Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga

ilustraciones, fotografías, gráficas, mapas, tablas

Autores:
Rivera, Julio César
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80523
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80523
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Biomasa sobre el suelo
Propiedades del suelo
above ground biomass
soil properties
Bicarbón
Cadmio
Enmienda agrícola
Propiedades del suelo
Pirólisis lenta
Lactuca sativa
Biochar
Cadmium
agricultural amendment
Soil properties
Slow pyrolysis
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_9042a53a486979ccfebda8a6eaea5161
oai_identifier_str oai:repositorio.unal.edu.co:unal/80523
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
dc.title.translated.eng.fl_str_mv Effect of biochar amendments on physical-chemical properties and Cadmium Phytoabsorption on dissimilar soils planted with lettuce
title Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
spellingShingle Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
630 - Agricultura y tecnologías relacionadas
Biomasa sobre el suelo
Propiedades del suelo
above ground biomass
soil properties
Bicarbón
Cadmio
Enmienda agrícola
Propiedades del suelo
Pirólisis lenta
Lactuca sativa
Biochar
Cadmium
agricultural amendment
Soil properties
Slow pyrolysis
title_short Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
title_full Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
title_fullStr Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
title_full_unstemmed Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
title_sort Efecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechuga
dc.creator.fl_str_mv Rivera, Julio César
dc.contributor.advisor.none.fl_str_mv Cuervo Andrade, Jairo Leonardo
Martínez Cordón, María José
dc.contributor.author.none.fl_str_mv Rivera, Julio César
dc.contributor.researchgroup.spa.fl_str_mv SISTEMAS INTEGRADOS DE PRODUCCIÓN AGRICOLA Y FORESTAL
LABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Biomasa sobre el suelo
Propiedades del suelo
above ground biomass
soil properties
Bicarbón
Cadmio
Enmienda agrícola
Propiedades del suelo
Pirólisis lenta
Lactuca sativa
Biochar
Cadmium
agricultural amendment
Soil properties
Slow pyrolysis
dc.subject.agrovoc.spa.fl_str_mv Biomasa sobre el suelo
Propiedades del suelo
dc.subject.agrovoc.eng.fl_str_mv above ground biomass
soil properties
dc.subject.proposal.spa.fl_str_mv Bicarbón
Cadmio
Enmienda agrícola
Propiedades del suelo
Pirólisis lenta
dc.subject.proposal.other.fl_str_mv Lactuca sativa
dc.subject.proposal.eng.fl_str_mv Biochar
Cadmium
agricultural amendment
Soil properties
Slow pyrolysis
description ilustraciones, fotografías, gráficas, mapas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T21:04:57Z
dc.date.available.none.fl_str_mv 2021-10-12T21:04:57Z
dc.date.issued.none.fl_str_mv 2021-10-11
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80523
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80523
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abenza, D. P., 2012. Evaluación de efectos de varios tipos de biochar en suelo y planta, 111.
Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils and Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
Cadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.
Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295. 9 pp.
Cuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.
Escalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.
Espinoza, Jorge, and Yolanda Rubiano. 2015. “Procesos Específicos De Formación En Andisoles, Alfisoles Y Ultisoles En Colombia.” Revista EIA (spe2): 85–97.
FAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.
FAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).
García, Clara Roa et al. 2021. “Relationship of Soil Water Retention Characteristics and Soil Properties: A Case Study from the Colombian Andes.” Canadian Journal of Soil Science 101(1): 144–56.
Glaser B, Lehmann J, and Zech W. 2002. Ameliorating pHysical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fert Soils 35: 219–30.
Hernandez-Mena, L.E., Pecora, A. a B., Beraldo, A.L., 2014. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. Trans. 37, 115–120. https://doi.org/10.3303/CET1437020.
IDEAM, U.D.C.A 2015. Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM - MADS. Bogotá D.C., Colombia. Publicación aprobada por el IDEAM, Diciembre de 2015, pp. 25. Bogotá D.C., Colombia.
Kubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388
Leguédois, S., Sèéré, G., Auclrec, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., Morel, J. 2016. “Modelling Pedogenesis of Technosols.” Geoderma 262: 199–212. http://dx.doi.org/10.1016/j.geoderma.2015.08.008.
LEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404
Liu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.
Mahecha, J., Trujillo-gonzález, J.M., Torres-mora, M.A., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. Revista Orinoquia Vol. 21 83–9.
Malagón Castro, Dimas. 2003. “Ensayo Sobre Tipología De Suelos Colombianos - Énfasis En Génesis Y Aspectos Ambientales.” Rev. Acad. Colomb. Cienc. 27(104): 319–41.
Marrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596
Moreno, J., Moral, R., Garcia, J., Pascual, J and Bernal M., 2014. De residuo a recurso el camino hacia la sostenibilidad. Edisiones mundi prensa Madrid, España pp. aña pp. 62-85.
Paredes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047
Phiri, S., E. Amézquita, I. M. Rao, and B. R. Singh. 2001. “Disc Harrowing Intensity and Its Impact on Soil Properties and Plant Growth of Agropastoral Systems in the Llanos of Colombia.” Soil and Tillage Research 62(3–4): 131–43.
Quevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eple
Sohi, S. P., Krull, E., Lopez-Capel, E., and Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy (1st ed., Vol. 105). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)05002-9
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. ChemospHere 125, 70–85. https://doi.org/10.1016/j.chemospHere.2014.12.058
Tsai, C.C.; Chen, Z.S.; Kao, C.I.; Ottner, F;, Kao, S.J.; Zehetner,F. (2010). Pedogenic Development of Volcanic Ash Soils.
Van Ranst, E., Doube, M., Mees, F., Dumon, M., Ye, L., Delvaux, B., 2019. Andosolization of ferrallitic soils in the Bambouto Mountains, West Cameroon. Geoderma 340, 81–93. https://doi.org/10.1016/j.geoderma.2018.12.024
Yazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its pHytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180. 295 - 308 Pp.
Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Liu, X., 2015. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility Umbrisol. ChemospHere. https://doi.org/10.1016/j.chemospHere.2015.04.088
Agronet. 2020. Red de información y comunicación del sector agro-pecuario colombiano (Agronet). Área cosechada, producción y rendimiento de Rosa 2007-2018. URL: http://www.agronet.gov.co (accessed 10 May 2020).
Amin, F.R., Huang, Y., He, Y., Zhang, R., Liu, G., Chen, C., 2016. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 18, 1457–1473. https://doi.org/10.1007/s10098-016-1218-8
Amonette, J.E., & Joseph, S. (2009). Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S, Eds. Biochar for environmental management: science and technology., Earthscan: London. p. 33-52.
Asocolflores. (2002). Guía Ambiental para la Floricultura. DOI: 10.1088/0957- 4484/24/32/325602.
ASTM, D1762.-84, 2013. Standard test method for chemical analysis of wood charcol. Am. Soc. Test. Mater. 84, 1–2. https://doi.org/10.1520/D1762-84R13.2
ASTM, D.-87, 2007. ASTM D4749-87 Standard Test Methods for Performing the Sieve Analysis of Coal and Designating Coal Size. ASTM D4749-87 Stand. Test Methods Perform. Sieve Anal. Coal Des. Coal Size 87, 1–10. https://doi.org/10.1520/D4749-87R12.Copyright
ASTM, D., 2000. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854 2458000, 1–7. https://doi.org/10.1520/D0854-10.2
Berek, A.K., Hue, N. V., 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 181, 412–426. https://doi.org/10.1097/SS.0000000000000177
Beusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W.A., de Araújo Filho, J.C., Kaupenjohann, M., 2019. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 337, 524–535. https://doi.org/10.1016/j.geoderma.2018.09.043
Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046
Brassard, P., Godbout, S., Raghavan, V., 2016. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manage. 181, 484–497. https://doi.org/10.1016/j.jenvman.2016.06.063
Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.
Brockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627–1631. https://doi.org/10.2134/agronj2010.0188
Buss, W., Shepherd, J.G., Heal, K. V, 2018. Geoderma Spatial and temporal microscale pH change at the soil-biochar interface 331, 50–52.
Cadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.
Cheng, F., Bayat, H., Jena, U., Brewer, C.E., 2020. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 147, 104780. https://doi.org/10.1016/j.jaap.2020.104780
Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187–194. https://doi.org/10.1016/j.rser.2016.06.003
Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A., 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131. https://doi.org/10.1111/gcbb.12030
Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., 2017. Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275
Czajka, K.M., 2018. Proximate analysis of coal by micro-TG method. J. Anal. Appl. Pyrolysis 133, 82–90. https://doi.org/10.1016/j.jaap.2018.04.017
El-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., Zimmerman, A.R., Ahmad, M., Shaheen, S.M., Ok, Y.S., 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034
Elkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
Elkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
F1815-11, A., 2020. Standard Test Methods for Saturated Hydraulic Conductivity , Water Retention , Porosity , and Bulk Density of Athletic Field Rootzones 1 i, 1–6. https://doi.org/10.1520/F1815-11R18.2
Ferreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M., 2019. Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment. Waste and Biomass Valorization 10, 3089–3100. https://doi.org/10.1007/s12649-018-0347-1
Ferreira, M.F.P., Oliveira, B.F.H., Pinheiro, W.B.S., Correa, N.F., França, L.F., Ribeiro, N.F.P., 2020. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products. Biomass and Bioenergy 140. https://doi.org/10.1016/j.biombioe.2020.105707
Giffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. Application of BIB-SEM technology to characterize macropore morphology in coal. Int. J. Coal Geol. 114, 85–95. https://doi.org/10.1016/j.coal.2013.02.009
Guo, X. xia, Liu, H. tao, Zhang, J., 2020. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003
Hale, S.E., Nurida, N.L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S., Cornelissen, G., 2020. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 719. https://doi.org/10.1016/j.scitotenv.2020.137455
Han, G., Meng, J., Zhang, W., Chen, W., 2013. Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Appl. Mech. Mater. 295–298, 210–219. https://doi.org/10.4028/www.scientific.net/AMM.295-298.210
Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., Herbert, B.E., 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 46, 1415–1421. https://doi.org/10.1021/es2040398
He, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106
Huong, P.T., Lee, B.K., Kim, J., Lee, C.H., Chong, M.N., 2016. Acid activation pine cone waste at differences temperature and selective removal of Pb2+ ions in water. Process Saf. Environ. Prot. 100, 80–90. https://doi.org/10.1016/j.psep.2015.12.002
Keiluweit, M., Nico, P.S., Johnson, M.G., KLEBER, M., 2010. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -. Environ. Sci. Technol. 44, 1247–1253.
Klasson, K.T., 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy 96, 50–58. https://doi.org/10.1016/j.biombioe.2016.10.011
Kung, C.C., Kong, F., Choi, Y., 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecol. Indic. 51, 139–145. https://doi.org/10.1016/j.ecolind.2014.06.043
Kung, C.C., Zhang, N., 2015. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 90, 1532–1544. https://doi.org/10.1016/j.energy.2015.06.114
LEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404
Leng, L., Huang, H., 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030
Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471
Li, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106
Lin, Y., Munroe, P., Joseph, S., Kimber, S., Van Zwieten, L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 357, 369–380. https://doi.org/10.1007/s11104-012-1169-8
Luo, L., Xu, C., Chen, Z., Zhang, S., 2015. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89. https://doi.org/10.1016/j.biortech.2015.05.054
Ma, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., Wang, S., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J. Anal. Appl. Pyrolysis. https://doi.org/10.1016/j.jaap.2017.07.015
Ma, Q., Song, W., Wang, R., Zou, J., Yang, R., Zhang, S., 2018. Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag. 79, 729–734. https://doi.org/10.1016/j.wasman.2018.08.023
Manjarrés, J.K., 2019. PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. Univ. Nac. Colomb.
Marrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596
Martínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671
Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K., 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493. https://doi.org/10.1016/j.jaap.2013.05.022
Munera, J.L., Martinsen, V., Strand, L.T., Zivanovic, V., Cornelissen, G., Mulder, J., 2018. Science of the Total Environment Cation exchange capacity of biochar : An urgent method modification 642, 190–197.
Paredes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047
Park, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, S.C., 2012. Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renew. Energy 42, 125–130. https://doi.org/10.1016/j.renene.2011.08.050
Qin, C., Wang, H., Yuan, X., Xiong, T., Zhang, Jingjing, Zhang, Jin, 2020. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 382, 122977. https://doi.org/10.1016/j.cej.2019.122977
Quevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.eple
Quosai, B.P., 2017. Characterization of biocarbon generated by high and low temperature pyrolysis of soy hulls and coffee chaff Check.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7.
Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008
Schimmelpfennig, S., Glaser, B., 2012. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 41, 1001–1013. https://doi.org/10.2134/jeq2011.0146
Schmidt, P., Agroscope, T., Kamman, C., 2015. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’. Eur. Biochar Found. (EBC), Arbaz, Switzerland. Version 6.1 19th June, 1–22. https://doi.org/10.13140/RG.2.1.4658.7043
Seo, D.K., Park, S.S., Kim, Y.T., Hwang, J., Yu, T.U., 2011. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 92, 209–216. https://doi.org/10.1016/j.jaap.2011.05.012
Setter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P., 2020. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel 261. https://doi.org/10.1016/j.fuel.2019.116420
Sun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., Song, J., 2017. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9, 1423–1435. https://doi.org/10.1111/gcbb.12435
Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Veiga, P.A. da S., Schultz, J., Matos, T.T. da S., Fornari, M.R., Costa, T.G., Meurer, L., Mangrich, A.S., 2020. Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment. J. Anal. Appl. Pyrolysis 148. https://doi.org/10.1016/j.jaap.2020.104823
Wang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003
Xiang, A., Qi, R., Wang, M., Zhang, K., Jiang, E., Ren, Y., Hu, Z., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153. https://doi.org/10.1016/j.indcrop.2020.112558
Xu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., Xiang, J., 2020. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 202, 1–10. https://doi.org/10.1016/j.energy.2020.117644
Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., 2015. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
Yi, S., Chang, N.Y., Imhoff, P.T., 2020. Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties. Adv. Water Resour. 142. https://doi.org/10.1016/j.advwatres.2020.103638
Yu, K.L., Lau, B.F., Show, P.L., Ong, H.C., Ling, T.C., Chen, W.H., Ng, E.P., Chang, J.S., 2017. Recent developments on algal biochar production and characterization. Bioresour. Technol. 246, 2–11. https://doi.org/10.1016/j.biortech.2017.08.009
Zhang, C., Lin, Y., Tian, X., Xu, Q., Chen, Z., Lin, W., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 112, 90–96. https://doi.org/10.1016/j.apsoil.2016.12.005
Zhang, K., Mao, J., Chen, B., 2019. Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. Environ. Pollut. 254, 113017. https://doi.org/10.1016/j.envpol.2019.113017
Zhao, L., Cao, X., Wang, Q., Yang, F., Xu, S., 2013. Mineral Constituents Profile of Biochar Derived from Diversified Waste Biomasses: Implications for Agricultural Applications. J. Environ. Qual. 42, 545–552. https://doi.org/10.2134/jeq2012.0232
Zhu, X., Li, Y., Wang, X., 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 288, 121527. https://doi.org/10.1016/j.biortech.2019.121527
Abideen, Z., Koiro, H., Huchzermeyer, B., Bilquees, G., Ajmal, K., 2020. Impact of a Biochar or a Compost-Biochar Mixture on Water relation, Nutrient uptake & PHotosynthesis of PHragmites karka. PedospHere, 30(4). 466 - 477 Pp.
Adeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T., 2018. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 153, 102–114. https://doi.org/10.1016/j.compag.2018.08.009.
Adnan, P., Shan, L., Anjum, S., Din Khan, W., Ronggui, H., Iqbal, M., Abbas, Z., Kausar, S., 2017. Improved quinoa growth, pHysiological response, & seed nutritional quality in three soils having different stresses by the application of acidified biochar & compost. Plant PHysiology & Biochemistry, 116. 127 - 138 Pp.
Ahmed, A., Kurian, J., Raghavan, V., 2016. Biochar influences on agricultural soils, crop production, & the environment: A review. Environmental Reviews, 24(4). 495 - 502 Pp.
Amjad, M., Khan, S., Khan, A., Alam, M., 2017. Soil contamination with cadmium, consequences & remediation using organic amendments. Science of the Total Environment, 601 - 602. 1591 - 1606 Pp.
Agegnehu, G.,Bass, A., Nelson, P., Bird, M., 2016. Benefits of biochar, compost & biochar–compost for soil quality, maize yield & greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543. 295 - 306 Pp.
Agegnehu, G., Srivastav, A., Bird, M., 2017. The role of biochar & biochar-compost in improving soil quality & crop performance: A review. Applied Soil Ecology, 119. 156 - 170 Pp.
Albuquerque, J., Salazar, P., Barrón, V., Torrent, J., Campillo, M., Gallardo, A., Villar, R., 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33. 475 - 484 Pp.
Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5
Alves, R., Fernandez, M., Cocco, S., Ruello, M., Fornasier, F., Corti, G., 2019. Benefits of Biochars & NPK Fertilizers for Soil Quality & Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. PedospHere, 29(1). 82 - 94 Pp.
Azzi, V., Kanso, A., Kazpard, V., Kobeissi, A., Lartiges, B., El Samrani, A., 2017. Lactuca sativa growth in compacted & non-compacted semi-arid alkaline soil under pHospHate fertilizer treatment & cadmium contamination. Soil & tillage, 165. 1 - 10 Pp.
Beesley, L., Moreno, E., Gomez, J., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation & restoration of contaminated soils. Environmental Pollution, 159(12). 3269 - 3282 Pp.
Beluri, K., Pullagurala, L., Bojeong, K., Sang, L., Sudhir, P., Ki-Hyun, K., 2018. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management. 227. 146 - 154 Pp.
Bi, Y., Cai, S., Wang, Y., Xia, Y., Zhao, X., Wang, S., Xing, G., 2019. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration & net ecosystem economic benefits. Journal of Environmental Management, 245,173-186 Pp.
Bindraban, P., Van der Velde, M., Ye, L., Van der Berg, M., Materechera, S., Innocent, D., Tamene, L., Vala, K., Jongschaap, R., Hoogmoed, M., Hoogmoed, W., Van Beek., Van Lynden, G., 2012. Assessing the impact of soil degradation on food production. Current opinion in environmental sustainability, 4(5), 478-488.
Borchard, N., Siemens, J., Ladd, B., Molller, A., Amelung, W., 2014. Application of biochars to sandy & silty soil failed to increase maize yield under common agricultural practice. Soil & Tillage Research, 144. 184 - 194
Campos, P., Miller, A., Knicker, H., Costa, M., Merino, A., De la Rosa, J., 2020. Chemical, pHysical & morpHological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105. 256 - 267 Pp.
Caporale, A., Pigna, M., Sommella, A., Conte, P., 2014. Effect of pruning-derived biochar on heavy metals removal & water dynamics. Biology & Fertility of the Soils, 50. 1211 - 1222 Pp.
Cervera, A., Navarro, M., Delgado, G., Pastoriza, S., Montilla, J., Llopis, J., Sanchez, C., Rufian, J., 2019. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) & are an ecological alternative to inorganic fertilizers. Food Chemistry, 282(1). 1 - 8 Pp.
Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar & compost on soil properties & organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295. 9 Pp.
Dahnke, W.C., & D.A. Whitney. 1988. Measurement of soil salinity. p. 32-34. In Recommended chemical soil test procedures for the North Central Region. North Central Reg. Publ. 221. Revised. North Dakota Agric. Exp. Stn. Bull. 499. Fargo, ND.
Daza, M. (2014). Aplicación de compost de residuos de flores en suelos ácidos cultivados con maíz. Revista Ciencias Técnicas Agropecuarias, ISSN -1010-2760, RNPS-0111, Vol. 23, No. 3 pp. 22-30.
De Sousa., J, de Moraes, W., de Medeiros, E., Pereira, G., Metri, M., Martins, A., Clermont, C., Dantas, A., Hammecker, D, 2018. Effect of biochar on pHysicochemical properties of a sandy soil & maize growth in a greenhouse experiment. Agricultural Water Management. 217. 168 - 178 Pp.
Deenik, J., McClellan, T., Uehara, G., Antal, M., S. Campbell, S., 2010. Charcoal volatile matter content influences plant growth & soil nitrogen transformations. Soil Science Society of America Journal, 74. 1259 - 1270 Pp.
Di, Wu., Yanfang, F., Lihong, X., Manqiang, L., Bei, Y., Feng, H., Linzhang Y., 2019. Biochar Combined with Vermicompost Increases Crop Production While Reducing Ammonia & Nitrous Oxide Emissions from a Paddy Soil. PedospHere, 29. 82 - 94 Pp.
Dominguez, E., Uttran, A., Loh S., Manero, M., Upperton, R., Tanimu, M., Bachmann, T., 2020. Characterisation of industrially produced oil palm kernel shell biochar & its potential as slow release nitrogen-pHospHate fertilizer & carbon sink. Materials Today, 31. 221 - 227 Pp.
Faloye, O., Alatise, M., Ajayi, A., Ewulo, B., 2019. Effects of biochar & inorganic fertilizer applications on growth, yield & water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217. 165 - 178 Pp.
Fang, H., Shuang, W., Tu, S., Ding, Y., Gang, R., Rensing, C., Li, Y., Fneg, R., 2019. Differences in cadmium absorption by 71 leaf vegetable varieties from different families & genera & their health risk assessment. Ecotoxicology & Environmental Safety, 184.
Farhangi., S., Torabian, S., 2017. Antioxidant enzyme & osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology & Environmental Safety, 137. 64 - 70 Pp.
Fischer, D., Glaser, B., 2012. Synergisms between compost & biochar for sustainable soil amelioration. En: Kumar, S., Bharti, A. Management of Organic Waste. Intech. Rijeka, Croacia. 167 - 198 Pp.
Franco, O., Sánchez, r., Gómez, C., Otero, J., Salamanca, J., 2015. Estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM. Bogotá, 62 Pp.
French, E., Lyer, A., 2018. A role for the gibberellin pathway in biochar mediated growth promotion. Scientific Report, 8. 10 Pp.
Gale, N., Thomas, S., 2019. Dose-dependence of growth & ecopHysiological responses of plants to biochar. Science of the Total Environment, 658. 1344 - 1354 Pp.
Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., Stagnari, F., 2015. Effects of nutrient deficiency & abiotic environmental stresses on yield, pHenolic compounds & antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187. 93 - 101 Pp.
Gao, Y., Shao, G., Lu, J., Zhang, K., Wu, S., Wang, Z., 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249, 16 Pp.
Gheshm, R., Brown, R.N., 2018. Organic mulch effects on high tunnel lettuce in Southern New England. Horttechnology 28, 485–491. https://doi.org/10.21273/HORTTECH04056-18
Glaser, B., Birk, J., 2012. State of the scientific knowledge on properties & genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Indio). Geochimica et Cosmochimica Acta, 82. 39 - 51 Pp.
Günal, E., Erdem, H., Çelik, I., 2018. Effects of three different biochars amendment on water retention of silty loam & loamy soils. Agricultural Water Management, 208. 232 - 244 Pp.
Hamid, Y., Tang, L., Irfan, M., Cao, X., Hussain, B., Zahir, M., Usman, M., He, Z., Yang, X., 2019. An explanation of soil amendments to reduce cadmium phytoavailability & transfer to the food chain. Science of The Total Environment, 660. 80 - 96 Pp.
Hamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Saqib, M., He, Z., Yang, X , 2020. Organic soil additives for the remediation of cadmium contaminated soils & their impact on the soil-plant system: A review. Science of The Total Environment, 707.
Hagemann, N., JosepH, S., Schmidt, H., Kammann, C., Harter, J., Borch, T., Young, R., Varga, K., Taherymoosavi, S., Wade, K., Mckenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S., Kappler, S., 2017. Organic coating on biochar explains its nutrient retention & stimulation of soil fertility. Nature Communications, 8.
Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., Feng, Y., 2020. Cadmium uptake from soil & transport by leafy vegetables: A meta-analysis. Environmental Pollution, 264.
Ibañez, P., Sanchez, M., Sanchez, M., Cayuela, M., Moreno, D., 2020. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Scientia Horticulturae, 267. 6 Pp.
Ibrahim, M., Li, G., Shun, L., Kay, P., Liu, X., Firbank, L., Xu, Y., 2019. Biochars effects potentially toxic elements & antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environmental Technology & Innovation, 15.
Idrovo, J., Gavilanes, I., Angeles, M., Paredes, C., 2018. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic & economic assessment of composts. Process Safety & Environmental Protection, 116. 388 – 395 Pp.
Idrovo, J., Gavilanes, I., Veloz, N., Erazo, R., Paredes, C., 2019. Closing the cycle for the cut rose industry by the reuse of its organic wastes: A case study in Ecuador. Journal of Cleaner Production, 2020. 910 – 918 Pp.
IGAC, 2016. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Primera edición. 27 Pp.
IBI, 2014. Standardized Product Definition and Product Testing Guidelines for BiocharThat Is Used in Soi. Int. BIOCHAR Initiat. 1–60.
Irfan, M., Hayata, S., Ahmada, A., Nasser, M., 2013. Soil cadmium enrichment: Allocation & plant pHysiological manifestations. Saudi Journal of Biological Sciences, 20(1). 1 - 10 Pp.
Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., Huang, Y., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available pHospHorus, & enzyme activity in paddy soil. Scientific Reports, 10.
Jung, S., Park, Y., Kwon, E., 2019. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227. 146 - 154 Pp.
Kolahi, M., Kazemib, M., Yazdic, M., Goldson, A., 2020. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators & prediction of their genes. Plant PHysiology & Biochemistry, 146.
Kopéc, M., Baran, A., Mierzwa, M., Gondek, K., Chemiel, M., 2018. Effect of the Addition of Biochar & Coffee Grounds on the Biological Properties & Ecotoxicity of Composts. Waste Biomass Valor, 9. 1389 - 1398 Pp.
Kubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils & groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388
Li, J., Heb, F., Shen, X., Hu, D., Huang, Q., 2020a. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3 PO4 pretreated coffee shells & appraisement for remedying aqueous Cr (VI) contaminants. Bioresource Technology, 315. 8 Pp.
Li, Y., Dong, S., Qiao, J., Liang, S., Wu, X., Wang, M., Zhao, H., Liu, W., 2020b. Impact of nanominerals on the migration & distribution of cadmium on soil aggregates. Journal of Cleaner Production, 262.
Liu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.
Loi, N., Sanzharova, N., Ssxhagina, N., Mironova, M., 2018. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russian Agricultural Sciences, 44(1). 49 - 52 Pp.
Lora, R., Bonilla, H., 2010. Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cloro. Actualidad y divergencia científica, 13(2). 61 - 70 Pp.
Lynch, J, 2016. Preface. En: Sik, Y., Tsang, D., Bolan, M., Novak, J., Biochar from Biomass & Waste, primera edición, Elsevier, Países bajos.
MacKenna, I., Chaney, R., Williams, F., 2017. The effects of cadmium & zinc interactions on the accumulation & tissue distribution of zinc & cadmium in lettuce & spinach. Environmental Pollution, 79(2). 113 - 120 Pp.
Mahecha, J., Trujillo, J., Torres, M., 2015. Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Revista Orinoquía, 19(1). 6 Pp.
Maneechakr , P., Mongkollertlop, S., 2020. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ & Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. Journal of Environmental Chemical Engineering, 9 Pp.
