Higgs sector from a non-universal U(1)x supersymmetric model
ilustraciones
- Autores:
-
Díaz Jaramillo, Carlos Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79766
- Palabra clave:
- 530 - Física
Supersimetría
Supersymetry
Supersymmetry
Particle physics
Non universality
Higgs
Supersimetría
Física de partículas
No universalidad
Física nuclear
Nuclear physics
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_90435758487c2f44cb0d368f09d20884 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79766 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Higgs sector from a non-universal U(1)x supersymmetric model |
dc.title.translated.spa.fl_str_mv |
Sector de Higgs de un modelo no universal supersimétrico U(1)x |
title |
Higgs sector from a non-universal U(1)x supersymmetric model |
spellingShingle |
Higgs sector from a non-universal U(1)x supersymmetric model 530 - Física Supersimetría Supersymetry Supersymmetry Particle physics Non universality Higgs Supersimetría Física de partículas No universalidad Física nuclear Nuclear physics |
title_short |
Higgs sector from a non-universal U(1)x supersymmetric model |
title_full |
Higgs sector from a non-universal U(1)x supersymmetric model |
title_fullStr |
Higgs sector from a non-universal U(1)x supersymmetric model |
title_full_unstemmed |
Higgs sector from a non-universal U(1)x supersymmetric model |
title_sort |
Higgs sector from a non-universal U(1)x supersymmetric model |
dc.creator.fl_str_mv |
Díaz Jaramillo, Carlos Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Martínez Martínez, Roberto Enrique |
dc.contributor.author.none.fl_str_mv |
Díaz Jaramillo, Carlos Eduardo |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Supersimetría Supersymetry Supersymmetry Particle physics Non universality Higgs Supersimetría Física de partículas No universalidad Física nuclear Nuclear physics |
dc.subject.other.none.fl_str_mv |
Supersimetría Supersymetry |
dc.subject.proposal.eng.fl_str_mv |
Supersymmetry Particle physics Non universality Higgs |
dc.subject.proposal.spa.fl_str_mv |
Supersimetría Física de partículas No universalidad |
dc.subject.unesco.none.fl_str_mv |
Física nuclear Nuclear physics |
description |
ilustraciones |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-07T17:56:52Z |
dc.date.available.none.fl_str_mv |
2021-07-07T17:56:52Z |
dc.date.issued.none.fl_str_mv |
2021-05-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79766 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79766 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
J. S. Alvarado, Carlos E. Diaz, and R. Martinez. Non universal u(1)X extension tothe mssm with three families. Phys. Rev. D, 100:055037, Sep 2019 J. S. Alvarado, Carlos E. Diaz, and R. Martinez. A U(1)X extension to the MSSM with three families. In Meeting of the Division of Particles and Fields of the American Physical Society, 9 2019 Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961 A Salam. Elementary particle theory: Relativistic groups and analyticity (nobelsymposium no. 8), edited by n. svartholm, 1968 Steven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967 Particle Data Group. Review of Particle Physics. Progress of Theoretical and Exper-imental Physics, 2020(8), 08 2020. 083C01 ATLAS-collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012 CMS-collaboration. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–71, 2012. Csaba Cs ́aki and Philip Tanedo. Beyond the Standard Model. Lectures at the 2013European School of High Energy Physics, (8), 2013 J. Wess and B. Zumino. Supergauge transformations in four dimensions. NuclearPhysics B, 70(1):39 – 50, 1974. Savas Dimopoulos and Howard Georgi. Softly broken supersymmetry and su(5). Nuclear Physics B, 193(1):150 – 162, 1981 R. Barbieri, S. Ferrara, and C.A. Savoy. Gauge models with spontaneously broken local supersymmetry. Physics Letters B, 119(4):343 – 347, 1982 K. Abe et al. Search for proton decay viap→e+π0andp→μ+π 0 in 0.31 megaton· years exposure of the super-kamiokande water cherenkov detector.Phys. Rev. D,95:012004, Jan 2017 Anupama Atre, Vernon Barger, and Tao Han. Upper bounds on lepton-number violating processes. Phys. Rev. D, 71:113014, Jun 2005. Pierre Fayet. Supergauge invariant extension of the higgs mechanism and a model for the electron and its neutrino. Nuclear Physics B, 90:104 – 124, 1975 P. Fayet. Supersymmetry and weak, electromagnetic and strong interactions. PhysicsLetters B, 64(2):159 – 162, 1976 Glennys R. Farrar and Pierre Fayet. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B,76(5):575 – 579, 1978 R-parity-violating supersymmetry. Physics Reports, 420(1):1 – 195, 2005 Jihn E. Kim and H.P. Nilles. The mu-problem and the strong cp-problem. PhysicsLetters B, 138(1):150 – 154, 198 Nir Polonsky. The Mu parameter of supersymmetry. In International Symposium on Supersymmetry, Supergravity and Superstring, pages 100–124, 6 1999 Abdelhak Djouadi. The anatomy of electroweak symmetry breaking tome ii: The higgs bosons in the minimal supersymmetric model. Physics Reports, 459(1):1 – 241, 2008 M. Carena, J.R. Espinosa, M. Quir ́os, and C.E.M. Wagner. Analytical expressions for radiatively corrected higgs masses and couplings in the mssm. Physics Letters B,355(1):209 – 221, 1995 J. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski, and F. Zwirner. Higgs bosons ina non minimal supersymmetric model. Phys. Rev. D, 39:844–869, Feb 1989 T. Elliott, S. F. King, and P. L. White. Radiative corrections to higgs boson masses in the next-to-minimal supersymmetric standard model. Phys. Rev. D, 49:2435–2456, Mar 1994 Manuel Drees. Supersymmetric Models with Extended Higgs Sector. Int. J. Mod.Phys., A4:3635, 1989. D.J. Miller, R. Nevzorov, and P.M. Zerwas. The higgs sector of the next-to-minimal supersymmetric standard model. Nuclear Physics B, 681(1):3 – 30, 2004. S.F. King, M. Mahlleitner, and R. Nevzorov. Nmssm higgs benchmarks near 125gev. Nuclear Physics B, 860(2):207 – 244, 2012 Riccardo Barbieri, Dario Buttazzo, Kristjan Kannike, Filippo Sala, and Andrea Tesi. Exploring the higgs sector of a most natural nmssm. Phys. Rev. D, 87:115018, Jun 2013 Katri Huitu and Harri Waltari. Higgs sector in NMSSM with right-handed neutrinos and spontaneous R-parity violation. JHEP, 11:053, 2014. Hsin-Chia Cheng, Bogdan A. Dobrescu, and Konstantin T. Matchev. A chiral supersymmetric standard model. Physics Letters B, 439(3):301 – 308, 1998 Ernest Ma. New u(1) gauge extension of the supersymmetric standard model. Phys.Rev. Lett., 89:041801, Jul 2002 Ernest Ma. Exceeding the mssm higgs mass bound in a special class of u(1) gauge models. Physics Letters B, 705(4):320 – 323, 2011 Víctor Martín-Lozano and Santiago Oviedo-Casado. The non-Universal U(1) gauge extended μνSSM: anomalies cancellation and singular phenomenology. JHEP, 09:102,2018 Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett., 89:011301,Jun 2002 K. Abe et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys. Rev. Lett., 107:041801, Jul 2011 Peter Minkowski. μ→eγat a rate of one out of 109 muon decays? Physics LettersB, 67(4):421 – 428, 1977 Evgeny K. Akhmedov, G.C. Branco, and M.N. Rebelo. Seesaw mechanism and structure of neutrino mass matrix. Phys. Lett. B, 478:215–223, 2000 Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astro-physics. Wiley, 2007 Rabindra N. Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett., 56:561–563, Feb 1986 Rabindra N Mohapatra and Jos ́e WF Valle. Neutrino mass and baryon-number non conservation in superstring models. Physical Review D, 34(5):1642, 1986 A.G. Dias, C.A. de S.Pires, P.S. Rodrigues da Silva, and A. Sampieri. A Simple Realization of the Inverse Seesaw Mechanism. Phys. Rev. D, 86:035007, 2012 Arthur Loureiro et al, Upper bound of neutrino massesfrom combined cosmological observations and particle physics experiments. Phys.Rev. Lett., 123:081301, Aug 2019 Giorgio Cortiana. Top-quark mass measurements: Review and perspectives. Reviews in Physics, 1:60 – 76, 2016 Gauhar Abbas. Solving the fermionic mass hierarchy of the standard model. Int. J.Mod. Phys. A, 34(20):1950104, 2019 Nicola Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10:531–533, Jun 1963 Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973 Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model ofelementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962. B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP, 26:984–988, 1968. [Zh. Eksp. Teor. Fiz.53,1717(1967)]. Howard Georgi. The flavor problem. Physics Letters B, 169(2):231 – 233, 1986 Howard Georgi. Towards a grand unified theory of flavor. Nuclear Physics B,156(1):126 – 134, 1979 Stephen M. Barr. Light-fermion mass hierarchy and grand unification. Phys. Rev.D, 21:1424–1427, Mar 1980 R. Barbieri and D.V. Nanopoulos. An exceptional model for grand unification. Physics Letters B, 91(3):369 – 375, 1980 H. Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436 – 440, 1977 H. Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B,73(3):317 – 322, 1978 Ernest Ma, Hideyuki Sawanaka, and Morimitsu Tanimoto. Quark masses and mixing with a4 family symmetry. Physics Letters B, 641(3):301 – 304, 2006 R. Martínez, J. Nisperuza, F. Ochoa, and J. P. Rubio. Some phenomenologicalaspects of a new u(1)′model. Phys. Rev. D, 89:056008, Mar 2014. S. F. Mantilla and R. Martinez. Nonuniversal anomaly-free u(1) model with three higgs doublets and one singlet scalar field. Phys. Rev. D, 96:095027, Nov 2017 Carlos E. Diaz, S. F. Mantilla, and R. Martinez. Fermion mass hierarchy from nonuniversal abelian extensions of the standard model. Phys. Rev. D, 98:015038, Jul 2018 R. Martinez, F. Ochoa, and J. M. Quimbayo. bmeson decay anomaly with a nonuniversal u(1)′ extension. Phys. Rev. D, 98:035036, Aug 2018. R. Aaij et al. Measurement of form-factor-independent observables in the decay B0→K∗0μ+μ−. Phys. Rev. Lett., 111:191801, Nov 2013 Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ in the di-jet final state at√s= 13 TeV. Technical Report CMS-PAS-B2G-17-001, CERN, Geneva, 2017 Atlas searches for resonances decaying to boson pairs. Technical Report ATLAS-CONF-2017-051, CERN, Geneva, 2017 ATLAS Collaboration. Search for high-mass dilepton resonances using 139fb−1 of pp collision data collected at s=13 tev with the atlas detector. Physics Letters B,796:68 – 87, 2019 S. F. Mantilla, R. Martinez, and F. Ochoa. Neutrino andcp-even higgs boson masses in a nonuniversal u(1)′ extension. Phys. Rev. D, 95:095037, May 2017 Howard Georgi. Lie Algebras in Particle Physics 2nd ed - From Isospin to UnifiedTheories. Westview Press, USA, 1999 Michelle Maggiore. A modern introduction to quantum field theory. Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2005 Lewis H. Ryder. Quantum Field Theory. Cambridge University Press, 2 edition,1996 Higgs: The Higgs particle, https://physicsmasterclasses.org/exercises/hands-on-cern/ hocv21en/mainframe/smhiggs2.html, 2014 (accessed November 4, 2020) Ian Low and Aneesh V. Manohar. Spontaneously broken spacetime symmetries and goldstone’s theorem. Phys. Rev. Lett., 88:101602, Feb 2002 Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics. 4 2007 Gulsheen Ahuja, Sanjeev Kumar, Monika Randhawa, Manmohan Gupta, and S. Dev. Texture 4 zero fritzsch-like lepton mass matrices. Phys. Rev. D, 76:013006, Jul 2007 Sidney Coleman and Jeffrey Mandula. All possible symmetries of the s matrix. Phys. Rev., 159:1251–1256, Jul 1967 Pran Nath. Supersymmetry, supergravity and unification. Cambridge, London, 2017 Rudolf Haag, Jan T. Lopuszánski, and Martin Sohnius. All possible generators of supersymmetries of the s-matrix. Nuclear Physics B, 88(2):257 – 274, 1975 Porter Williams. Naturalness, the autonomy of scales, and the 125gev higgs. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 51:82 – 96, 2015 Harald Muller and Armin Wiedermann. Introduction To Supersymmetry. World Scientific, Kaiserlauten, Germany, 2010 Roger Penrose. The road to reality. Alfred A. Knopf, Random House, 20 Vauxhall Bridge Road, London, 2004 Horatiu Nastashe. String theory and condensed matter. Cambridge University Press, 2017 Stephen P. Martin. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys., 21:1–153, 2010 H. Baer and X. Tata. Weak scale supersymmetry: From superfields to scattering events. Cambridge University Press, 5 2006 M. C. Rodriguez. The Minimal Supersymmetric Standard Model (MSSM) and General Singlet Extensions of the MSSM (GSEMSSM), a short review. 11 2019 Howard E. Haber and Ralf Hempfling. Can the mass of the lightest higgs boson of the minimal supersymmetric model be larger than mz? Phys. Rev. Lett., 66:1815–1818, Apr 1991 Howard E. Haber and M. Schmitt. Supersymmetry. Eur. Phys. J. C, 15(1-4):817–844, 2000 J. S. Alvarado and R. Martinez. PMNS matrix in a non-universal U(1)X extension to the MSSM with one massless neutrino. 7 2020 J. S. Alvarado, M. A. Bulla, D. G. Martinez, and R. Martinez. Explaining muon g−2 anomaly in a non-universal U(1)X extended SUSY theory. 10 2020. Yan Wang, Fa Peng Huang, Chong Sheng Li, Bo Hua Li, Ding Yu Shao, and JianWang. Constraints on flavor-changing neutral-current htq couplings from the signal of th associated production with qcd next-to-leading order accuracy at the lhc. Phys.Rev. D, 86:094014, Nov 2012 G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, Marc Sher, and Jo ̃ao P.Silva. Theory and phenomenology of two-higgs-doublet models. Physics Reports,516(1):1–102, 2012. Theory and phenomenology of two-Higgs-doublet models Ferrari method, http://encyclopediaofmath.org/index.php?title=Ferrarimethod&oldid=35675, 2010 (accessed December 6, 2020) Laura Lopez Honorez and Carlos E. Yaguna. The inert doublet model of dark matter revisited. JHEP, 09:046, 2010. Walter Grimus and Luis Lavoura. The seesaw mechanism at arbitrary order: dis-entangling the small scale from the large scale. Journal of High Energy Physics,2000(11):042–042, nov 2000 Murray Spiegel. Mathematical Handbook of Formulas and Tables. Shaum, 1968 |
dc.rights.spa.fl_str_mv |
Derechos Reservados al Autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos Reservados al Autor, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
81 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79766/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79766/2/Higgs_sector_from_a_non_universal__U_1__x__supersymmetric_model%20%281%29.pdf https://repositorio.unal.edu.co/bitstream/unal/79766/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79766/4/Higgs_sector_from_a_non_universal__U_1__x__supersymmetric_model%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 6f91414585b9449a8644281871311775 0175ea4a2d4caec4bbcc37e300941108 91175eddb6ecf13cfb0fe23426c3ce34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089807569092608 |
