemistry, vol. 30, pp. 203–211, 2009T. Miura, K. Suzuki, and H. Takeuchi, “Binding of iron(III) to the single tyrosine residue of amyloid beta-peptide probed by raman spectroscopy,” Journal of Molecular Structure, vol. 598, pp. 79–84, 2001T. Miura, K. Suzuki, N. Kohata, and H. Takeuchi, “Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes,” Biochemistry, vol. 39, pp. 7024–7031, 2000D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry. W. H Freeman, 2005E. J. Shin, Y. H. Chung, N. Sharma, B. T. Nguyen, S. H. Lee, S. W. Kang, S. Y. Nah, M. B. Wie, T. Nabeshima, J. H. Jeong, and H. C. Kim, “Glutathione peroxidase- 1 knockout facilitates memory impairment induced by -amyloid (1–42) in mice via inhibition of pkc ii-mediated erk signaling; application with glutathione peroxidase-1 gene-encoded adenovirus vector,” Neurochemical Research, vol. 45, pp. 2991–3002, 12 2020C. Behl, Oxidative stress in Alzheimer’s Disease: Implications for Prevention and Therapy, pp. 65–78. Boston, MA: Springer US, 2005M. N. Glukhovtsev, R. D. Bach, and C. J. Nagel, “Performance of the B3LYP/ECP DFT calculations of iron-containing compounds,” Journal of Physical Chemistry A, 1997P. Pracht, F. Bohle, and S. Grimme, “Automated exploration of the low-energy chemical space with fast quantum chemical methods,” Phys. Chem. Chem. Phys., vol. 22, pp. 7169–7192, 2020K. A. Wollen, “Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners,” Alternative Medicine Review, vol. 15, pp. 223–244, 2010E. L. Cooper and M. J. Ma, “Alzheimer disease: Clues from traditional and com- plementary medicine,” Journal of Traditional and Complementary Medicine, vol. 7, pp. 380–385, 2017.A. A. Starkov and F. M. Beal, “Portal to Alzheimer’s disease,” Nature Medicine, vol. 14, pp. 1020–1021, 2008V. Calsolaro and P. Edison, “Neuroinflammation in Alzheimer’s disease: Current evidence and future directions,” Alzheimer’s and Dementia, vol. 12, pp. 719–732, 2016H. Sticht, P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuther, R. W. Frank, and P. Rosch, “Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease,” Eur. J. Biochem, vol. 233, pp. 293–298, 1995M. Coles, W. Bicknell, a a Watson, D. P. Fairlie, and D. J. Craik, “Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment.,” Biochemistry, vol. 37, pp. 11064–77, 1998T. Darden, D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, I. T.E. Cheatham, V. Cru- zeiro, Y. Huang, R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer, D. S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. L. amd R. Luo, R. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, D. York, P. K. Qi, D. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, R. Sa- lomonFerrer, J. Swails, R. Walker, J. Wang, H. Wei, R. Wolf, X. Wu, and L. Xiao, “Amber 18,” 2018C. Simmerling, “ff 14sb: Improving the accuracy of protein side chain and backbone parameters from ff 99sb,” J. Chem. Theory Comput, vol. 11, p. 3696–3713, 2015W. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular dynamics,” Journal of molecular graphics, vol. 14, pp. 33–38, 1996D. R. Roe and T. E. C. III, “Ptraj and cpptraj: software for processing and analysis of molecular synamics trajectory data,” J Chem Theory Com, vol. 9, pp. 3084–3095, 2013X. Jin and J. Han, “K-medoids clustering,” Encyclopedia of Machine Learning and Data Mining, pp. 697–700, 2017L. Schrodinger, “The PyMol molecular graphics system,” 2015G. Morris and R. Huey, “Autodock4 and autodocktools4: Automated docking with selective receptor flexibility,” Journal of computational chemistry, vol. 30, pp. 2785– 2791, 2009O. Trott and A. J. Olson, “Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” Journal of computational chemistry, vol. 31, pp. 455–461, 2010.D. R. Koes, M. P. Baumgartner, and C. J. Camacho, “Lessons learned in empirical scoring with smina from the csar 2011 benchmarking exercise,” Journal of Chemical Information and Modeling, vol. 53, pp. 1893–1904, 2013L. Schrodinger, “Maestro,” 2023C. N. Cavasotto and R. A. Abagyan, “Protein flexibility in ligand docking and virtual screening to protein kinases,” Journal of Molecular Biology, vol. 337, pp. 209–225, 2004.K. Palacio-Rodr ́ıguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking,” Scientific Reports, vol. 9, pp. 1–14, 2019C. Ritter, M. Adrian, D. Riek-loher, B. Bohrmann, H. Do, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-beta(1–42) fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 17342–17347, 2005I. Lans, K. Palacio-Rodr ́ıguez, C. N. Cavasotto, and P. Cossio, “Flexi-pharma: a molecule-ranking strategy for virtual screening using pharmacophores from ligand- free conformational ensembles,” Journal of Computer-Aided Molecular Design, vol. 34, pp. 1063–1077, 2020.I. Lans, E. Anoz-Carbonell, K. Palacio-Rodr ́ıguez, J. A. A ́ınsa, M. Medina, and P. Cossio, “In silico discovery and biological validation of ligands of fad synthase, a promising new antimicrobial target,” PLOS Computational Biology, vol. 16, p. e1007898, 2020M. Wieder, A. Garon, U. Perricone, S. Boresch, T. Seidel, A. M. Almerico, and T. Langer, “Common hits approach: Combining pharmacophore modeling and molecular dynamics simulations,” Journal of Chemical Information and Modeling, vol. 57, pp. 365– 385, 2017.P. H. Reddy, M. Manczak, X. Yin, M. C. Grady, A. Mitchell, R. Kandimalla, and C. S. Kuruva, “Protective effects of a natural product, curcumin, against amyloid induced mitochondrial and synaptic toxicities in alzheimer’s disease,” Journal of Investigative Medicine, vol. 64, pp. 1220–1234, 2016L. O. Tjernberg, J. N ̈aslundt, F. Lindqvist, J. Johansson, A. R. Karlstr ̈om, J. Thyberg, L. Tereniust, and C. Nordstedt, “Arrest of -amyloid fibril formation by a pentapeptide ligand,” Journal of Biological Chemistry, vol. 271, pp. 8545–8548, 1996.J. Lakey-Beitia, A. M. Burillo, G. L. Penna, M. L. Hegde, and K. Rao, “Polyphe- nols as potential metal chelation compounds against alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–23, 2020A. Orjuela, J. Lakey-Beitia, R. Mojica-Flores, M. L. Hegde, I. Lans, J. Alí-Torres, and K. Rao, “Computational evaluation of interaction between curcumin derivatives and amyloid- monomers and fibrils: Relevance to alzheimer’s disease,” Journal of Alzheimer’s Disease, pp. 1–13, 2020J. Lakey-Beitia, A. A. Durant-Archibold, D. Doens, P. L. Fernandez, and E. Murillo, “Anti-amyloid aggregation activity of novel carotenoids: Implications for alzheimer’s drug discovery,” Clinical Interventions in Aging, vol. 12, pp. 815–822, 2017J. Lakey-Beitia, J. K. D, and M. L. Hegde, “Carotenoids as novel therapeutic molecules against neurodegenerative disorders : Chemistry and molecular docking analysis,” International Journal of Molecular Sciences, vol. 20, pp. 1–22, 2019S. Katayama, H. Ogawa, and S. Nakamura, “Apricot carotenoids possess potent anti- amyloidogenic activity in vitro,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 12691–12696, 2011.D. Hornero-Méndez, R. G.-L. de Guevara, and M. I. Mínguez-Mosquera, “Carotenoid biosynthesis changes in five red pepper (capsicum annuum l.) cultivars during ripening. cultivar selection for breeding,” Journal of Agricultural and Food Chemistry, vol. 48, pp. 3857–3864, 2000G. Maiani, M. J. Periago Castón, G. Catasta, E. Toti, I. G. Cambrodón, A. Bysted, F. Granado-Lorencio, B. Olmedilla-Alonso, P. Knuthsen, M. Valoti, V. Böhm, E. Mayer-Miebach, D. Behsnilian, and U. Schlemmer, “Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans,” Molecular Nutrition & Food Research, vol. 53, no. S2, pp. S194–S218, 2009E. Murillo, D. Giuffrida, D. Menchaca, P. Dugo, G. Torre, A. J. Meléndez-Martinez, and L. Mondello, “Native carotenoids composition of some tropical fruits,” Food Che- mistry, vol. 140, pp. 825–836, 2013J. Lakey-Beitia, V. Vasquez, A. L. F. C. Randy Mojica-Flores and, E. Murillo, M. L. Hegde, and K. S. Rao, “Pouteria sapota (red mamey fruit): Chemistry and biological activity of carotenoids,” Comb Chem High Throughput Screen, vol. 25, pp. 1134–1147, 2022E. Murillo, R. McLean, G. Britton, A. Agócs, V. Nagy, and J. Deli, “Sapotexanthin, an A-provitamin carotenoid from red mamey (Pouteria sapota).,” J Nat Prod, vol. 74, p. 283–285M. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett, “Virtual screening for HIV protease inhibitors : A comparison of AutoDock4 and Vina,” PLoS One, pp. 1–9A. Alhossary, S. D. Handoko, Y. Mu, and C.-K. Kwoh, “Fast, accurate, and reliable molecular docking with quickvina 2,” Bioinformatics, vol. 31, pp. 2214–2216, 2015N. M. Hassan, A. A. Alhossary, Y. Mu, and C. K. Kwoh, “Protein-ligand blind docking using quickvina-w with inter-process spatio-temporal integration,” Scientific Reports, vol. 7, pp. 15451–15464, 2017H. K. Tai, S. A. Jusoh, and S. W. Siu, “Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening,” Journal of Cheminformatics, vol. 10, pp. 1–13, 2018D. R. Lide, G. Baysinger, L. I. Berger, R. N. Goldberg, H. V. Kehiaian, K. Kuchitsu, D. L. Roth, and D. Zwillinger, CRC Handbook of Chemistry and Physics. CRC Press Inc., 1992A. Cabort, A. Michel, B. Therrien, H. Stoeckli-Evans, K. Bernauer, G. Suss-Fink, A. F. Williams, and G. Stupka, “Iron, cobalt, nickel and ruthenium complexes of 2,6- bis(3,4-dihydro-2h- pyrrol-5-yl)pyridine, a pybox analogue,” Inorganica Chimica Acta, vol. 350, pp. 193–200, 2003X. Tao, D. W.Stephan, and P. K. Mascharak, “Synthetic analogue approach to metallobleomycins. 2. synthesis, structure, and properties of the low-spin iron(III) complex of N-(2-(4-imidazolyl)ethyl)pyridine- 2-carboxamide,” J. Inorg. Chem., vol. 26, pp. 755– 759, 1986S. J. Brown, M. M. Olmstead, and P. K. Mascharak, “Iron(II) and iron(III) complexes of N-(2-(4-imidazolyl)ethyl)pyrimidine-4-carboxamide, a ligand resembling part of the metal-binding domain of bleomycin,” Inorg. Chem, vol. 29, pp. 3229–3234, 1990D. S. Marlin, M. M. Olmstead, and P. K. Mascharak, “Spin states and stability of Fe(III) complexes of ligands with carboxamido nitrogen and phenolato oxygen donors,” European Journal of inorganic chemistry, pp. 859–865, 2002R. F. Carina, L. Verzegnassi, G. Bernardinelli, and A. F. Williams, “Modulation of iron reduction potential by deprotonation at a remote site,” Chemical Communications, pp. 2681–2682, 1998P. V. Bernhardt, P. Comba, T. W. Hamble, and G. A. Lawrance, “Coordination of the sexidentate macrocycle 6,13-dimethyl- 1,4,8,11- tetraazacyclotetradecane-6,13-diamine to iron(III),” J inorg Chem, vol. 30, pp. 942–946, 1991K. Wieghardt, W. Schmidt, W. Herrmann, and H.-J. Kuppers, “Redox potentials of bis(1,4,7-triazacyclononane) complexes of some first transition series metals(II,III). preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate,” J Inorg Chem, vol. 22, pp. 2953–2956, 1983K. Wieghardt, E. Schoffmann, B. Nuber, and J. Weiss2, “Syntheses, properties, and electrochemistry of transition-metal complexes of the macrocycle 1,4,7- tris(2-pyridylmethyl)-1,4,7-triazacyclononane (L). crystal structures of [NiL](Cl04)2, [MnL](Cl04)2, and [PdL](PF6)2 containing a distorted-square-base-pyramidal pdIIN5 core,” Inorg. Chem, vol. 25, pp. 4877–4883, 1986.B. P. George, G. I. H. Hanania, and D. H. Irvine, “Potentiometric studies of some dipyridyl complexes,” Journal of chemical society, pp. 2548–2554, 1959.J. Shearer, H. L. Jackson, D. Schweitzer, D. K. Rittenberg, T. M. Leavy, W. Kaminsky, R. C. Scarrow, and J. A. Kovacs, “The first example of a nitrile hydratase model complex that reversibly binds nitriles,” Journal of the American Chemical Society, vol. 124, pp. 11417–11428, 2002Diseño computacional, síntesis y estudios preliminares de actividad biológica de ligandos multifuncionales de cobre con potencial redox controlado, para su aplicación en el tratamiento de la enfermedad de AlzheimerVicerrectoría de Investigación Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86226/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis_Adrian__Final.pdfTesis_Adrian__Final.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf12328991https://repositorio.unal.edu.co/bitstream/unal/86226/2/Tesis_Adrian__Final.pdf68fceff587d28c035f601e9a7d509088MD52THUMBNAILTesis_Adrian__Final.pdf.jpgTesis_Adrian__Final.pdf.jpgGenerated Thumbnailimage/jpeg4500https://repositorio.unal.edu.co/bitstream/unal/86226/3/Tesis_Adrian__Final.pdf.jpg213eb57959234221f6210fb26701a5a8MD53unal/86226oai:repositorio.unal.edu.co:unal/862262024-08-25 23:11:24.618Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=