Majid, M., Khan, J., Ahmad, Q., Masoodi, K., Afroza, B., Parvaze, S., 2021. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) & comparison with protected soil-based cultivation. Agricultural Water Management, 245.
Major, J., Rondón, M., Molina, D., Riha, S., Lehmann, J., 2010. Maize yield & nutrition during 4 years after biochar application to a Colombian savanna Ferralsol. Plant Soil, 333. 117 - 128 Pp.
Matraszek, R., Hawrylak, B., Chwil, S., Chwil, M., 2016. Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulpHur nutrition, Journal of Environmental Management. 180. 24 - 34 Pp.
Miranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., Zurita, J., 2008. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas regados con aguas del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2). 180 - 191 Pp.
Nieto, A., Gascó, G., Paz, J., Fernandez, J., Plaza, C., Mendez, A., 2016. The effect of pruning waste & biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199. 142 - 148 Pp.
Nieto, J., 2017. Uso inadecuado del suelo en Colombia: un generador de Gases Efecto Invernadero. En: Instituto Geológico Agustín Codazzi.
Paneque, M., De la Rosa, J., Franco, J., Colmenero, J., Knicker, H., 2016. Effect of biochar amendment on morpHology, productivity & water relations of sunflower plants under non-irrigation conditions. Catena, 147. 280 - 287.
Pelaez, M., Busamante, J., Gomez, E., 2016. Presencia de cadmio y plomo en suelos y su bioacumulación en tejidos vegetales en especies de Brachiaria en el Magdalena medio Colombiano. Luna Azul, 43. 82 - 101 Pp.
Pinto, E., Almeida, A., Aguiar, A., Ferreira, I., 2014. Changes in macrominerals, trace elements & pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152. 603 - 611 Pp.
Quezada-Hinojosa, R.P., Föllmi, K.B., Verrecchia, E., Adatte, T., Matera, V., 2015. Speciation & multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 125, 10–32. https://doi.org/10.1016/j.catena.2014.10.003
Radin, R., Bakar, R., Ishak, C., Ahmad, S., Tsong, L., 2017. Biochar-compost mixture as amendment for improvement of polybag-growing media & oil palm seedlings at main nursery stage. International Journal of Recycling of Organic Waste in Agriculture, 7. 11 - 23 Pp.
Rodriguez, H., 2017. Dinámica del cadmio en suelos con niveles altos de elementos, en zonas productoras de cacao en Nilo y Yacopí, Cundinamarca.
Ruíz, J., 2011. Evaluación de tratamientos para disminuir cadmio en lechuga (Lactuca sativa L.) regada con agua del río Bogotá. Agronomía Colombiana, 5(2). 233 – 244 Pp.
Safahani, A., Campiglia, E., Mancinelli, R., Radicetti, E., 2019. Can biochar improve pumpkin productivity & its pHysiological characteristics under reduced irrigation regimes?. Scientia Horticulturae, 247. 195 - 204 Pp.
Sajjadi, B., Chen, W.Y., Mattern, D.L., Hammer, N., Dorris, A., 2020. Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals. J. Water Process Eng. 34. https://doi.org/10.1016/j.jwpe.2020.101166
Salinas, 2013. Introducción de cinco variedades de lechuga (Lactuca sativa L.) en el barrio Santa Fe de la Parroquia Atahualpa en el Cantón Ambato. Tesis Universidad Técnica de Ambato. 25 Pp.
Saxena, J., Rana, G., Pandey, M., 2013. Impact of addition of biochar along with Bacillus sp. on growth & yield of French beans. Scientia Horticulturae. 162. 351 - 356 Pp.
Schmidt, H., Kammannb, C., Nigglia, C., Evangelou, M., Mackie, K., Abivenealthak, s., 2014. Biochar & biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health & grape quality. Agriculture, Ecosystems & Environment, 191. 117 - 123 Pp.
Sehar, A., Aziz, R., Rafiq, M.T., Hussain, M.M., Rizwan, M., Sehrish, A.K., Rafiq, M.K., Din, J. ud, Hussain, Q., Al-Wabel, M.I., Ali, S., 2018. Synthesis of biochar from sugarcane filter-cake and its impacts on physiological performance of lettuce (Lettuce sativa) grown on cadmium contaminated soil. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4006-4
Shin, H., Tiwarib, d., Kimad., 2020. PHospHate adsorption/desorption kinetics & P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 37. 7 Pp.
Silva, M., Oliveira, P., de Jesus, J., Ganassali, L., 2019. Biochar increases plant water use efficiency & biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicology & Environmental Safety, 183. 6 Pp.
Simón, M., García, I., Diez, M., Gonzalez, V., 2018. Biochar from Different Carbonaceous Waste Materials: Ecotoxicity & Effectiveness in the Sorption of Metal(loid)s. Water Air Soil Pollut, 224. 223- 229 Pp.
Somerville, P., Farrel, C., May, P., Livesley, S., 2019. Tree water use strategies & soil type determine growth responses to biochar & compost organic amendments. Soil & Tillage Research, 192. 12 - 21 Pp.
Tang, X., Yan, P.. Ji, P., Gao, P., Hung, T., Tong, Y., 2016. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicology & Environmental Safety, 125. 102 – 106 Pp.
Tang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., Liao, M., Wang, Z., Lv, D., Liang, D., Xia, H., Wang, X., Wang, J., Xiong, B., Zheng, Y., He, Z., Tu, L., 2018. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pHotosynthetic activity & antioxidative enzyme activities, Environmental Sciences & Pollution Research, 25.
Tangmankongworakoon, N., 2019. An approach to produce biochar from coffee residue for fuel & soil amendment purposes. International Journal of Recycling of Organic Waste in Agriculture, 8. 37 - 44 Pp.
Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F., Lustrato, G., Di Lonardo, S., Fantasma, F., Tognetti, R., Scippa, S., 2017. The effects of biochar & its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties,and soil microbial activity & abundance. International Journal of Agronomy, 2017. 12 Pp.
UNEP, 2010. Final review of scientific information on cadmium. En: United Nations of Environmental Programme, http://wedocs.unep.org/bitstream/handle/20.500.11822/27636/Cadmium_Review.pdf; consulta: Abril de 2020
Usman, A., Sallam, A., Zhang, M., Vithanage, M., Ahmad, M., Al Farraj, A., Sik, Y., Abduljabbar, A., Al Wabel, M., 2016. Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency & Mechanisms. Water, Air, & Soil Pollution, 22. 16 Pp.
Vargas, O., Prieto, G., Gonzalez, L., Matamoros, A., 2004. Geoquímica de metales pesados de la cuenca del río Bogotá. IGAC, primera edición. Bogotá D.C. 136 Pp.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance & soil fertility. Plant & Soil, 327. 235 - 246 Pp.
Wahid, F., Baig, S., Faraz, M., Manzoor, M., Ahmed, I., Arshad, M., 2021. Growth responses & rubisco activity influenced by antibiotics & organic amendments used for stress alleviation in Lactuca sativa. ChemospHere, 263.
Woldetsadik, D., Drechsel, P., Keraita, B., Marschner, B., Itanna, F., Gebrekidan, H., 2016. Effects of biochar & alkaline amendments on cadmium immobilization, selected nutrient & cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springer Plus, 397(5).
Xiao, Q., Zhua, L., Shena, Y., Lia, S., 2016. Sensitivity of soil water retention & availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 196. 284 - 293 Pp.
Yazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate & change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium & a survey of its pHytochelatin synthase gene. Ecotoxicology & Environmental Safety, 180. 295 - 308 Pp.
Zheng, R., Sun, G., Li, C., Reid, B., Xie, Z., Zhang, B., Wang, Q., 2017. Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environmental Science & Pollution Research, 24
Zolezzi, M., Abarca, P., Saavedra, G., Corradini. F., Felmer, Sofia., 2017., Manual de producción de L echuga. Instituto de Investigaciones Agropecuarias (INIA). Boletín INIA Nº 3
Abu Zied Amin, A.E.E., 2016. Impact of Corn Cob Biochar on Potassium Status and Wheat Growth in a Calcareous Sandy Soil. Commun. Soil Sci. Plant Anal. 47, 2026–2033. https://doi.org/10.1080/00103624.2016.1225081
Agegnehu, G., Jemal, K., Abebe, A., Lulie, B., 2019. Plant Growth and Oil Yield Response of Lemon Grass (Cymbopogon citratuc L.) to Biochar Application. Ethiop. J. Agric. Sci. 29, 1–12.
Akhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 201, 368–378. https://doi.org/10.1111/jac.12132
Alburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 177, 16–25. https://doi.org/10.1002/jpln.201200652
Altaf, K., Younis, A., Ramzan, Y., Ramzan, F., 2020. Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). J. Plant Nutr. https://doi.org/10.1080/01904167.2020.1862205
Alvarez, J.M., Pasian, C., Lal, R., López, R., Fernández, M., 2016. Physiological Plant Answer When Biochar and Vermicompost Are Used As Peat Replacement for Ornamental-Plant Production 16–18.
Angin, D., 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 128, 593–597. https://doi.org/10.1016/j.biortech.2012.10.150
Anyaoha, K.E., Sakrabani, R., Patchigolla, K., Mouazen, A.M., 2018. Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resour. Conserv. Recycl. 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022
Baiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2019. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 175, 294–303. https://doi.org/10.1016/j.catena.2018.12.019
Baronti, S., Alberti, G., Vedove, G.D., di Gennaro, F., Fellet, G., Genesio, L., Miglietta, F., Peressotti, A., Vaccari, F.P., 2010. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 5, 3–11. https://doi.org/10.4081/ija.2010.3
Beck, M.A., Robarge, W.P., Buol, S.W., 1999. Phosphorus retention and release of anions and organic carbon by two Andisols. Eur. J. Soil Sci. 50, 157–164. https://doi.org/10.1046/j.1365-2389.1999.00213.x
Bennardi, D., Gorostegui, A., Millan, G., Pellegrini, A., Vázquez, M., 2018. EVALUACIÓN DE LA CAPACIDAD BUFFER DE SUELOS ÁCIDOS DE LA REGIÓN PAMPEANA. Asoc. argentina Cienc. del suelo 36, 124–137.
Bilgili, A.V., Aydemir, S., Altun, O., Sayğan, E.P., Yalçın, H., Schindelbeck, R., 2019. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma 345, 123–133. https://doi.org/10.1016/j.geoderma.2019.03.010
Bonilla, G., Sarmiento Pérez, G., Gaviria Melo, S., 2011. Proveniencia y transformacion diagenética de minerales arcillosos Del Maastrichtiano - Paleoceno al norte de Bogotá, Cordillera Oriental de Colombia. Geol. Colomb. - An Int. J. Geosci. 36, 179–196.
Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.
Brockamp, R., Sharon, W., 2021. Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes, Soils and Landscape Restoration.
Budianta, D., Wiralaga, A.Y.A., Lestari, W., 2010. Changes in Some Soil Chemical Properties of Ultisol Applied by Mulch from Empty Fruit Bunches in an Oil Palm Plantation. J. TANAH Trop. (Journal Trop. Soils) 15, 111–118. https://doi.org/10.5400/jts.2010.15.2.111
Caicedo, B., Mendoza, C., López, F., Lizcano, A., 2018. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J. Rock Mech. Geotech. Eng. 10, 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005
Campos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M., 2020. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 105, 256–267. https://doi.org/10.1016/j.wasman.2020.02.013
Cervera, A., Navarro-Alarcón, M., Rufián-Henares, J.Á., Pastoriza, S., Montilla-Gómez, J., Delgado, G., 2020. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 717. https://doi.org/10.1016/j.scitotenv.2020.137247
Chen, C.Y., Hu, B.L., Liu, L., 2008. Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM D2216 Am. Soc. Test. Mater. 1–5. https://doi.org/10.1109/WiCom.2008.1574
Chen, X., Lewis, S., Heal, K. V., Lin, Q., Sohi, S.P., 2021. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 386. https://doi.org/10.1016/j.geoderma.2020.114919
Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., 2014. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 60, 393–404. https://doi.org/10.1080/03650340.2013.789870
Cuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.
Dahal, N., Bajracharya, R.M., Wagle, L.M., 2018. Biochar Effects on Carbon Stocks in the Coffee Agroforestry Systems of the Himalayas. Sustain. Agric. Res. 7, 103. https://doi.org/10.5539/sar.v7n4p103
Dai, Y., Zheng, H., Jiang, Z., Xing, B., 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713. https://doi.org/10.1016/j.scitotenv.2020.136635
Dari, B., Nair, V.D., Harris, W.G., Nair, P.K.R., Sollenberger, L., Mylavarapu, R., 2016. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 280, 82–87. https://doi.org/10.1016/j.geoderma.2016.06.018
De la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976. https://doi.org/10.1016/j.scitotenv.2017.09.124
Demisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121, 214–221. https://doi.org/10.1016/j.catena.2014.05.020
Embrandiri, A., Singh, R.P., Ibrahim, H.M., Ramli, A.A., 2012. Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. Environmentalist 32, 111–117. https://doi.org/10.1007/s10669-011-9367-0
Escalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.
FAO, 2010. Soil erosion, Geomorphological Hazards and Disaster Prevention. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.1017/CBO9780511807527.014
FAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.
FAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).
Fernández Linares, L.C., Rojas Avelizapa, N.G., Roldán Carrillo, T.G., Ramírez Islas, M.E., Zegarra Martínez, H.G., Uribe Hernández, R., Reyes Ávila, R.J., Flores Hernández, D., Arce Ortega, J.M. (2006): Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CG008215.pdf
Finetti, P., Bekhouche, I., Rousselet, E., 2011. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures Accept e d Preprint Accept e d Preprint 33, 1–47.
Fonseca, A.A., Santos, D.A., Passos, R.R., Andrade, F.V., Rangel, O.J.P., 2020. Phosphorus availability and grass growth in biochar-modified acid soil: A study excluding the effects of soil pH. Soil Use Manag. https://doi.org/10.1111/sum.12609
Gabhi, R.S., Kirk, D.W., Jia, C.Q., 2017. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon N. Y. 116, 435–442. https://doi.org/10.1016/j.carbon.2017.01.069
Gao, S., DeLuca, T.H., 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biol. Biochem. 126, 144–150. https://doi.org/10.1016/j.soilbio.2018.09.002
Garbuz, S., Camps-Arbestain, M., Mackay, A., DeVantier, B., Minor, M., 2020. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Appl. Soil Ecol. 147. https://doi.org/10.1016/j.apsoil.2019.103402
Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102, 623–633. https://doi.org/10.2134/agronj2009.0083
Guo, Y., Niu, G., Starman, T., Volder, A., Gu, M., 2018. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 4, 1–14. https://doi.org/10.3390/horticulturae4010001
Hailegnaw, N.S., Mercl, F., Pračke, K., Száková, J., Tlustoš, P., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 19, 2405–2416. https://doi.org/10.1007/s11368-019-02264-z
He, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106
Herath, H.M.S.K., Camps-Arbestain, M., Hedley, M., 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016
Hussain, R., Kumar Ghosh, K., Ravi, K., 2021. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 385. https://doi.org/10.1016/j.geoderma.2020.114836
Ibrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3
Ibrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3
IGAC. 2006. Métodos analíticos del laboratorio de suelos. Instituto Geográfico Agustín Codazzi. 2006. 6ª Ed. Bogotá. Colombia.
Islam, A.K.M.S., Edwards, D.G., Asher, C.J., 1980. pH optima for crop growth. Plant Soil 54, 339–357. https://doi.org/10.1007/bf02181830
Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Van Groenigen, J.W., Hungate, B.A., Verheijen, F., 2017. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa67bd
Jien, S.H., 2018. Physical characteristics of biochars and their effects on soil physical properties. Biochar from Biomass Waste Fundam. Appl. 21–35. https://doi.org/10.1016/B978-0-12-811729-3.00002-9
Joseph, S., Pow, D., Dawson, K., Rust, J., Munroe, P., Taherymoosavi, S., Mitchell, D.R.G., Robb, S., Solaiman, Z.M., 2020. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 724. https://doi.org/10.1016/j.scitotenv.2020.138153
Karabay, U., Toptas, A., Yanik, J., Aktas, L., 2021. Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Commun. Soil Sci. Plant Anal. https://doi.org/10.1080/00103624.2020.1862146
Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agric. Ecosyst. Environ. 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005
Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., Kim, K.H., 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 41, 990–1000. https://doi.org/10.2134/jeq2011.0070
Lee, C.H., Wang, C.C., Lin, H.H., Lee, S.S., Tsang, D.C., Jien, S.H., et al., 2018. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Sci. Total Environ 619620, 665671.
Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G., 2013. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS One 8. https://doi.org/10.1371/journal.pone.0065949
Li, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106
Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., 2006. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70, 1719–1730. https://doi.org/10.2136/sssaj2005.0383
Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., Gilkes, R.J., 2018. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 312, 139–150. https://doi.org/10.1016/j.geoderma.2017.10.022
Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B., 2012. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175, 698–707. https://doi.org/10.1002/jpln.201100172
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373, 583–594. https://doi.org/10.1007/s11104-013-1806-x
Lusiba, S., Odhiambo, J., Ogola, J., 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil Sci. 63, 477–490. https://doi.org/10.1080/03650340.2016.1218477
Martínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671
Mulvaney RL (1996) Nitrogen-inorganic forms. In: Soil Science society of America and America Society of Agronomy (ed) Methods of soils analysis, part 3, chemical methods. SSSA Books
Murrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., 2021. Improving Potassium Recommendations for Agricultural Crops, Improving Potassium Recommendations for Agricultural Crops. https://doi.org/10.1007/978-3-030-59197-7
Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. Environ. Sci 12, 369376.
Pandian, K., Subramaniayan, P., Gnasekaran, P., Chitraputhirapillai, S., 2016. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 62, 1293–1310. https://doi.org/10.1080/03650340.2016.1139086
Peake, L.R., Reid, B.J., Tang, X., 2014. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002
Penn, C.J., Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agric. 9, 1–18. https://doi.org/10.3390/agriculture9060120
Prakongkep, N., Gilkes, R.J., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., Delbos, E., Strachan, L.-J., Ariyasakul, P., Ketdan, C., Hammecker, C., 2020. Effects of Biochar on Properties of Tropical Sandy Soils Under Organic Agriculture. J. Agric. Sci. 13, 1. https://doi.org/10.5539/jas.v13n1p1
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7
Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008
Rens, H., Bera, T., Alva, A.K., 2018. Effects of Biochar and Biosolid on Adsorption of Nitrogen, Phosphorus, and Potassium in Two Soils. Water. Air. Soil Pollut. 229. https://doi.org/10.1007/s11270-018-3925-8
Rochette, P., Angers, D.A., Chantigny, M.H., Gasser, M.-O., MacDonald, J.D., Pelster, D.E., Bertrand, N., 2013. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? J. Environ. Qual. 42, 1635–1642. https://doi.org/10.2134/jeq2013.05.0192
Sadasivam, B.Y., Reddy, K.R., 2015. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 9, 521–535. https://doi.org/10.1179/1939787915Y.0000000004
Sänger, A., Reibe, K., Mumme, J., Kaupenjohann, M., Ellmer, F., Roß, C.L., Meyer-Aurich, A., 2017. Biochar application to sandy soil: effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 63, 213–229. https://doi.org/10.1080/03650340.2016.1223289
Schomberg, H.H., Gaskin, J.W., Harris, K., Das, K.C., Novak, J.M., Busscher, W.J., Watts, D.W., Woodroof, R.H., Lima, I.M., Ahmedna, M., Rehrah, D., Xing, B., 2012. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 41, 1087–1095. https://doi.org/10.2134/jeq2011.0133
Sg, L., Jjo, O., R, A., St, M., 2021. The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere. https://doi.org/10.1016/j.rhisph.2020.100289
Somerville, P.D., Farrell, C., May, P.B., Livesley, S.J., 2020. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 706. https://doi.org/10.1016/j.scitotenv.2019.135736
Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41, 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016
Tahir, A.H.F., Al-Obaidy, A.H.M.J., Mohammed, F.H., 2020. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 737. https://doi.org/10.1088/1757-899X/737/1/012171
Wallace, J (2000): Increasing agricultural water use efficiency to meet future food production. Agr Ecosyst Environ 82(1–3), 105–119.
Wang, L., Xue, C., Nie, X., Liu, Y., Chen, F., 2018. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 181, 635–643. https://doi.org/10.1002/jpln.201700528
Widowati, W., Asnah, a, Utomo, W.H., 2014. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. J. Degrad. Min. Lands Manag. 2, 211–218. https://doi.org/10.15243/jdmlm.2014.021.211
Xu, C.Y., Bai, S.H., Hao, Y., Rachaputi, R.C.N., Xu, Z., Wallace, H.M., 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. J. Soils Sediments 15, 2220–2231. https://doi.org/10.1007/s11368-015-1242-z
Xu, W., Whitman, W.B., Gundale, M.J., Chien, C.C., Chiu, C.Y., 2021. Functional response of the soil microbial community to biochar applications. GCB Bioenergy 13, 269–281. https://doi.org/10.1111/gcbb.12773
Yang, C.D., Lu, S.G., 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. https://doi.org/10.1016/j.still.2020.104798
Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
Yu, O.Y., Raichle, B., Sink, S., 2013. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 4, 1–9. https://doi.org/10.1186/2251-6832-4-44
Zemanová, V., Břendová, K., Pavlíková, D., Kubátová, P., Tlustoš, P., 2017. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil Environ. 63, 322–327. https://doi.org/10.17221/318/2017-PSE
Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275. https://doi.org/10.1007/s11104-011-0957-x
Zhang, C., Li, X., Yan, H., Ullah, I., Zuo, Z., Li, L., Yu, J., 2020. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 241. https://doi.org/10.1016/j.agwat.2020.106263
Zhao, B., Connor, D.O., Zhang, J., Peng, T., Shen, Z., Daniel, C.W., 2017. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.11.013.This
Zulfiqar, F., Younis, A., Chen, J., 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of syngonium podophyllum. Agronomy 9, 1–12. https://doi.org/10.3390/agronomy9080460
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 164 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80523/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80523/2/1022338457.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80523/3/1022338457.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
61036a2c559aa11082b0b357c21c6a97
1a42f64b3270eeab488a06875a495b56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089614243135488
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuervo Andrade, Jairo Leonardod83b2ed64edec2ce9165c9d0e9f3b5a7Martínez Cordón, María José0f66912da9a6accaef9784be67b513ffRivera, Julio César0446c64cc8d0ce000b76e90a56a7ab83SISTEMAS INTEGRADOS DE PRODUCCIÓN AGRICOLA Y FORESTALLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA2021-10-12T21:04:57Z2021-10-12T21:04:57Z2021-10-11https://repositorio.unal.edu.co/handle/unal/80523Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, mapas, tablasEl biocarbón actualmente es un material de interés, rico en carbono que cuenta con propiedades potenciales para uso como enmienda de suelos y remediación de la contaminación con metales pesados. Se obtiene por pirólisis (descomposición térmica en ausencia de oxígeno) a partir de residuos de biomasas. Esta investigación utilizó biocarbones producidos con raquis de palma (BRP), cuesco de palma (BCP), poda de árboles (BP), pulpa de café (BC) y tallos de rosa (BTR), con el objetivo de caracterizarlos, evaluarlos como enmiendas sobre el crecimiento de lechuga (Lactuca sativa) y determinar su efecto en propiedades físico-químicas de suelos disímiles (Ferralsol, Umbrisol, Andosoles y Tecnosol) contaminados con cadmio. Después establecer las propiedades físicas y químicas de las biocarbones; en cinco ensayos en matera se evaluaron los tratamientos 0, 3, 6, 9 y 12 ton ha-1 de biocarbón y fertilización convencional durante dos ciclos de siembra. Se encontró que BTR, BC y BRP presentan potencial para uso agrícola, mientras que BCP y BP tienen potencial ambiental. BC y BTR muestran una alta correlación negativa en la concentración de cadmio en el tejido foliar de plantas de lechuga frente al aumento de las dosis de biocarbón aplicadas, indicando que mitiga el efecto fitotóxico del cadmio en las plantas; se encontró que el uso de biocarbón mejora la densidad aparente y real, porosidad, capacidad de retención de humedad. Finalmente, se encontró que el pH y Capacidad de Intercambio Catiónico, aumentaron con la aplicación de los biocarbones. Los biocarbones en estudio permiten la enmienda de suelos, mitigar los efectos de la contaminación con cadmio y el aprovechamiento de biomasas contaminantes. (Texto tomado de la fuente)Currently biochar is a material of interest, rich in carbon with potential properties that allow its use as soil amendment and remediation for heavy metals contamination. The Biochars were obtained by pyrolysis (thermal decomposition in the absence of oxygen) using biomass residues. This research used palm rachis (BRP), palm kernel (BCP), wood waste (BP), coffee pulp (BC) and rose stems (BTR) biochars in order to characterize them and evaluate them as amendments in the growth of lettuce (Lactuca sativa), and determine its effect on physicochemical properties of dissimilar soils (Ferralsols, Umbrisols, Andosols, and Technosols) contaminated with cadmium. In five pot trials, treatments 0, 3, 6, 9 & 12- ton ha-1 of biochar and conventional fertilization were evaluated during two lettuce planting cycles. BTR, BC and BRP were found to have potential for agricultural use, while BCP and BP have environmental potential. BC and BTR show a high negative correlation in cadmium concentration in the leaf tissue of lettuce plants compared to the increase in the doses of biochar applied, indicating that it mitigates the phytotoxic effect of cadmium in plants. It was found that the use of biochar improves bulk and real density, porosity, water holding capacity. Finally, pH, cationic exchange capacity, increased with the application of biochar. The biochar under study allow the amendment of soils, mitigate the effects of cadmium contamination and the use of polluting biomass.MaestríaMagíster en Ciencias AgrariasPara la investigación los biocarbones se produjeron por medio del proceso de pirólisis lenta, en un horno rotatorio de 7 m de largo y un diámetro de 0.6 m, con una tasa de calentamiento de 5.5 ° C s-1 hasta llegar a una temperatura de 450 °C con un tiempo de residencia de 45 min; posteriormente se caracterizaron en el Laboratorio de Investigación en Combustibles y Energía y el de Química Agrícola del Departamento de Química de la Universidad Nacional de Colombia, sede Bogotá. Se estableció un cultivo de lechugas en los invernaderos de la Facultad de Ciencias Agrarias ubicado en las coordenadas 4° 38´11.89" N, y a 74° 05' 17.65" O a una altura de 2656 m.s.n.m., se registró una temperatura promedio de 19.2ºC, con una máxima promedio de 24.7ºC y una mínima promedio de 14.6 ºC. Las lechugas se sembraron en materas de 20 cm de diámetro y 20 cm de alto en un sistema de riego por goteo, estableciendo cinco ensayos bajo diseños experimentales completamente al azar, uno para cada tipo de suelo muestreado en las zonas agroecológicas donde se encuentran problemas ambientales por desechos agroindustriales; se evaluaron seis tratamientos que consistieron cinco dosis de biocarbón de 0, 3, 6, 9 y 12 ton ha-1 y fertilización convencional con cuatro repeticiones y un total de 120 unidades experimentales. Posteriormente, se determinó el efecto en el crecimiento de lechuga en dos ciclos de siembra y después de nueve meses se evaluaron los efectos de las enmiendas con biocarbón en las propiedades físicas y químicas de cuatro suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol) contaminados artificialmente con cadmio en el Laboratorio de suelos de la Universidad Jorge Tadeo Lozano, el resumen del proceso metodológico se puede ver en el Anexo 1. 1) En el capítulo 1 se describe la Producción y caracterización de biocarbones: La producción del biocarbón se realizó a partir de cinco biomasas de residuos agroindustriales de palma, café, rosas y residuos de podas; para la caracterización de los biocarbones se utilizaron metodologías reconocidas por la Sociedad Americana para Pruebas y Materiales ASTM: En cuanto a las propiedades físicas se valoró densidad aparente (cilindro) y real (picnómetro), distribución de tamaño de partículas, capacidad de retención de humedad y se tomaron imágenes de microscopía electrónica SEM; para las propiedades químicas se realizó: Análisis próximo y último, espectroscopía de Raman e infrarroja (FTIR), capacidad de intercambio catiónico, pH, conductividad eléctrica, contenido de bases intercambiables (absorción atómica) y contenido de Nitrógeno, Fósforo y Azufre, 2) En el capítulo 2 se evaluó el efecto en variables fisiológicas de lechuga por el uso de biocarbones en suelos disímiles contaminados con cadmio: Se realizaron cinco experimentos en materas con dos kilogramos de suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol) + biocarbón (5 dosis) y fertilización convencional, estos suelos proceden de los lugares donde se tomaron los desechos agroindustriales. Se midió altura, número de hojas, área de cobertura del follaje, contenido relativo de clorofila, conductancia estomática, longitud de raíz, peso fresco, peso seco y relación de peso foliar (RPF). Finalmente se valoró el contenido de cadmio en las hojas en el primer ciclo de siembra. Para el segundo ciclo de siembra se midió altura, número de hojas, peso fresco y peso seco. 3) En el capítulo 3 se evaluó el efecto en las propiedades físicas y químicas del suelo por el uso de biocarbones Después de dos ciclos de siembra (nueve meses), se tomaron muestras de los suelos sometidos a la contaminación con cadmio y tratados con biocarbón; con el objetivo de evaluar el efecto de la aplicación de los biocarbones fabricados en la propiedades físicas y químicas de suelos disímiles (Ferralsol, Andosol, Umbrisol y Tecnosol). Se caracterizaron los siguientes parámetros: a. Propiedades Físicas: densidad aparente (método del cilindro) y real (método del picnómetro) y capacidad de retención de humedad. b. Propiedades Químicas: pH (Suspensión en agua 1:1, CIC (acetato - NH4 1M pH 7 y NaCl; volumétrico). Conductividad eléctrica (Extracto de la pasta saturada), Carbono orgánico oxidable (Walkley y Black), nitrógeno mineral y amoniacal (Kjeldahl), bases de cambio Mg, K, Ca y Na (absorción atómica) y fósforo disponible (Bray II).Suelos y aguasMateriales carbonosos164 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasBiomasa sobre el sueloPropiedades del sueloabove ground biomasssoil propertiesBicarbónCadmioEnmienda agrícolaPropiedades del sueloPirólisis lentaLactuca sativaBiocharCadmiumagricultural amendmentSoil propertiesSlow pyrolysisEfecto de enmiendas con biocarbones sobre propiedades físicas, químicas y Fitoabsorción de Cadmio en suelos disímiles sembrados con lechugaEffect of biochar amendments on physical-chemical properties and Cadmium Phytoabsorption on dissimilar soils planted with lettuceTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbenza, D. P., 2012. Evaluación de efectos de varios tipos de biochar en suelo y planta, 111.Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils and Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046Cadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295. 9 pp.Cuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.Escalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.Espinoza, Jorge, and Yolanda Rubiano. 2015. “Procesos Específicos De Formación En Andisoles, Alfisoles Y Ultisoles En Colombia.” Revista EIA (spe2): 85–97.FAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.FAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).García, Clara Roa et al. 2021. “Relationship of Soil Water Retention Characteristics and Soil Properties: A Case Study from the Colombian Andes.” Canadian Journal of Soil Science 101(1): 144–56.Glaser B, Lehmann J, and Zech W. 2002. Ameliorating pHysical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fert Soils 35: 219–30.Hernandez-Mena, L.E., Pecora, A. a B., Beraldo, A.L., 2014. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. Trans. 37, 115–120. https://doi.org/10.3303/CET1437020.IDEAM, U.D.C.A 2015. Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM - MADS. Bogotá D.C., Colombia. Publicación aprobada por el IDEAM, Diciembre de 2015, pp. 25. Bogotá D.C., Colombia.Kubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388Leguédois, S., Sèéré, G., Auclrec, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., Morel, J. 2016. “Modelling Pedogenesis of Technosols.” Geoderma 262: 199–212. http://dx.doi.org/10.1016/j.geoderma.2015.08.008.LEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404Liu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.Mahecha, J., Trujillo-gonzález, J.M., Torres-mora, M.A., 2017. Analysis of Studies in Heavy Metals in Agricultural Areas of Colombia. Revista Orinoquia Vol. 21 83–9.Malagón Castro, Dimas. 2003. “Ensayo Sobre Tipología De Suelos Colombianos - Énfasis En Génesis Y Aspectos Ambientales.” Rev. Acad. Colomb. Cienc. 27(104): 319–41.Marrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596Moreno, J., Moral, R., Garcia, J., Pascual, J and Bernal M., 2014. De residuo a recurso el camino hacia la sostenibilidad. Edisiones mundi prensa Madrid, España pp. aña pp. 62-85.Paredes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047Phiri, S., E. Amézquita, I. M. Rao, and B. R. Singh. 2001. “Disc Harrowing Intensity and Its Impact on Soil Properties and Plant Growth of Agropastoral Systems in the Llanos of Colombia.” Soil and Tillage Research 62(3–4): 131–43.Quevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.epleSohi, S. P., Krull, E., Lopez-Capel, E., and Bol, R. 2010. A review of biochar and its use and function in soil. Advances in Agronomy (1st ed., Vol. 105). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)05002-9Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. ChemospHere 125, 70–85. https://doi.org/10.1016/j.chemospHere.2014.12.058Tsai, C.C.; Chen, Z.S.; Kao, C.I.; Ottner, F;, Kao, S.J.; Zehetner,F. (2010). Pedogenic Development of Volcanic Ash Soils.Van Ranst, E., Doube, M., Mees, F., Dumon, M., Ye, L., Delvaux, B., 2019. Andosolization of ferrallitic soils in the Bambouto Mountains, West Cameroon. Geoderma 340, 81–93. https://doi.org/10.1016/j.geoderma.2018.12.024Yazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its pHytochelatin synthase gene. Ecotoxicology and Environmental Safety, 180. 295 - 308 Pp.Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Liu, X., 2015. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility Umbrisol. ChemospHere. https://doi.org/10.1016/j.chemospHere.2015.04.088Agronet. 2020. Red de información y comunicación del sector agro-pecuario colombiano (Agronet). Área cosechada, producción y rendimiento de Rosa 2007-2018. URL: http://www.agronet.gov.co (accessed 10 May 2020).Amin, F.R., Huang, Y., He, Y., Zhang, R., Liu, G., Chen, C., 2016. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 18, 1457–1473. https://doi.org/10.1007/s10098-016-1218-8Amonette, J.E., & Joseph, S. (2009). Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S, Eds. Biochar for environmental management: science and technology., Earthscan: London. p. 33-52.Asocolflores. (2002). Guía Ambiental para la Floricultura. DOI: 10.1088/0957- 4484/24/32/325602.ASTM, D1762.-84, 2013. Standard test method for chemical analysis of wood charcol. Am. Soc. Test. Mater. 84, 1–2. https://doi.org/10.1520/D1762-84R13.2ASTM, D.-87, 2007. ASTM D4749-87 Standard Test Methods for Performing the Sieve Analysis of Coal and Designating Coal Size. ASTM D4749-87 Stand. Test Methods Perform. Sieve Anal. Coal Des. Coal Size 87, 1–10. https://doi.org/10.1520/D4749-87R12.CopyrightASTM, D., 2000. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. Astm D854 2458000, 1–7. https://doi.org/10.1520/D0854-10.2Berek, A.K., Hue, N. V., 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 181, 412–426. https://doi.org/10.1097/SS.0000000000000177Beusch, C., Cierjacks, A., Böhm, J., Mertens, J., Bischoff, W.A., de Araújo Filho, J.C., Kaupenjohann, M., 2019. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 337, 524–535. https://doi.org/10.1016/j.geoderma.2018.09.043Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63. https://doi.org/10.1016/j.biortech.2017.02.046Brassard, P., Godbout, S., Raghavan, V., 2016. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manage. 181, 484–497. https://doi.org/10.1016/j.jenvman.2016.06.063Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.Brockhoff, S.R., Christians, N.E., Killorn, R.J., Horton, R., Davis, D.D., 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627–1631. https://doi.org/10.2134/agronj2010.0188Buss, W., Shepherd, J.G., Heal, K. V, 2018. Geoderma Spatial and temporal microscale pH change at the soil-biochar interface 331, 50–52.Cadavid, L., Bolaños, I., 2015. Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Energética 0, 23–28.Cheng, F., Bayat, H., Jena, U., Brewer, C.E., 2020. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 147, 104780. https://doi.org/10.1016/j.jaap.2020.104780Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187–194. https://doi.org/10.1016/j.rser.2016.06.003Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., Cross, A., 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131. https://doi.org/10.1111/gcbb.12030Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., 2017. Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275Czajka, K.M., 2018. Proximate analysis of coal by micro-TG method. J. Anal. Appl. Pyrolysis 133, 82–90. https://doi.org/10.1016/j.jaap.2018.04.017El-Naggar, A., Lee, S.S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A.K., Zimmerman, A.R., Ahmad, M., Shaheen, S.M., Ok, Y.S., 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034Elkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024Elkhalifa, S., Al-Ansari, T., Mackey, H.R., McKay, G., 2019. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 144, 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024F1815-11, A., 2020. Standard Test Methods for Saturated Hydraulic Conductivity , Water Retention , Porosity , and Bulk Density of Athletic Field Rootzones 1 i, 1–6. https://doi.org/10.1520/F1815-11R18.2Ferreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M., 2019. Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment. Waste and Biomass Valorization 10, 3089–3100. https://doi.org/10.1007/s12649-018-0347-1Ferreira, M.F.P., Oliveira, B.F.H., Pinheiro, W.B.S., Correa, N.F., França, L.F., Ribeiro, N.F.P., 2020. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products. Biomass and Bioenergy 140. https://doi.org/10.1016/j.biombioe.2020.105707Giffin, S., Littke, R., Klaver, J., Urai, J.L., 2013. Application of BIB-SEM technology to characterize macropore morphology in coal. Int. J. Coal Geol. 114, 85–95. https://doi.org/10.1016/j.coal.2013.02.009Guo, X. xia, Liu, H. tao, Zhang, J., 2020. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 102, 884–899. https://doi.org/10.1016/j.wasman.2019.12.003Hale, S.E., Nurida, N.L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S., Cornelissen, G., 2020. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 719. https://doi.org/10.1016/j.scitotenv.2020.137455Han, G., Meng, J., Zhang, W., Chen, W., 2013. Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Appl. Mech. Mater. 295–298, 210–219. https://doi.org/10.4028/www.scientific.net/AMM.295-298.210Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., Herbert, B.E., 2012. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 46, 1415–1421. https://doi.org/10.1021/es2040398He, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106Huong, P.T., Lee, B.K., Kim, J., Lee, C.H., Chong, M.N., 2016. Acid activation pine cone waste at differences temperature and selective removal of Pb2+ ions in water. Process Saf. Environ. Prot. 100, 80–90. https://doi.org/10.1016/j.psep.2015.12.002Keiluweit, M., Nico, P.S., Johnson, M.G., KLEBER, M., 2010. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -. Environ. Sci. Technol. 44, 1247–1253.Klasson, K.T., 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy 96, 50–58. https://doi.org/10.1016/j.biombioe.2016.10.011Kung, C.C., Kong, F., Choi, Y., 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecol. Indic. 51, 139–145. https://doi.org/10.1016/j.ecolind.2014.06.043Kung, C.C., Zhang, N., 2015. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation. Energy 90, 1532–1544. https://doi.org/10.1016/j.energy.2015.06.114LEHMANN, J. 2009 Biochar for Environmental Management: Science and Technology. Ed Earthscan, London, UK, 404Leng, L., Huang, H., 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471Li, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106Lin, Y., Munroe, P., Joseph, S., Kimber, S., Van Zwieten, L., 2012. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 357, 369–380. https://doi.org/10.1007/s11104-012-1169-8Luo, L., Xu, C., Chen, Z., Zhang, S., 2015. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89. https://doi.org/10.1016/j.biortech.2015.05.054Ma, Z., Yang, Y., Ma, Q., Zhou, H., Luo, X., Liu, X., Wang, S., 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J. Anal. Appl. Pyrolysis. https://doi.org/10.1016/j.jaap.2017.07.015Ma, Q., Song, W., Wang, R., Zou, J., Yang, R., Zhang, S., 2018. Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag. 79, 729–734. https://doi.org/10.1016/j.wasman.2018.08.023Manjarrés, J.K., 2019. PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. Univ. Nac. Colomb.Marrugo, G., Valdés, C.F., Chejne, F., 2016. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy and Fuels 30, 8386–8398. https://doi.org/10.1021/acs.energyfuels.6b01596Martínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K., 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493. https://doi.org/10.1016/j.jaap.2013.05.022Munera, J.L., Martinsen, V., Strand, L.T., Zivanovic, V., Cornelissen, G., Mulder, J., 2018. Science of the Total Environment Cation exchange capacity of biochar : An urgent method modification 642, 190–197.Paredes, M., Silva-Agredo, J., Torres-Palma, R.A., 2018. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. J. Environ. Manage. 213, 98–108. https://doi.org/10.1016/j.jenvman.2018.02.047Park, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, S.C., 2012. Effects of operation conditions on pyrolysis characteristics of agricultural residues. Renew. Energy 42, 125–130. https://doi.org/10.1016/j.renene.2011.08.050Qin, C., Wang, H., Yuan, X., Xiong, T., Zhang, Jingjing, Zhang, Jin, 2020. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 382, 122977. https://doi.org/10.1016/j.cej.2019.122977Quevedo, B., Narváez-Rincón, P.C., Pedroza-Rodríguez, A.M., Velásquez-Lozano, M.E., 2015. Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Univ. Sci. 20, 117–127. https://doi.org/10.11144/Javeriana.SC20-1.epleQuosai, B.P., 2017. Characterization of biocarbon generated by high and low temperature pyrolysis of soy hulls and coffee chaff Check.Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7.Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008Schimmelpfennig, S., Glaser, B., 2012. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 41, 1001–1013. https://doi.org/10.2134/jeq2011.0146Schmidt, P., Agroscope, T., Kamman, C., 2015. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’. Eur. Biochar Found. (EBC), Arbaz, Switzerland. Version 6.1 19th June, 1–22. https://doi.org/10.13140/RG.2.1.4658.7043Seo, D.K., Park, S.S., Kim, Y.T., Hwang, J., Yu, T.U., 2011. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 92, 209–216. https://doi.org/10.1016/j.jaap.2011.05.012Setter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P., 2020. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel 261. https://doi.org/10.1016/j.fuel.2019.116420Sun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., Song, J., 2017. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 9, 1423–1435. https://doi.org/10.1111/gcbb.12435Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122Veiga, P.A. da S., Schultz, J., Matos, T.T. da S., Fornari, M.R., Costa, T.G., Meurer, L., Mangrich, A.S., 2020. Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment. J. Anal. Appl. Pyrolysis 148. https://doi.org/10.1016/j.jaap.2020.104823Wang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003Xiang, A., Qi, R., Wang, M., Zhang, K., Jiang, E., Ren, Y., Hu, Z., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153. https://doi.org/10.1016/j.indcrop.2020.112558Xu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., Xiang, J., 2020. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 202, 1–10. https://doi.org/10.1016/j.energy.2020.117644Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K., 2015. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029Yi, S., Chang, N.Y., Imhoff, P.T., 2020. Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties. Adv. Water Resour. 142. https://doi.org/10.1016/j.advwatres.2020.103638Yu, K.L., Lau, B.F., Show, P.L., Ong, H.C., Ling, T.C., Chen, W.H., Ng, E.P., Chang, J.S., 2017. Recent developments on algal biochar production and characterization. Bioresour. Technol. 246, 2–11. https://doi.org/10.1016/j.biortech.2017.08.009Zhang, C., Lin, Y., Tian, X., Xu, Q., Chen, Z., Lin, W., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 112, 90–96. https://doi.org/10.1016/j.apsoil.2016.12.005Zhang, K., Mao, J., Chen, B., 2019. Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. Environ. Pollut. 254, 113017. https://doi.org/10.1016/j.envpol.2019.113017Zhao, L., Cao, X., Wang, Q., Yang, F., Xu, S., 2013. Mineral Constituents Profile of Biochar Derived from Diversified Waste Biomasses: Implications for Agricultural Applications. J. Environ. Qual. 42, 545–552. https://doi.org/10.2134/jeq2012.0232Zhu, X., Li, Y., Wang, X., 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 288, 121527. https://doi.org/10.1016/j.biortech.2019.121527Abideen, Z., Koiro, H., Huchzermeyer, B., Bilquees, G., Ajmal, K., 2020. Impact of a Biochar or a Compost-Biochar Mixture on Water relation, Nutrient uptake & PHotosynthesis of PHragmites karka. PedospHere, 30(4). 466 - 477 Pp.Adeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T., 2018. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 153, 102–114. https://doi.org/10.1016/j.compag.2018.08.009.Adnan, P., Shan, L., Anjum, S., Din Khan, W., Ronggui, H., Iqbal, M., Abbas, Z., Kausar, S., 2017. Improved quinoa growth, pHysiological response, & seed nutritional quality in three soils having different stresses by the application of acidified biochar & compost. Plant PHysiology & Biochemistry, 116. 127 - 138 Pp.Ahmed, A., Kurian, J., Raghavan, V., 2016. Biochar influences on agricultural soils, crop production, & the environment: A review. Environmental Reviews, 24(4). 495 - 502 Pp.Amjad, M., Khan, S., Khan, A., Alam, M., 2017. Soil contamination with cadmium, consequences & remediation using organic amendments. Science of the Total Environment, 601 - 602. 1591 - 1606 Pp.Agegnehu, G.,Bass, A., Nelson, P., Bird, M., 2016. Benefits of biochar, compost & biochar–compost for soil quality, maize yield & greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543. 295 - 306 Pp.Agegnehu, G., Srivastav, A., Bird, M., 2017. The role of biochar & biochar-compost in improving soil quality & crop performance: A review. Applied Soil Ecology, 119. 156 - 170 Pp.Albuquerque, J., Salazar, P., Barrón, V., Torrent, J., Campillo, M., Gallardo, A., Villar, R., 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33. 475 - 484 Pp.Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. Cadmium in Soils & Plants 97–123. https://doi.org/10.1007/978-94-011-4473-5_5Alves, R., Fernandez, M., Cocco, S., Ruello, M., Fornasier, F., Corti, G., 2019. Benefits of Biochars & NPK Fertilizers for Soil Quality & Growth of Cowpea (Vigna unguiculata L. Walp.) in an Acid Arenosol. PedospHere, 29(1). 82 - 94 Pp.Azzi, V., Kanso, A., Kazpard, V., Kobeissi, A., Lartiges, B., El Samrani, A., 2017. Lactuca sativa growth in compacted & non-compacted semi-arid alkaline soil under pHospHate fertilizer treatment & cadmium contamination. Soil & tillage, 165. 1 - 10 Pp.Beesley, L., Moreno, E., Gomez, J., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation & restoration of contaminated soils. Environmental Pollution, 159(12). 3269 - 3282 Pp.Beluri, K., Pullagurala, L., Bojeong, K., Sang, L., Sudhir, P., Ki-Hyun, K., 2018. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management. 227. 146 - 154 Pp.Bi, Y., Cai, S., Wang, Y., Xia, Y., Zhao, X., Wang, S., Xing, G., 2019. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration & net ecosystem economic benefits. Journal of Environmental Management, 245,173-186 Pp.Bindraban, P., Van der Velde, M., Ye, L., Van der Berg, M., Materechera, S., Innocent, D., Tamene, L., Vala, K., Jongschaap, R., Hoogmoed, M., Hoogmoed, W., Van Beek., Van Lynden, G., 2012. Assessing the impact of soil degradation on food production. Current opinion in environmental sustainability, 4(5), 478-488.Borchard, N., Siemens, J., Ladd, B., Molller, A., Amelung, W., 2014. Application of biochars to sandy & silty soil failed to increase maize yield under common agricultural practice. Soil & Tillage Research, 144. 184 - 194Campos, P., Miller, A., Knicker, H., Costa, M., Merino, A., De la Rosa, J., 2020. Chemical, pHysical & morpHological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105. 256 - 267 Pp.Caporale, A., Pigna, M., Sommella, A., Conte, P., 2014. Effect of pruning-derived biochar on heavy metals removal & water dynamics. Biology & Fertility of the Soils, 50. 1211 - 1222 Pp.Cervera, A., Navarro, M., Delgado, G., Pastoriza, S., Montilla, J., Llopis, J., Sanchez, C., Rufian, J., 2019. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) & are an ecological alternative to inorganic fertilizers. Food Chemistry, 282(1). 1 - 8 Pp.Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., Kaiser, M., 2020. Effect of biochar & compost on soil properties & organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295. 9 Pp.Dahnke, W.C., & D.A. Whitney. 1988. Measurement of soil salinity. p. 32-34. In Recommended chemical soil test procedures for the North Central Region. North Central Reg. Publ. 221. Revised. North Dakota Agric. Exp. Stn. Bull. 499. Fargo, ND.Daza, M. (2014). Aplicación de compost de residuos de flores en suelos ácidos cultivados con maíz. Revista Ciencias Técnicas Agropecuarias, ISSN -1010-2760, RNPS-0111, Vol. 23, No. 3 pp. 22-30.De Sousa., J, de Moraes, W., de Medeiros, E., Pereira, G., Metri, M., Martins, A., Clermont, C., Dantas, A., Hammecker, D, 2018. Effect of biochar on pHysicochemical properties of a sandy soil & maize growth in a greenhouse experiment. Agricultural Water Management. 217. 168 - 178 Pp.Deenik, J., McClellan, T., Uehara, G., Antal, M., S. Campbell, S., 2010. Charcoal volatile matter content influences plant growth & soil nitrogen transformations. Soil Science Society of America Journal, 74. 1259 - 1270 Pp.Di, Wu., Yanfang, F., Lihong, X., Manqiang, L., Bei, Y., Feng, H., Linzhang Y., 2019. Biochar Combined with Vermicompost Increases Crop Production While Reducing Ammonia & Nitrous Oxide Emissions from a Paddy Soil. PedospHere, 29. 82 - 94 Pp.Dominguez, E., Uttran, A., Loh S., Manero, M., Upperton, R., Tanimu, M., Bachmann, T., 2020. Characterisation of industrially produced oil palm kernel shell biochar & its potential as slow release nitrogen-pHospHate fertilizer & carbon sink. Materials Today, 31. 221 - 227 Pp.Faloye, O., Alatise, M., Ajayi, A., Ewulo, B., 2019. Effects of biochar & inorganic fertilizer applications on growth, yield & water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217. 165 - 178 Pp.Fang, H., Shuang, W., Tu, S., Ding, Y., Gang, R., Rensing, C., Li, Y., Fneg, R., 2019. Differences in cadmium absorption by 71 leaf vegetable varieties from different families & genera & their health risk assessment. Ecotoxicology & Environmental Safety, 184.Farhangi., S., Torabian, S., 2017. Antioxidant enzyme & osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology & Environmental Safety, 137. 64 - 70 Pp.Fischer, D., Glaser, B., 2012. Synergisms between compost & biochar for sustainable soil amelioration. En: Kumar, S., Bharti, A. Management of Organic Waste. Intech. Rijeka, Croacia. 167 - 198 Pp.Franco, O., Sánchez, r., Gómez, C., Otero, J., Salamanca, J., 2015. Estudio nacional de la degradación de suelos por erosión en Colombia. IDEAM. Bogotá, 62 Pp.French, E., Lyer, A., 2018. A role for the gibberellin pathway in biochar mediated growth promotion. Scientific Report, 8. 10 Pp.Gale, N., Thomas, S., 2019. Dose-dependence of growth & ecopHysiological responses of plants to biochar. Science of the Total Environment, 658. 1344 - 1354 Pp.Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., Stagnari, F., 2015. Effects of nutrient deficiency & abiotic environmental stresses on yield, pHenolic compounds & antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187. 93 - 101 Pp.Gao, Y., Shao, G., Lu, J., Zhang, K., Wu, S., Wang, Z., 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249, 16 Pp.Gheshm, R., Brown, R.N., 2018. Organic mulch effects on high tunnel lettuce in Southern New England. Horttechnology 28, 485–491. https://doi.org/10.21273/HORTTECH04056-18Glaser, B., Birk, J., 2012. State of the scientific knowledge on properties & genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Indio). Geochimica et Cosmochimica Acta, 82. 39 - 51 Pp.Günal, E., Erdem, H., Çelik, I., 2018. Effects of three different biochars amendment on water retention of silty loam & loamy soils. Agricultural Water Management, 208. 232 - 244 Pp.Hamid, Y., Tang, L., Irfan, M., Cao, X., Hussain, B., Zahir, M., Usman, M., He, Z., Yang, X., 2019. An explanation of soil amendments to reduce cadmium phytoavailability & transfer to the food chain. Science of The Total Environment, 660. 80 - 96 Pp.Hamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Saqib, M., He, Z., Yang, X , 2020. Organic soil additives for the remediation of cadmium contaminated soils & their impact on the soil-plant system: A review. Science of The Total Environment, 707.Hagemann, N., JosepH, S., Schmidt, H., Kammann, C., Harter, J., Borch, T., Young, R., Varga, K., Taherymoosavi, S., Wade, K., Mckenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S., Kappler, S., 2017. Organic coating on biochar explains its nutrient retention & stimulation of soil fertility. Nature Communications, 8.Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., Feng, Y., 2020. Cadmium uptake from soil & transport by leafy vegetables: A meta-analysis. Environmental Pollution, 264.Ibañez, P., Sanchez, M., Sanchez, M., Cayuela, M., Moreno, D., 2020. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Scientia Horticulturae, 267. 6 Pp.Ibrahim, M., Li, G., Shun, L., Kay, P., Liu, X., Firbank, L., Xu, Y., 2019. Biochars effects potentially toxic elements & antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environmental Technology & Innovation, 15.Idrovo, J., Gavilanes, I., Angeles, M., Paredes, C., 2018. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic & economic assessment of composts. Process Safety & Environmental Protection, 116. 388 – 395 Pp.Idrovo, J., Gavilanes, I., Veloz, N., Erazo, R., Paredes, C., 2019. Closing the cycle for the cut rose industry by the reuse of its organic wastes: A case study in Ecuador. Journal of Cleaner Production, 2020. 910 – 918 Pp.IGAC, 2016. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Primera edición. 27 Pp.IBI, 2014. Standardized Product Definition and Product Testing Guidelines for BiocharThat Is Used in Soi. Int. BIOCHAR Initiat. 1–60.Irfan, M., Hayata, S., Ahmada, A., Nasser, M., 2013. Soil cadmium enrichment: Allocation & plant pHysiological manifestations. Saudi Journal of Biological Sciences, 20(1). 1 - 10 Pp.Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., Huang, Y., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available pHospHorus, & enzyme activity in paddy soil. Scientific Reports, 10.Jung, S., Park, Y., Kwon, E., 2019. Benefits & limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227. 146 - 154 Pp.Kolahi, M., Kazemib, M., Yazdic, M., Goldson, A., 2020. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators & prediction of their genes. Plant PHysiology & Biochemistry, 146.Kopéc, M., Baran, A., Mierzwa, M., Gondek, K., Chemiel, M., 2018. Effect of the Addition of Biochar & Coffee Grounds on the Biological Properties & Ecotoxicity of Composts. Waste Biomass Valor, 9. 1389 - 1398 Pp.Kubier, A., Wilkin, R.T., Pichler, T., 2019. Cadmium in soils & groundwater: A review. Appl. Geochemistry 108. https://doi.org/10.1016/j.apgeochem.2019.104388Li, J., Heb, F., Shen, X., Hu, D., Huang, Q., 2020a. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3 PO4 pretreated coffee shells & appraisement for remedying aqueous Cr (VI) contaminants. Bioresource Technology, 315. 8 Pp.Li, Y., Dong, S., Qiao, J., Liang, S., Wu, X., Wang, M., Zhao, H., Liu, W., 2020b. Impact of nanominerals on the migration & distribution of cadmium on soil aggregates. Journal of Cleaner Production, 262.Liu, X., Zhong, L., Meng, J., Wang, F., Zhang, J., Zhi, Y., Zeng, Z., Tang, X., Xu, J., 2018. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environmental Pollution, 239. 302 - 317 Pp.Loi, N., Sanzharova, N., Ssxhagina, N., Mironova, M., 2018. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russian Agricultural Sciences, 44(1). 49 - 52 Pp.Lora, R., Bonilla, H., 2010. Remediación de un suelo de la cuenca alta del río Bogotá contaminado con los metales pesados cadmio y cloro. Actualidad y divergencia científica, 13(2). 61 - 70 Pp.Lynch, J, 2016. Preface. En: Sik, Y., Tsang, D., Bolan, M., Novak, J., Biochar from Biomass & Waste, primera edición, Elsevier, Países bajos.MacKenna, I., Chaney, R., Williams, F., 2017. The effects of cadmium & zinc interactions on the accumulation & tissue distribution of zinc & cadmium in lettuce & spinach. Environmental Pollution, 79(2). 113 - 120 Pp.Mahecha, J., Trujillo, J., Torres, M., 2015. Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Revista Orinoquía, 19(1). 6 Pp.Maneechakr , P., Mongkollertlop, S., 2020. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ & Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. Journal of Environmental Chemical Engineering, 9 Pp.Majid, M., Khan, J., Ahmad, Q., Masoodi, K., Afroza, B., Parvaze, S., 2021. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) & comparison with protected soil-based cultivation. Agricultural Water Management, 245.Major, J., Rondón, M., Molina, D., Riha, S., Lehmann, J., 2010. Maize yield & nutrition during 4 years after biochar application to a Colombian savanna Ferralsol. Plant Soil, 333. 117 - 128 Pp.Matraszek, R., Hawrylak, B., Chwil, S., Chwil, M., 2016. Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulpHur nutrition, Journal of Environmental Management. 180. 24 - 34 Pp.Miranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., Zurita, J., 2008. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas regados con aguas del río Bogotá. Revista Colombiana de Ciencias Hortícolas, 2(2). 180 - 191 Pp.Nieto, A., Gascó, G., Paz, J., Fernandez, J., Plaza, C., Mendez, A., 2016. The effect of pruning waste & biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199. 142 - 148 Pp.Nieto, J., 2017. Uso inadecuado del suelo en Colombia: un generador de Gases Efecto Invernadero. En: Instituto Geológico Agustín Codazzi.Paneque, M., De la Rosa, J., Franco, J., Colmenero, J., Knicker, H., 2016. Effect of biochar amendment on morpHology, productivity & water relations of sunflower plants under non-irrigation conditions. Catena, 147. 280 - 287.Pelaez, M., Busamante, J., Gomez, E., 2016. Presencia de cadmio y plomo en suelos y su bioacumulación en tejidos vegetales en especies de Brachiaria en el Magdalena medio Colombiano. Luna Azul, 43. 82 - 101 Pp.Pinto, E., Almeida, A., Aguiar, A., Ferreira, I., 2014. Changes in macrominerals, trace elements & pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152. 603 - 611 Pp.Quezada-Hinojosa, R.P., Föllmi, K.B., Verrecchia, E., Adatte, T., Matera, V., 2015. Speciation & multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 125, 10–32. https://doi.org/10.1016/j.catena.2014.10.003Radin, R., Bakar, R., Ishak, C., Ahmad, S., Tsong, L., 2017. Biochar-compost mixture as amendment for improvement of polybag-growing media & oil palm seedlings at main nursery stage. International Journal of Recycling of Organic Waste in Agriculture, 7. 11 - 23 Pp.Rodriguez, H., 2017. Dinámica del cadmio en suelos con niveles altos de elementos, en zonas productoras de cacao en Nilo y Yacopí, Cundinamarca.Ruíz, J., 2011. Evaluación de tratamientos para disminuir cadmio en lechuga (Lactuca sativa L.) regada con agua del río Bogotá. Agronomía Colombiana, 5(2). 233 – 244 Pp.Safahani, A., Campiglia, E., Mancinelli, R., Radicetti, E., 2019. Can biochar improve pumpkin productivity & its pHysiological characteristics under reduced irrigation regimes?. Scientia Horticulturae, 247. 195 - 204 Pp.Sajjadi, B., Chen, W.Y., Mattern, D.L., Hammer, N., Dorris, A., 2020. Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals. J. Water Process Eng. 34. https://doi.org/10.1016/j.jwpe.2020.101166Salinas, 2013. Introducción de cinco variedades de lechuga (Lactuca sativa L.) en el barrio Santa Fe de la Parroquia Atahualpa en el Cantón Ambato. Tesis Universidad Técnica de Ambato. 25 Pp.Saxena, J., Rana, G., Pandey, M., 2013. Impact of addition of biochar along with Bacillus sp. on growth & yield of French beans. Scientia Horticulturae. 162. 351 - 356 Pp.Schmidt, H., Kammannb, C., Nigglia, C., Evangelou, M., Mackie, K., Abivenealthak, s., 2014. Biochar & biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health & grape quality. Agriculture, Ecosystems & Environment, 191. 117 - 123 Pp.Sehar, A., Aziz, R., Rafiq, M.T., Hussain, M.M., Rizwan, M., Sehrish, A.K., Rafiq, M.K., Din, J. ud, Hussain, Q., Al-Wabel, M.I., Ali, S., 2018. Synthesis of biochar from sugarcane filter-cake and its impacts on physiological performance of lettuce (Lettuce sativa) grown on cadmium contaminated soil. Arab. J. Geosci. 11. https://doi.org/10.1007/s12517-018-4006-4Shin, H., Tiwarib, d., Kimad., 2020. PHospHate adsorption/desorption kinetics & P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 37. 7 Pp.Silva, M., Oliveira, P., de Jesus, J., Ganassali, L., 2019. Biochar increases plant water use efficiency & biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicology & Environmental Safety, 183. 6 Pp.Simón, M., García, I., Diez, M., Gonzalez, V., 2018. Biochar from Different Carbonaceous Waste Materials: Ecotoxicity & Effectiveness in the Sorption of Metal(loid)s. Water Air Soil Pollut, 224. 223- 229 Pp.Somerville, P., Farrel, C., May, P., Livesley, S., 2019. Tree water use strategies & soil type determine growth responses to biochar & compost organic amendments. Soil & Tillage Research, 192. 12 - 21 Pp.Tang, X., Yan, P.. Ji, P., Gao, P., Hung, T., Tong, Y., 2016. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicology & Environmental Safety, 125. 102 – 106 Pp.Tang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., Liao, M., Wang, Z., Lv, D., Liang, D., Xia, H., Wang, X., Wang, J., Xiong, B., Zheng, Y., He, Z., Tu, L., 2018. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pHotosynthetic activity & antioxidative enzyme activities, Environmental Sciences & Pollution Research, 25.Tangmankongworakoon, N., 2019. An approach to produce biochar from coffee residue for fuel & soil amendment purposes. International Journal of Recycling of Organic Waste in Agriculture, 8. 37 - 44 Pp.Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F., Lustrato, G., Di Lonardo, S., Fantasma, F., Tognetti, R., Scippa, S., 2017. The effects of biochar & its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties,and soil microbial activity & abundance. International Journal of Agronomy, 2017. 12 Pp.UNEP, 2010. Final review of scientific information on cadmium. En: United Nations of Environmental Programme, http://wedocs.unep.org/bitstream/handle/20.500.11822/27636/Cadmium_Review.pdf; consulta: Abril de 2020Usman, A., Sallam, A., Zhang, M., Vithanage, M., Ahmad, M., Al Farraj, A., Sik, Y., Abduljabbar, A., Al Wabel, M., 2016. Sorption Process of Date Palm Biochar for Aqueous Cd (II) Removal: Efficiency & Mechanisms. Water, Air, & Soil Pollution, 22. 16 Pp.Vargas, O., Prieto, G., Gonzalez, L., Matamoros, A., 2004. Geoquímica de metales pesados de la cuenca del río Bogotá. IGAC, primera edición. Bogotá D.C. 136 Pp.Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance & soil fertility. Plant & Soil, 327. 235 - 246 Pp.Wahid, F., Baig, S., Faraz, M., Manzoor, M., Ahmed, I., Arshad, M., 2021. Growth responses & rubisco activity influenced by antibiotics & organic amendments used for stress alleviation in Lactuca sativa. ChemospHere, 263.Woldetsadik, D., Drechsel, P., Keraita, B., Marschner, B., Itanna, F., Gebrekidan, H., 2016. Effects of biochar & alkaline amendments on cadmium immobilization, selected nutrient & cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springer Plus, 397(5).Xiao, Q., Zhua, L., Shena, Y., Lia, S., 2016. Sensitivity of soil water retention & availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 196. 284 - 293 Pp.Yazdi, M., Kolahi, M., Mohajel, E., Goldson, A., 2019. Study of the contamination rate & change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium & a survey of its pHytochelatin synthase gene. Ecotoxicology & Environmental Safety, 180. 295 - 308 Pp.Zheng, R., Sun, G., Li, C., Reid, B., Xie, Z., Zhang, B., Wang, Q., 2017. Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Environmental Science & Pollution Research, 24Zolezzi, M., Abarca, P., Saavedra, G., Corradini. F., Felmer, Sofia., 2017., Manual de producción de L echuga. Instituto de Investigaciones Agropecuarias (INIA). Boletín INIA Nº 3Abu Zied Amin, A.E.E., 2016. Impact of Corn Cob Biochar on Potassium Status and Wheat Growth in a Calcareous Sandy Soil. Commun. Soil Sci. Plant Anal. 47, 2026–2033. https://doi.org/10.1080/00103624.2016.1225081Agegnehu, G., Jemal, K., Abebe, A., Lulie, B., 2019. Plant Growth and Oil Yield Response of Lemon Grass (Cymbopogon citratuc L.) to Biochar Application. Ethiop. J. Agric. Sci. 29, 1–12.Akhtar, S.S., Andersen, M.N., Liu, F., 2015. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 201, 368–378. https://doi.org/10.1111/jac.12132Alburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 177, 16–25. https://doi.org/10.1002/jpln.201200652Altaf, K., Younis, A., Ramzan, Y., Ramzan, F., 2020. Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). J. Plant Nutr. https://doi.org/10.1080/01904167.2020.1862205Alvarez, J.M., Pasian, C., Lal, R., López, R., Fernández, M., 2016. Physiological Plant Answer When Biochar and Vermicompost Are Used As Peat Replacement for Ornamental-Plant Production 16–18.Angin, D., 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 128, 593–597. https://doi.org/10.1016/j.biortech.2012.10.150Anyaoha, K.E., Sakrabani, R., Patchigolla, K., Mouazen, A.M., 2018. Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resour. Conserv. Recycl. 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022Baiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2019. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 175, 294–303. https://doi.org/10.1016/j.catena.2018.12.019Baronti, S., Alberti, G., Vedove, G.D., di Gennaro, F., Fellet, G., Genesio, L., Miglietta, F., Peressotti, A., Vaccari, F.P., 2010. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 5, 3–11. https://doi.org/10.4081/ija.2010.3Beck, M.A., Robarge, W.P., Buol, S.W., 1999. Phosphorus retention and release of anions and organic carbon by two Andisols. Eur. J. Soil Sci. 50, 157–164. https://doi.org/10.1046/j.1365-2389.1999.00213.xBennardi, D., Gorostegui, A., Millan, G., Pellegrini, A., Vázquez, M., 2018. EVALUACIÓN DE LA CAPACIDAD BUFFER DE SUELOS ÁCIDOS DE LA REGIÓN PAMPEANA. Asoc. argentina Cienc. del suelo 36, 124–137.Bilgili, A.V., Aydemir, S., Altun, O., Sayğan, E.P., Yalçın, H., Schindelbeck, R., 2019. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma 345, 123–133. https://doi.org/10.1016/j.geoderma.2019.03.010Bonilla, G., Sarmiento Pérez, G., Gaviria Melo, S., 2011. Proveniencia y transformacion diagenética de minerales arcillosos Del Maastrichtiano - Paleoceno al norte de Bogotá, Cordillera Oriental de Colombia. Geol. Colomb. - An Int. J. Geosci. 36, 179–196.Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46.Brockamp, R., Sharon, W., 2021. Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes, Soils and Landscape Restoration.Budianta, D., Wiralaga, A.Y.A., Lestari, W., 2010. Changes in Some Soil Chemical Properties of Ultisol Applied by Mulch from Empty Fruit Bunches in an Oil Palm Plantation. J. TANAH Trop. (Journal Trop. Soils) 15, 111–118. https://doi.org/10.5400/jts.2010.15.2.111Caicedo, B., Mendoza, C., López, F., Lizcano, A., 2018. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J. Rock Mech. Geotech. Eng. 10, 367–379. https://doi.org/10.1016/j.jrmge.2017.10.005Campos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M., 2020. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 105, 256–267. https://doi.org/10.1016/j.wasman.2020.02.013Cervera, A., Navarro-Alarcón, M., Rufián-Henares, J.Á., Pastoriza, S., Montilla-Gómez, J., Delgado, G., 2020. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 717. https://doi.org/10.1016/j.scitotenv.2020.137247Chen, C.Y., Hu, B.L., Liu, L., 2008. Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM D2216 Am. Soc. Test. Mater. 1–5. https://doi.org/10.1109/WiCom.2008.1574Chen, X., Lewis, S., Heal, K. V., Lin, Q., Sohi, S.P., 2021. Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma 386. https://doi.org/10.1016/j.geoderma.2020.114919Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., 2014. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 60, 393–404. https://doi.org/10.1080/03650340.2013.789870Cuervo, G., Gomeéz, C., 2003. Vista de La desertificación en Colombia y el cambio global.pdf.Dahal, N., Bajracharya, R.M., Wagle, L.M., 2018. Biochar Effects on Carbon Stocks in the Coffee Agroforestry Systems of the Himalayas. Sustain. Agric. Res. 7, 103. https://doi.org/10.5539/sar.v7n4p103Dai, Y., Zheng, H., Jiang, Z., Xing, B., 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713. https://doi.org/10.1016/j.scitotenv.2020.136635Dari, B., Nair, V.D., Harris, W.G., Nair, P.K.R., Sollenberger, L., Mylavarapu, R., 2016. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 280, 82–87. https://doi.org/10.1016/j.geoderma.2016.06.018De la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 613–614, 969–976. https://doi.org/10.1016/j.scitotenv.2017.09.124Demisie, W., Liu, Z., Zhang, M., 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 121, 214–221. https://doi.org/10.1016/j.catena.2014.05.020Embrandiri, A., Singh, R.P., Ibrahim, H.M., Ramli, A.A., 2012. Land application of biomass residue generated from palm oil processing: Its potential benefits and threats. Environmentalist 32, 111–117. https://doi.org/10.1007/s10669-011-9367-0Escalante, A., Pérez, G. Hidalgo, C., López J., Campo J., Valtierra, E., Etchevers, J., 2016. Biocarbón (Biochar) I: Naturaleza, fabricación y uso en el suelo. Red de Revistas Científicas de América Latina, Volumen 34, numero3, 367– 382.FAO, 2010. Soil erosion, Geomorphological Hazards and Disaster Prevention. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.1017/CBO9780511807527.014FAO. 2014. Actualización 2015 Base Referencial Mundial Del Recurso Suelo 2014: Sistema Internacional de Clasificación de Suelos. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf.FAO, 2015. World’ s Soil Resources. Food and Agriculture Organization of the United Nations (FAO).Fernández Linares, L.C., Rojas Avelizapa, N.G., Roldán Carrillo, T.G., Ramírez Islas, M.E., Zegarra Martínez, H.G., Uribe Hernández, R., Reyes Ávila, R.J., Flores Hernández, D., Arce Ortega, J.M. (2006): Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CG008215.pdfFinetti, P., Bekhouche, I., Rousselet, E., 2011. Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures Accept e d Preprint Accept e d Preprint 33, 1–47.Fonseca, A.A., Santos, D.A., Passos, R.R., Andrade, F.V., Rangel, O.J.P., 2020. Phosphorus availability and grass growth in biochar-modified acid soil: A study excluding the effects of soil pH. Soil Use Manag. https://doi.org/10.1111/sum.12609Gabhi, R.S., Kirk, D.W., Jia, C.Q., 2017. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon N. Y. 116, 435–442. https://doi.org/10.1016/j.carbon.2017.01.069Gao, S., DeLuca, T.H., 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biol. Biochem. 126, 144–150. https://doi.org/10.1016/j.soilbio.2018.09.002Garbuz, S., Camps-Arbestain, M., Mackay, A., DeVantier, B., Minor, M., 2020. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Appl. Soil Ecol. 147. https://doi.org/10.1016/j.apsoil.2019.103402Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102, 623–633. https://doi.org/10.2134/agronj2009.0083Guo, Y., Niu, G., Starman, T., Volder, A., Gu, M., 2018. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 4, 1–14. https://doi.org/10.3390/horticulturae4010001Hailegnaw, N.S., Mercl, F., Pračke, K., Száková, J., Tlustoš, P., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 19, 2405–2416. https://doi.org/10.1007/s11368-019-02264-zHe, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106Herath, H.M.S.K., Camps-Arbestain, M., Hedley, M., 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016Hussain, R., Kumar Ghosh, K., Ravi, K., 2021. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 385. https://doi.org/10.1016/j.geoderma.2020.114836Ibrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3Ibrahim, M., Cao, CG., Zhan, M. et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes. Int. J. Environ. Sci. Technol. 12, 263–274 (2015). https://doi.org/10.1007/s13762-013-0429-3IGAC. 2006. Métodos analíticos del laboratorio de suelos. Instituto Geográfico Agustín Codazzi. 2006. 6ª Ed. Bogotá. Colombia.Islam, A.K.M.S., Edwards, D.G., Asher, C.J., 1980. pH optima for crop growth. Plant Soil 54, 339–357. https://doi.org/10.1007/bf02181830Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., Van Groenigen, J.W., Hungate, B.A., Verheijen, F., 2017. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12. https://doi.org/10.1088/1748-9326/aa67bdJien, S.H., 2018. Physical characteristics of biochars and their effects on soil physical properties. Biochar from Biomass Waste Fundam. Appl. 21–35. https://doi.org/10.1016/B978-0-12-811729-3.00002-9Joseph, S., Pow, D., Dawson, K., Rust, J., Munroe, P., Taherymoosavi, S., Mitchell, D.R.G., Robb, S., Solaiman, Z.M., 2020. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 724. https://doi.org/10.1016/j.scitotenv.2020.138153Karabay, U., Toptas, A., Yanik, J., Aktas, L., 2021. Does Biochar Alleviate Salt Stress Impact on Growth of Salt-Sensitive Crop Common Bean. Commun. Soil Sci. Plant Anal. https://doi.org/10.1080/00103624.2020.1862146Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agric. Ecosyst. Environ. 140, 309–313. https://doi.org/10.1016/j.agee.2010.12.005Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., Kim, K.H., 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259. https://doi.org/10.1007/s12665-015-4116-1Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 41, 990–1000. https://doi.org/10.2134/jeq2011.0070Lee, C.H., Wang, C.C., Lin, H.H., Lee, S.S., Tsang, D.C., Jien, S.H., et al., 2018. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Sci. Total Environ 619620, 665671.Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G., 2013. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS One 8. https://doi.org/10.1371/journal.pone.0065949Li, S., Harris, S., Anandhi, A., Chen, G., 2019. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 215, 890–902. https://doi.org/10.1016/j.jclepro.2019.01.106Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., Neves, E.G., 2006. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 70, 1719–1730. https://doi.org/10.2136/sssaj2005.0383Limwikran, T., Kheoruenromne, I., Suddhiprakarn, A., Prakongkep, N., Gilkes, R.J., 2018. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 312, 139–150. https://doi.org/10.1016/j.geoderma.2017.10.022Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B., Glaser, B., 2012. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175, 698–707. https://doi.org/10.1002/jpln.201100172Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373, 583–594. https://doi.org/10.1007/s11104-013-1806-xLusiba, S., Odhiambo, J., Ogola, J., 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil Sci. 63, 477–490. https://doi.org/10.1080/03650340.2016.1218477Martínez C., M.J., España A., J.C., Díaz V., J. de J., 2017. Efecto de la adición de biocarbonizados de Eucalyptus globullus en la disponibilidad de fósforo en suelos ácidos. Agron. Colomb. 35, 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671Mulvaney RL (1996) Nitrogen-inorganic forms. In: Soil Science society of America and America Society of Agronomy (ed) Methods of soils analysis, part 3, chemical methods. SSSA BooksMurrell, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., 2021. Improving Potassium Recommendations for Agricultural Crops, Improving Potassium Recommendations for Agricultural Crops. https://doi.org/10.1007/978-3-030-59197-7Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G., 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. Environ. Sci 12, 369376.Pandian, K., Subramaniayan, P., Gnasekaran, P., Chitraputhirapillai, S., 2016. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 62, 1293–1310. https://doi.org/10.1080/03650340.2016.1139086Peake, L.R., Reid, B.J., Tang, X., 2014. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002Penn, C.J., Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agric. 9, 1–18. https://doi.org/10.3390/agriculture9060120Prakongkep, N., Gilkes, R.J., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., Delbos, E., Strachan, L.-J., Ariyasakul, P., Ketdan, C., Hammecker, C., 2020. Effects of Biochar on Properties of Tropical Sandy Soils Under Organic Agriculture. J. Agric. Sci. 13, 1. https://doi.org/10.5539/jas.v13n1p1Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., Watts, D.W., Ahmedna, M., 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008Rens, H., Bera, T., Alva, A.K., 2018. Effects of Biochar and Biosolid on Adsorption of Nitrogen, Phosphorus, and Potassium in Two Soils. Water. Air. Soil Pollut. 229. https://doi.org/10.1007/s11270-018-3925-8Rochette, P., Angers, D.A., Chantigny, M.H., Gasser, M.-O., MacDonald, J.D., Pelster, D.E., Bertrand, N., 2013. Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? J. Environ. Qual. 42, 1635–1642. https://doi.org/10.2134/jeq2013.05.0192Sadasivam, B.Y., Reddy, K.R., 2015. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 9, 521–535. https://doi.org/10.1179/1939787915Y.0000000004Sänger, A., Reibe, K., Mumme, J., Kaupenjohann, M., Ellmer, F., Roß, C.L., Meyer-Aurich, A., 2017. Biochar application to sandy soil: effects of different biochars and N fertilization on crop yields in a 3-year field experiment. Arch. Agron. Soil Sci. 63, 213–229. https://doi.org/10.1080/03650340.2016.1223289Schomberg, H.H., Gaskin, J.W., Harris, K., Das, K.C., Novak, J.M., Busscher, W.J., Watts, D.W., Woodroof, R.H., Lima, I.M., Ahmedna, M., Rehrah, D., Xing, B., 2012. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 41, 1087–1095. https://doi.org/10.2134/jeq2011.0133Sg, L., Jjo, O., R, A., St, M., 2021. The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere. https://doi.org/10.1016/j.rhisph.2020.100289Somerville, P.D., Farrell, C., May, P.B., Livesley, S.J., 2020. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 706. https://doi.org/10.1016/j.scitotenv.2019.135736Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41, 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016Tahir, A.H.F., Al-Obaidy, A.H.M.J., Mohammed, F.H., 2020. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 737. https://doi.org/10.1088/1757-899X/737/1/012171Wallace, J (2000): Increasing agricultural water use efficiency to meet future food production. Agr Ecosyst Environ 82(1–3), 105–119.Wang, L., Xue, C., Nie, X., Liu, Y., Chen, F., 2018. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 181, 635–643. https://doi.org/10.1002/jpln.201700528Widowati, W., Asnah, a, Utomo, W.H., 2014. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. J. Degrad. Min. Lands Manag. 2, 211–218. https://doi.org/10.15243/jdmlm.2014.021.211Xu, C.Y., Bai, S.H., Hao, Y., Rachaputi, R.C.N., Xu, Z., Wallace, H.M., 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. J. Soils Sediments 15, 2220–2231. https://doi.org/10.1007/s11368-015-1242-zXu, W., Whitman, W.B., Gundale, M.J., Chien, C.C., Chiu, C.Y., 2021. Functional response of the soil microbial community to biochar applications. GCB Bioenergy 13, 269–281. https://doi.org/10.1111/gcbb.12773Yang, C.D., Lu, S.G., 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. https://doi.org/10.1016/j.still.2020.104798Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002Yu, O.Y., Raichle, B., Sink, S., 2013. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 4, 1–9. https://doi.org/10.1186/2251-6832-4-44Zemanová, V., Břendová, K., Pavlíková, D., Kubátová, P., Tlustoš, P., 2017. Effect of biochar application on the content of nutrients(Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil Environ. 63, 322–327. https://doi.org/10.17221/318/2017-PSEZhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351, 263–275. https://doi.org/10.1007/s11104-011-0957-xZhang, C., Li, X., Yan, H., Ullah, I., Zuo, Z., Li, L., Yu, J., 2020. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 241. https://doi.org/10.1016/j.agwat.2020.106263Zhao, B., Connor, D.O., Zhang, J., Peng, T., Shen, Z., Daniel, C.W., 2017. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.11.013.ThisZulfiqar, F., Younis, A., Chen, J., 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of syngonium podophyllum. Agronomy 9, 1–12. https://doi.org/10.3390/agronomy9080460Proyecto código 44365Convocatoria No.44365 de Centro de Investigación y Extensión Rural (CIER)InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80523/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1022338457.2021.pdf1022338457.2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf4438263https://repositorio.unal.edu.co/bitstream/unal/80523/2/1022338457.2021.pdf61036a2c559aa11082b0b357c21c6a97MD52THUMBNAIL1022338457.2021.pdf.jpg1022338457.2021.pdf.jpgGenerated Thumbnailimage/jpeg5220https://repositorio.unal.edu.co/bitstream/unal/80523/3/1022338457.2021.pdf.jpg1a42f64b3270eeab488a06875a495b56MD53unal/80523oai:repositorio.unal.edu.co:unal/805232024-07-31 23:13:27.651Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==