spelling |
Reconocimiento 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Martínez, Roberto Enrique2a5be60f0e21d95c98c8b871c8517ee0Díaz Jaramillo, Carlos Eduardo71a7244a2508b82354fbeac7e3c7bb9c2021-07-07T17:56:52Z2021-07-07T17:56:52Z2021-05-11https://repositorio.unal.edu.co/handle/unal/79766Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesThe project consider a U(1)x non-universal extension to the Minimal Supersymetric Standard Model for explaining more naturally the fermion mass hierarchy, in the sense that Yukawa couplings with the scalar background are at the same order of magnitude. The hierarchy feature relies on a more complex scalar potential than in the Minimal Supersymmetric Standard Model, involving more scalar fields with different vacuum expectation values. The model also predicts the 125 GeV Higgs boson with no need of large radiative corrections, if the set of parameters of the model is constrained. The scalar spectrum is increased compared to the Minimal Supersymmetric Standard Model. These hypothetical particles are explained in the model to be arbitrarily heavy, escaping the experimental detection so far. (Text taken from source)El proyecto considera una extensión no universal U(1)x al modelo estándar supersimétrico para explicar de forma más natural la jerarquía de masa de fermiones, en el sentido que los acoples de Yukawa con el sector escalar son todos aproximadamente del mismo orden de magnitud. La característica de jerarquía yace en un potencial escalar más complejo que en el modelo estándar supersimétrico, conteniendo más campos escalares con diferentes valores de expectación de vacío. El modelo también predice el bosón de Higgs de 125 GeV sin necesidad de grandes correcciones radiativas, si el conjunto de parámetros es restringido. El espectro escalar se incrementa a comparación con el modelo estándar supersimétrico. Aquellas partículas hipotéticas son en el modelo arbitrariamente pesadas, escapando a la detección experimental. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - FísicaFísica de altas energías81 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaSupersimetríaSupersymetrySupersymmetryParticle physicsNon universalityHiggsSupersimetríaFísica de partículasNo universalidadFísica nuclearNuclear physicsHiggs sector from a non-universal U(1)x supersymmetric modelSector de Higgs de un modelo no universal supersimétrico U(1)xTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. S. Alvarado, Carlos E. Diaz, and R. Martinez. Non universal u(1)X extension tothe mssm with three families. Phys. Rev. D, 100:055037, Sep 2019J. S. Alvarado, Carlos E. Diaz, and R. Martinez. A U(1)X extension to the MSSM with three families. In Meeting of the Division of Particles and Fields of the American Physical Society, 9 2019Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961A Salam. Elementary particle theory: Relativistic groups and analyticity (nobelsymposium no. 8), edited by n. svartholm, 1968Steven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967Particle Data Group. Review of Particle Physics. Progress of Theoretical and Exper-imental Physics, 2020(8), 08 2020. 083C01ATLAS-collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012CMS-collaboration. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–71, 2012.Csaba Cs ́aki and Philip Tanedo. Beyond the Standard Model. Lectures at the 2013European School of High Energy Physics, (8), 2013J. Wess and B. Zumino. Supergauge transformations in four dimensions. NuclearPhysics B, 70(1):39 – 50, 1974.Savas Dimopoulos and Howard Georgi. Softly broken supersymmetry and su(5). Nuclear Physics B, 193(1):150 – 162, 1981R. Barbieri, S. Ferrara, and C.A. Savoy. Gauge models with spontaneously broken local supersymmetry. Physics Letters B, 119(4):343 – 347, 1982K. Abe et al. Search for proton decay viap→e+π0andp→μ+π 0 in 0.31 megaton· years exposure of the super-kamiokande water cherenkov detector.Phys. Rev. D,95:012004, Jan 2017Anupama Atre, Vernon Barger, and Tao Han. Upper bounds on lepton-number violating processes. Phys. Rev. D, 71:113014, Jun 2005.Pierre Fayet. Supergauge invariant extension of the higgs mechanism and a model for the electron and its neutrino. Nuclear Physics B, 90:104 – 124, 1975P. Fayet. Supersymmetry and weak, electromagnetic and strong interactions. PhysicsLetters B, 64(2):159 – 162, 1976Glennys R. Farrar and Pierre Fayet. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B,76(5):575 – 579, 1978R-parity-violating supersymmetry. Physics Reports, 420(1):1 – 195, 2005Jihn E. Kim and H.P. Nilles. The mu-problem and the strong cp-problem. PhysicsLetters B, 138(1):150 – 154, 198Nir Polonsky. The Mu parameter of supersymmetry. In International Symposium on Supersymmetry, Supergravity and Superstring, pages 100–124, 6 1999Abdelhak Djouadi. The anatomy of electroweak symmetry breaking tome ii: The higgs bosons in the minimal supersymmetric model. Physics Reports, 459(1):1 – 241, 2008M. Carena, J.R. Espinosa, M. Quir ́os, and C.E.M. Wagner. Analytical expressions for radiatively corrected higgs masses and couplings in the mssm. Physics Letters B,355(1):209 – 221, 1995J. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski, and F. Zwirner. Higgs bosons ina non minimal supersymmetric model. Phys. Rev. D, 39:844–869, Feb 1989T. Elliott, S. F. King, and P. L. White. Radiative corrections to higgs boson masses in the next-to-minimal supersymmetric standard model. Phys. Rev. D, 49:2435–2456, Mar 1994Manuel Drees. Supersymmetric Models with Extended Higgs Sector. Int. J. Mod.Phys., A4:3635, 1989.D.J. Miller, R. Nevzorov, and P.M. Zerwas. The higgs sector of the next-to-minimal supersymmetric standard model. Nuclear Physics B, 681(1):3 – 30, 2004.S.F. King, M. Mahlleitner, and R. Nevzorov. Nmssm higgs benchmarks near 125gev. Nuclear Physics B, 860(2):207 – 244, 2012Riccardo Barbieri, Dario Buttazzo, Kristjan Kannike, Filippo Sala, and Andrea Tesi. Exploring the higgs sector of a most natural nmssm. Phys. Rev. D, 87:115018, Jun 2013Katri Huitu and Harri Waltari. Higgs sector in NMSSM with right-handed neutrinos and spontaneous R-parity violation. JHEP, 11:053, 2014.Hsin-Chia Cheng, Bogdan A. Dobrescu, and Konstantin T. Matchev. A chiral supersymmetric standard model. Physics Letters B, 439(3):301 – 308, 1998Ernest Ma. New u(1) gauge extension of the supersymmetric standard model. Phys.Rev. Lett., 89:041801, Jul 2002Ernest Ma. Exceeding the mssm higgs mass bound in a special class of u(1) gauge models. Physics Letters B, 705(4):320 – 323, 2011Víctor Martín-Lozano and Santiago Oviedo-Casado. The non-Universal U(1) gauge extended μνSSM: anomalies cancellation and singular phenomenology. JHEP, 09:102,2018Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett., 89:011301,Jun 2002K. Abe et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys. Rev. Lett., 107:041801, Jul 2011Peter Minkowski. μ→eγat a rate of one out of 109 muon decays? Physics LettersB, 67(4):421 – 428, 1977Evgeny K. Akhmedov, G.C. Branco, and M.N. Rebelo. Seesaw mechanism and structure of neutrino mass matrix. Phys. Lett. B, 478:215–223, 2000Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astro-physics. Wiley, 2007Rabindra N. Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett., 56:561–563, Feb 1986Rabindra N Mohapatra and Jos ́e WF Valle. Neutrino mass and baryon-number non conservation in superstring models. Physical Review D, 34(5):1642, 1986A.G. Dias, C.A. de S.Pires, P.S. Rodrigues da Silva, and A. Sampieri. A Simple Realization of the Inverse Seesaw Mechanism. Phys. Rev. D, 86:035007, 2012Arthur Loureiro et al, Upper bound of neutrino massesfrom combined cosmological observations and particle physics experiments. Phys.Rev. Lett., 123:081301, Aug 2019Giorgio Cortiana. Top-quark mass measurements: Review and perspectives. Reviews in Physics, 1:60 – 76, 2016Gauhar Abbas. Solving the fermionic mass hierarchy of the standard model. Int. J.Mod. Phys. A, 34(20):1950104, 2019Nicola Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10:531–533, Jun 1963Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model ofelementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP, 26:984–988, 1968. [Zh. Eksp. Teor. Fiz.53,1717(1967)].Howard Georgi. The flavor problem. Physics Letters B, 169(2):231 – 233, 1986Howard Georgi. Towards a grand unified theory of flavor. Nuclear Physics B,156(1):126 – 134, 1979Stephen M. Barr. Light-fermion mass hierarchy and grand unification. Phys. Rev.D, 21:1424–1427, Mar 1980R. Barbieri and D.V. Nanopoulos. An exceptional model for grand unification. Physics Letters B, 91(3):369 – 375, 1980H. Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436 – 440, 1977H. Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B,73(3):317 – 322, 1978Ernest Ma, Hideyuki Sawanaka, and Morimitsu Tanimoto. Quark masses and mixing with a4 family symmetry. Physics Letters B, 641(3):301 – 304, 2006R. Martínez, J. Nisperuza, F. Ochoa, and J. P. Rubio. Some phenomenologicalaspects of a new u(1)′model. Phys. Rev. D, 89:056008, Mar 2014.S. F. Mantilla and R. Martinez. Nonuniversal anomaly-free u(1) model with three higgs doublets and one singlet scalar field. Phys. Rev. D, 96:095027, Nov 2017Carlos E. Diaz, S. F. Mantilla, and R. Martinez. Fermion mass hierarchy from nonuniversal abelian extensions of the standard model. Phys. Rev. D, 98:015038, Jul 2018R. Martinez, F. Ochoa, and J. M. Quimbayo. bmeson decay anomaly with a nonuniversal u(1)′ extension. Phys. Rev. D, 98:035036, Aug 2018.R. Aaij et al. Measurement of form-factor-independent observables in the decay B0→K∗0μ+μ−. Phys. Rev. Lett., 111:191801, Nov 2013Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ in the di-jet final state at√s= 13 TeV. Technical Report CMS-PAS-B2G-17-001, CERN, Geneva, 2017Atlas searches for resonances decaying to boson pairs. Technical Report ATLAS-CONF-2017-051, CERN, Geneva, 2017ATLAS Collaboration. Search for high-mass dilepton resonances using 139fb−1 of pp collision data collected at s=13 tev with the atlas detector. Physics Letters B,796:68 – 87, 2019S. F. Mantilla, R. Martinez, and F. Ochoa. Neutrino andcp-even higgs boson masses in a nonuniversal u(1)′ extension. Phys. Rev. D, 95:095037, May 2017Howard Georgi. Lie Algebras in Particle Physics 2nd ed - From Isospin to UnifiedTheories. Westview Press, USA, 1999Michelle Maggiore. A modern introduction to quantum field theory. Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2005Lewis H. Ryder. Quantum Field Theory. Cambridge University Press, 2 edition,1996Higgs: The Higgs particle, https://physicsmasterclasses.org/exercises/hands-on-cern/ hocv21en/mainframe/smhiggs2.html, 2014 (accessed November 4, 2020)Ian Low and Aneesh V. Manohar. Spontaneously broken spacetime symmetries and goldstone’s theorem. Phys. Rev. Lett., 88:101602, Feb 2002Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics. 4 2007Gulsheen Ahuja, Sanjeev Kumar, Monika Randhawa, Manmohan Gupta, and S. Dev. Texture 4 zero fritzsch-like lepton mass matrices. Phys. Rev. D, 76:013006, Jul 2007Sidney Coleman and Jeffrey Mandula. All possible symmetries of the s matrix. Phys. Rev., 159:1251–1256, Jul 1967Pran Nath. Supersymmetry, supergravity and unification. Cambridge, London, 2017Rudolf Haag, Jan T. Lopuszánski, and Martin Sohnius. All possible generators of supersymmetries of the s-matrix. Nuclear Physics B, 88(2):257 – 274, 1975Porter Williams. Naturalness, the autonomy of scales, and the 125gev higgs. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 51:82 – 96, 2015Harald Muller and Armin Wiedermann. Introduction To Supersymmetry. World Scientific, Kaiserlauten, Germany, 2010Roger Penrose. The road to reality. Alfred A. Knopf, Random House, 20 Vauxhall Bridge Road, London, 2004Horatiu Nastashe. String theory and condensed matter. Cambridge University Press, 2017Stephen P. Martin. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys., 21:1–153, 2010H. Baer and X. Tata. Weak scale supersymmetry: From superfields to scattering events. Cambridge University Press, 5 2006M. C. Rodriguez. The Minimal Supersymmetric Standard Model (MSSM) and General Singlet Extensions of the MSSM (GSEMSSM), a short review. 11 2019Howard E. Haber and Ralf Hempfling. Can the mass of the lightest higgs boson of the minimal supersymmetric model be larger than mz? Phys. Rev. Lett., 66:1815–1818, Apr 1991Howard E. Haber and M. Schmitt. Supersymmetry. Eur. Phys. J. C, 15(1-4):817–844, 2000J. S. Alvarado and R. Martinez. PMNS matrix in a non-universal U(1)X extension to the MSSM with one massless neutrino. 7 2020J. S. Alvarado, M. A. Bulla, D. G. Martinez, and R. Martinez. Explaining muon g−2 anomaly in a non-universal U(1)X extended SUSY theory. 10 2020.Yan Wang, Fa Peng Huang, Chong Sheng Li, Bo Hua Li, Ding Yu Shao, and JianWang. Constraints on flavor-changing neutral-current htq couplings from the signal of th associated production with qcd next-to-leading order accuracy at the lhc. Phys.Rev. D, 86:094014, Nov 2012G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, Marc Sher, and Jo ̃ao P.Silva. Theory and phenomenology of two-higgs-doublet models. Physics Reports,516(1):1–102, 2012. Theory and phenomenology of two-Higgs-doublet modelsFerrari method, http://encyclopediaofmath.org/index.php?title=Ferrarimethod&oldid=35675, 2010 (accessed December 6, 2020)Laura Lopez Honorez and Carlos E. Yaguna. The inert doublet model of dark matter revisited. JHEP, 09:046, 2010.Walter Grimus and Luis Lavoura. The seesaw mechanism at arbitrary order: dis-entangling the small scale from the large scale. Journal of High Energy Physics,2000(11):042–042, nov 2000Murray Spiegel. Mathematical Handbook of Formulas and Tables. Shaum, 1968GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79766/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALHiggs_sector_from_a_non_universal__U_1__x__supersymmetric_model (1).pdfHiggs_sector_from_a_non_universal__U_1__x__supersymmetric_model (1).pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1100649https://repositorio.unal.edu.co/bitstream/unal/79766/2/Higgs_sector_from_a_non_universal__U_1__x__supersymmetric_model%20%281%29.pdf6f91414585b9449a8644281871311775MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79766/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAILHiggs_sector_from_a_non_universal__U_1__x__supersymmetric_model (1).pdf.jpgHiggs_sector_from_a_non_universal__U_1__x__supersymmetric_model (1).pdf.jpgGenerated Thumbnailimage/jpeg4371https://repositorio.unal.edu.co/bitstream/unal/79766/4/Higgs_sector_from_a_non_universal__U_1__x__supersymmetric_model%20%281%29.pdf.jpg91175eddb6ecf13cfb0fe23426c3ce34MD54unal/79766oai:repositorio.unal.edu.co:unal/797662023-07-23 23:04:09.197Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |