Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos

ilustraciones, fotografías, graficas

Autores:
Vela Aparicio, Diana Gisset
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83919
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83919
https://repositorio.unal.edu.co
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Biofiltración
Compost
Sulfuro de hidrógeno
Amoniaco
Condiciones transitorias
Comunidad microbiana
PTAR El Salitre
Biofiltration
Hydrogen sulfide
Ammonia
Transient conditions
Microbial community
WWTP El Salitre
biofilter
Biofiltros
compost
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8f72853db2a1c2ef06914652a60f77f8
oai_identifier_str oai:repositorio.unal.edu.co:unal/83919
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
dc.title.translated.eng.fl_str_mv Evaluation of the microbial community in a simultaneous H2S and NH3 biofiltration system based on organic beds
title Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
spellingShingle Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Biofiltración
Compost
Sulfuro de hidrógeno
Amoniaco
Condiciones transitorias
Comunidad microbiana
PTAR El Salitre
Biofiltration
Hydrogen sulfide
Ammonia
Transient conditions
Microbial community
WWTP El Salitre
biofilter
Biofiltros
compost
title_short Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
title_full Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
title_fullStr Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
title_full_unstemmed Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
title_sort Evaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicos
dc.creator.fl_str_mv Vela Aparicio, Diana Gisset
dc.contributor.advisor.none.fl_str_mv de Brito Brandão, Pedro Filipe
Cabeza, Iván O.
dc.contributor.author.none.fl_str_mv Vela Aparicio, Diana Gisset
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Biofiltración
Compost
Sulfuro de hidrógeno
Amoniaco
Condiciones transitorias
Comunidad microbiana
PTAR El Salitre
Biofiltration
Hydrogen sulfide
Ammonia
Transient conditions
Microbial community
WWTP El Salitre
biofilter
Biofiltros
compost
dc.subject.proposal.spa.fl_str_mv Biofiltración
Compost
Sulfuro de hidrógeno
Amoniaco
Condiciones transitorias
Comunidad microbiana
PTAR El Salitre
dc.subject.proposal.eng.fl_str_mv Biofiltration
Hydrogen sulfide
Ammonia
Transient conditions
Microbial community
WWTP El Salitre
dc.subject.wikidata.eng.fl_str_mv biofilter
dc.subject.wikidata.spa.fl_str_mv Biofiltros
dc.subject.wikidata.none.fl_str_mv compost
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10
dc.date.accessioned.none.fl_str_mv 2023-05-30T20:29:12Z
dc.date.available.none.fl_str_mv 2023-05-30T20:29:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83919
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co
url https://repositorio.unal.edu.co/handle/unal/83919
https://repositorio.unal.edu.co
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acinas, S.G., Marcelino, L.A., Klepac-Ceraj, V., Polz, M.F., 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635. https://doi.org/10.1128/JB.186.9.2629-2635.2004
Air Clean System, 2010. ACS IOL 108 Informe de Resultados y Análisis del Monitoreo de Olores en la PTAR El Salitre”. Colombia
Aizpuru, A., Malhautier, L., Roux, J.C., Fanlo, J.L., 2001. Biofiltration of a mixture of volatile organic emissions. J. Air Waste Manag. Assoc. https://doi.org/10.1080/10473289.2001.10464388
Alinezhad, E., Haghighi, M., Rahmani, F., Keshizadeh, H., Abdi, M., Naddafi, K., 2019. Technical and economic investigation of chemical scrubber and biofiltration in removal of H2S and NH3 from wastewater treatment plant. J. Environ. Manage. 241, 32–43. https://doi.org/10.1016/j.jenvman.2019.04.003
Allievi, M.J., Silveira, D.D., Cantão, M.E., Filho, P.B., 2018. Bacterial community diversity in a full scale biofilter treating wastewater odor. Water Sci. Technol. 77, 2014–2022. https://doi.org/10.2166/wst.2018.114
Alvarez Mancilla, A., Benítez Jiménez, J., Camargo Caicedo, Y., 2011. Biofiltración para la remoción de Sulfuro de Hidrógeno en la Estación de Bombeo Norte de Aguas Residuales. INGE CUC 7, 113–126
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
APHA, 2017. 2540 SOLIDS (2017). Stand. Methods Exam. Water Wastewater. https://doi.org/10.2105/SMWW.2882.03
Arp, D.J., Stein, L.Y., 2003. Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. Crit. Rev. Biochem. Mol. Biol. 38, 471–495. https://doi.org/10.1080/10409230390267446
Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B.F., Recous, S., Roux, X. Le, 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ. Microbiol. 12, 315–326. https://doi.org/10.1111/j.1462-2920.2009.02070.x
Baena, S.J., Hernández, L., 2012. Análisis de la regulación colombiana en materia de olores ofensivos
Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.-M.H., van Spanning, R.J.M., 1998. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62, 1046–1078. https://doi.org/10.1128/MMBR.62.4.1046-1078.1998
Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., Kozik, V., 2017. Biological methods for odor treatment – A review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.03.093
Barbusiński, K., Parzentna-Gabor, A., Kasperczyk, D., 2021. Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods. Clean Technol. 3, 138–155. https://doi.org/10.3390/cleantechnol3010009
Baskaran, V., Patil, P.K., Antony, M.L., Avunje, S., Nagaraju, V.T., Ghate, S.D., Nathamuni, S., Dineshkumar, N., Alavandi, S. V., Vijayan, K.K., 2020. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-62183-9
Bejarano Ortiz, D.I., Thalasso, F., Cuervo López, F. de M., Texier, A.C., 2013. Inhibitory effect of sulfide on the nitrifying respiratory process. J. Chem. Technol. Biotechnol. 88, 1344–1349. https://doi.org/10.1002/jctb.3982
Bennur, T., Kumar, A.R., Zinjarde, S., Javdekar, V., 2015. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol. Res. 174, 33–47. https://doi.org/10.1016/J.MICRES.2015.03.010
Beristain-Cardoso, R., Gómez, J., Méndez-Pampín, R., 2010. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor. Bioresour. Technol. 101, 8593–8598. https://doi.org/10.1016/j.biortech.2010.06.084
Bernal, M.P., Alburquerque, J.A., Moral, R., 2009. Bioresource Technology Composting of animal manures and chemical criteria for compost maturity assessment . A review. Bioresour. Technol. 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027
Bernal, M.P., Sommer, S.G., Chadwick, D., Qing, C., Guoxue, L., Michel, F.C., 2017. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. Adv. Agron. 144, 143–233. https://doi.org/10.1016/BS.AGRON.2017.03.002
Besaury, L., Marty, F., Buquet, S., Mesnage, V., Muyzer, G., Quillet, L., 2013. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments. Microb. Ecol. 65, 311–324. https://doi.org/10.1007/S00248-012-0120-0/TABLES/4
Boden, R., 2017. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. Nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int. J. Syst. Evol. Microbiol. 67, 3919–3928. https://doi.org/10.1099/ijsem.0.002222
Bollmann, A., French, E., Laanbroek, H.J., 2011. Chapter three - Isolation, Cultivation, and Characterization of Ammonia-Oxidizing Bacteria and Archaea Adapted to Low Ammonium Concentrations, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 55–88. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00003-1
Bollmann, A., Laanbroek, H.J., 2001. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol. Ecol. 37, 211–221. https://doi.org/10.1016/S0168-6496(01)00163-5
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V, Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9
Bouzalakos, S., Jefferson, B., Longhurst, P.J., Stuetz, R.M., 2004. Developing methods to evaluate odour control products. Water Sci. Technol. 50, 225–232.
Braker, G., Fesefeldt, A., Witzel, K.P., 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769–3775. https://doi.org/10.1128/AEM.64.10.3769-3775.1998
Bueno, P., Tapias, R., López, F., Díaz, M.J., 2008. Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99, 5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087
Cabeza, I. O., López, R., Giraldez, I., Stuetz, R.M., Díaz, M.J., 2013. Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chem. Eng. J. 233, 149–158. https://doi.org/10.1016/j.cej.2013.08.032
Cabeza, I O, López, R., Ruiz-Montoya, M., Díaz, M.J., 2013. Maximising municipal solid waste - Legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manage. 128, 266–273. https://doi.org/10.1016/j.jenvman.2013.05.030
Cabrol, L., Malhautier, L., 2011. Integrating microbial ecology in bioprocess understanding: The case of gas biofiltration. Appl. Microbiol. Biotechnol. 90, 837–849. https://doi.org/10.1007/s00253-011-3191-9
Cabrol, L., Malhautier, L., Poly, F., Lepeuple, A.S., Fanlo, J.L., 2012. Bacterial dynamics in steady-state biofilters: Beyond functional stability. FEMS Microbiol. Ecol. 79, 260–271. https://doi.org/10.1111/j.1574-6941.2011.01213.x
Cabrol, L., Poly, F., Malhautier, L., Pommier, T., Lerondelle, C., Verstraete, W., Lepeuple, A.S., Fanlo, J.L., Roux, X. Le, 2016. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. Environ. Sci. Technol. 50, 338–348. https://doi.org/10.1021/acs.est.5b02740
Cai, W., Zhao, M., Kong, J., Riggio, S., Finnigan, T., Stuckey, D., Guo, M., 2021. Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. iScience 24, 102958. https://doi.org/10.1016/j.isci.2021.102958
CEN, 2007. CEN - EN 13040 Soil improvers and growing media - Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density.
Chen, L., Hoff, S.J., 2012. A two-stage wood chip-based biofilter system to mitigate odors from a deep-pit swine building. Appl. Eng. Agric. 28, 893–901
Chen, X., Li, G.D., Li, Q.Y., Hu, C.J., Qiu, S.M., Jiang, Y., Jiang, C.L., Han, L., Huang, X.S., 2015. Enteractinococcus lamae sp. nov. and Enteractinococcus viverrae sp. nov., isolated from animal faeces. Antonie van Leeuwenhoek 2015 1086 108, 1477–1483. https://doi.org/10.1007/S10482-015-0603-3
Chien, S.H., Gearhart, M.M., Villagarcía, S., 2011. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: A review. Soil Sci. 176, 327–335. https://doi.org/10.1097/SS.0B013E31821F0816
Chung, Y.-C., Huang, C., 1998. Biotreatment of ammonia in air by an immobilized Nitrosomonas europaea biofilter. Environ. Prog. 17, 70–76. https://doi.org/10.1002/ep.670170211
Chung, Y.C., Ho, K.L., Tseng, C.P., 2007. Two-stage biofilter for effective NH3 Removal from Waste Gases Containing High Concentrations of H2S. J. Air Waste Manag. Assoc. 57, 337–347. https://doi.org/10.1080/10473289.2007.10465332
Chung, Y.C., Huang, C., Tseng, C.P., Rushing Pan, J., 2000. Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter. Chemosphere 41, 329–336. https://doi.org/10.1016/S0045-6535(99)00490-7
Costello, R.C., Sullivan, D.M., 2014. Determining the pH buffering capacity of compost via titration with dilute sulfuric acid. Waste and Biomass Valorization 5, 505–513. https://doi.org/10.1007/s12649-013-9279-y
Dahl, C., Friedrich, C., Kletzin, A., 2008. Sulfur Oxidation in Prokaryotes. eLS. https://doi.org/10.1002/9780470015902.A0021155
Daims, H., Lücker, S., Wagner, M., 2016. Review A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004
Das, J., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., van Hullebusch, E.D., 2019. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour. Technol. 273, 581–591. https://doi.org/10.1016/j.biortech.2018.11.052
Das, S.K., Mishra, A.K., Tindall, B.J., Rainey, F.A., Stackebrandt, E., 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46, 981–987. https://doi.org/10.1099/00207713-46-4-981
Datta, I., Allen, D.G., 2005. Biofilter technology, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control. Springer, Berlin, Heidelberg, pp. 125–145. https://doi.org/10.1007/3-540-27007-8_6
de Gannes, V., Eudoxie, G., Hickey, W.J., 2013. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol. 133, 573–580. https://doi.org/10.1016/j.biortech.2013.01.138
Delgado Vela, J., Dick, G.J., Love, N.G., 2018. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Res. 138, 241–249. https://doi.org/10.1016/j.watres.2018.03.047
Delhoménie, M.-C., Heitz, M., 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25, 53–72. https://doi.org/10.1080/07388550590935814
Dorado, A.D., Lafuente, F.J., Gabriel, D., Gamisans, X., 2010. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ. Technol. 31, 193–204. https://doi.org/10.1080/09593330903426687
Du, W., Parker, W., 2012. Characterization of Sulfur in Raw and Anaerobically Digested Municipal Wastewater Treatment Sludges. Water Environ. Res. 85, 124–132. https://doi.org/10.2175/106143012x13407275694671
Duan, S., Zhang, Y., Zheng, S., 2021. Heterotrophic nitrifying bacteria in wastewater biological nitrogen removal systems: A review. Crit. Rev. Environ. Sci. Technol. 0, 1–37. https://doi.org/10.1080/10643389.2021.1877976
EAAB, n.d. Planta de Tratamiento de Aguas Residuales-PTAR Salitre [WWW Document]. URL http://www.acueducto.com.co/wpsv61/wps/portal/!ut/p/c5/04_SB8K8xLLM9MSSzPy8xBz9CP0os3gLw2DfYHMPIwN_cyMXA09HV1cLM2MTJ5MgE6B8pFm8s7ujh4m5j4GBv1GYgYGRn2lwoEFosLGBpzEB3eEg-_DrB8kb4ACOBvp-Hvm5qfoFuREGWSaOigAIs6kp/dl3/d3/L0lDU0lKSWdra0EhIS9JTlJBQUlpQ2dBek15cUEh (accessed 12.10.16).
Elías, A., Barona, A., Gallastegi, G., Rojo, N., Gurtubay, L., Ibarra-Berastegi, G., 2010. Preliminary acclimation strategies for successful startup in conventional biofilters. J. Air Waste Manag. Assoc. 60, 959–967. https://doi.org/10.3155/1047-3289.60.8.959
EPA, U.S.E.P.A., 1996. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].
Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. Environ. Sci. Technol. 42, 8715–8720. https://doi.org/10.1021/es801391u
Escalas, A., Guadayol, J.M., Cortina, M., Rivera, J., Caixach, J., 2003. Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res. 37, 3913–3920. https://doi.org/10.1016/S0043-1354(03)00336-1
Estrada, J.M., Kraakman, N.J.R.B., Muñoz, R., Lebrero, R., 2011. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 45, 1100–1106. https://doi.org/10.1021/es103478j
Finkmann, W., Altendorf, K., Stackebrandt, E., Lipski, A., 2000. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273–282. https://doi.org/10.1099/00207713-50-1-273
Forero, D.. F., Peña, C.E., Hernández, M.A., Cabeza, I.O., 2017. Biofiltración De Ácido Acético Usando Como Lecho Filtrante Compost A Partir De Pollinaza- Residuos De Poda- Cascarilla De Arroz. Universidad Santo Tomás.
Forero, D.F., Acevedo, P., Cabeza, I.O., Peña, C., Hernandez, M., 2018. Biofiltration of acetic acid vapours using filtering bed compost from poultry manure - pruning residues - rice husks. Chem. Eng. Trans. 64, 511–516. https://doi.org/10.3303/CET1864086
Forquin, M.P., Weimer, B.C., 2014. Brevibacterium. Encycl. Food Microbiol. Second Ed. 324–330. https://doi.org/10.1016/B978-0-12-384730-0.00047-1
Franke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M., Körner, I., 2014. Changes in the microbial communities during co-composting of digestates. Waste Manag. 34, 632–641. https://doi.org/10.1016/j.wasman.2013.12.009
Friedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier, A., Fischer, J., 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259. https://doi.org/https://doi.org/10.1016/j.mib.2005.04.005
Gabriel, D., Maestre, J.P., Martín, L., Gamisans, X., Lafuente, J., 2007. Characterisation and performance of coconut fibre as packing material in the removal of ammonia in gas-phase biofilters. Biosyst. Eng. 97, 481–490. https://doi.org/10.1016/j.biosystemseng.2007.03.038
Geets, J., Boon, N., Verstraete, W., 2006. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol. Ecol. 58, 1–13. https://doi.org/10.1111/J.1574-6941.2006.00170.X
González-Sánchez, A., Revah, S., Deshusses, M.A., 2008. Alkaline Biofiltration of H2S Odors. Environ. Sci. Technol. 42, 7398–7404. https://doi.org/10.1021/es800437f
Guimerà, X., Dorado, A.D., Santos, A., Gamisans, X., Gabriel, D., 2015. Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl. Microbiol. Biotechnol. 99, 67–76. https://doi.org/10.1007/s00253-014-5796-2
Hammerl, V., Kastl, E.-M., Schloter, M., Kublik, S., Schmidt, H., Welzl, G., Jentsch, A., Beierkuhnlein, C., Gschwendtner, S., 2019. Influence of rewetting on microbial communities involved in nitrification and denitrification in a grassland soil after a prolonged drought period. Sci. Rep. 9, 2280. https://doi.org/10.1038/s41598-018-38147-5
Haug, R.T., 1993. The Practical Handbook of Compost Engineering The Practical Handbook of Compost Engineering. CRC Press.
Hayes, J.E., Stevenson, R.J., Stuetz, R.M., 2014. The impact of malodour on communities: A review of assessment techniques. Sci. Total Environ. 500–501, 395–407. https://doi.org/10.1016/J.SCITOTENV.2014.09.003
Ho, K.L., Chung, Y.C., Tseng, C.P., 2008. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. Bioresour. Technol. 99, 2757–2765. https://doi.org/10.1016/j.biortech.2007.06.041
Hort, C., Gracy, S., Platel, V., Moynault, L., 2013. A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: Application at industrial scale. Waste Manag. 33, 18–25. https://doi.org/10.1016/j.wasman.2012.09.009
Hou, J., Li, M., Xia, T., Hao, Y., Ding, J., 2016. Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. Environ. Sci. Pollut. Res. 23, 20628–20636. https://doi.org/10.1007/s11356-016-7238-4
Huang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., Zhang, M., 2021. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere 278, 130413. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130413
Hvitved-Jacobsen, T., 2001. Sewer Processes, Sewer Processes. CRC Press. https://doi.org/10.1201/9781420012668
Hwang, J.W., Jang, S.J., Lee, E.Y., Choi, C.Y., Park, S., 2007. Evaluation of composts as biofilter packing material for treatment of gaseous p-xylene. Biochem. Eng. J. 35, 142–149. https://doi.org/10.1016/J.BEJ.2007.01.008
ICONTEC, Instituto Colombiano de Normas Técnicas y Certificaciones, 2011. NTC 5167-Productos para la industria agrícola.Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo.
IDEAM, 2012. Estado de la Calidad del Aire en Colombia 2007-2010.
llumina, 2013. 16S Metagenomic Sequencing Library Preparation. Part #15044223 [WWW Document]. Illumina.com. URL https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed 8.7.22).
Imhoff, J.F., Wiese, J., 2014. The Order Kiloniellales, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 301–306. https://doi.org/10.1007/978-3-642-30197-1_301
Iranpour, R., Cox, H.H.J., Deshusses, M.A., Schroeder, E.D., 2005. Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Prog. 24, 254–267. https://doi.org/10.1002/ep.10077
Jeong, D.W., Heo, S., Ryu, S., Blom, J., Lee, J.H., 2017. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 7. https://doi.org/10.1038/S41598-017-05918-5
Jiang, G., Melder, D., Keller, J., Yuan, Z., 2017. Odor emissions from domestic wastewater: A review. Crit. Rev. Environ. Sci. Technol. 47, 1581–1611. https://doi.org/10.1080/10643389.2017.1386952
Jiang, X., Luo, Y., Yan, R., Tay, J.H., 2009a. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia. Bioresour. Technol. 100, 5707–5713. https://doi.org/10.1016/j.biortech.2009.06.055
Jiang, X., Tay, J.H., 2010. Microbial community structures in a horizontal biotrickling filter degrading H2S and NH3. Bioresour. Technol. 101, 1635–1641. https://doi.org/10.1016/j.biortech.2009.09.074
Jiang, X., Yan, R., Hwa, J., 2009b. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75, 1350–1355. https://doi.org/10.1016/j.chemosphere.2009.02.028
Kanehisa Laboratories, 2019. KEGG: Kyoto Encyclopedia of Genes and Genomes [WWW Document]. URL https://www.genome.jp/kegg/pathway.html (accessed 10.10.19).
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. https://doi.org/10.1093/nar/gkv1070
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166
Kennes, C., Rene, E.R., Veiga, M.C., 2009. Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84, 1419–1436. https://doi.org/10.1002/jctb.2216
Khan, F.I., Kr. Ghoshal, A., 2000. Removal of Volatile Organic Compounds from polluted air. J. Loss Prev. Process Ind. 13, 527–545. https://doi.org/10.1016/S0950-4230(00)00007-3
Kim, H.S., Kim, Y.J., Chung, J.S., Xie, Q., 2002. Long-term operation of a biofilter for simultaneous removal of H2S and NH3. J. Air Waste Manage. Assoc. 52, 1389–1398. https://doi.org/10.1080/10473289.2002.10470871
Kim, I.S., Ivanov, V.N., 2000. Detection of nitrifying bacteria in activated sludge by fluorescent in situ hybridization and fluorescence spectrometry. World J. Microbiol. Biotechnol. 16, 425–430. https://doi.org/10.1023/A:1008949821236
Kim, K.K., Lee, J.-S., Stevens, D.A., 2013. Microbiology and epidemiology of Halomonas species. Future Microbiol. 8, 1559–1573. https://doi.org/10.2217/fmb.13.108
Kim, N.J., Hirai, M., Shoda, M., 2000. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters. J. Hazard. Mater. 72, 77–90. https://doi.org/10.1016/S0304-3894(99)00160-0
Kitamura, R., Ishii, K., Maeda, I., Kozaki, T., Iwabuchi, K., Saito, T., 2016. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost. J. Biosci. Bioeng. 121, 57–65. https://doi.org/10.1016/j.jbiosc.2015.05.005
Kleinheinz, G.T., Langolf, B.M., 2016. A long-term study of a lava rock-based biofilter for hydrogen sulfide, ammonia and volatile organic compounds (VOCs) treatment at a wastewater treatment facility. Nat. Environ. Pollut. Technol. 15, 1279–1284.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1. https://doi.org/10.1093/nar/gks808
Kloos, K., Mergel, A., Rösch, C., Bothe, H., 2001. Denitrification within the genus Azospirillum and other associative bacteria. Funct. Plant Biol. 28, 991–998. https://doi.org/10.1071/PP01071
Kogan, V., Torres, E.M., 1997. Ammonia Emissions from Publicly Owned Treatment Works (POTWs), in: Air & Waste Management Association’s 90th-Annual Meeting and Exhibition. Toronto.
Kouba, V., Proksova, E., Wiesinger, H., Vejmelkova, D., Bartacek, J., 2017. Good servant, bad master: sulfide influence on partial nitritation of sewage. Water Sci. Technol. 76, 3258–3268. https://doi.org/10.2166/wst.2017.490
Krishnani, K.K., Kathiravan, V., Natarajan, M., Kailasam, M., Pillai, S.M., 2010. Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture. Appl. Biochem. Biotechnol. 162, 1225–1237. https://doi.org/10.1007/s12010-009-8886-3
Kristiansen, A., Lindholst, S., Feilberg, A., Nielsen, P.H., Neufeld, J.D., Nielsen, J.L., 2011. Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility. Appl. Environ. Microbiol. 77, 8595–8604. https://doi.org/10.1128/AEM.06175-11
Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. MICROBIAL BIOGEOCHEMISTRY The microbial nitrogen-cycling network. Nat. Publ. Gr. 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9
Lasaridi, K., Katsabanis, G., Kyriacou, A., Maggos, T., Manios, T., Fountoulakis, M., Kalogerakis, N., Karageorgos, P., Stentiford, E.I., 2010. Assessing odour nuisance from wastewater treatment and composting facilities in Greece. Waste Manag. Res. 28, 977–984. https://doi.org/10.1177/0734242X10372660
Lawson, P.A., 2019. Tissierella, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–12. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00721.pub2
Le Borgne, S., Baquerizo, G., 2019. Microbial ecology of biofiltration units used for the desulfurization of biogas. ChemEngineering 3, 1–26. https://doi.org/10.3390/chemengineering3030072
Lebrero, R., Bouchy, L., Stuetz, R., Muñoz, R., 2011. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 41, 915–950. https://doi.org/10.1080/10643380903300000
Lee, C.J.D., McMullan, P.E., O’Kane, C.J., Stevenson, A., Santos, I.C., Roy, C., Ghosh, W., Mancinelli, R.L., Mormile, M.R., McMullan, G., Banciu, H.L., Fares, M.A., Benison, K.C., Oren, A., Dyall-Smith, M.L., Hallsworth, J.E., 2018. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693. https://doi.org/10.1093/femsre/fuy026
Legendre, P., Anderson, M.J., 1999. Distance-Based Redundancy Analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. https://doi.org/https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716
Lewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., Namiesnik, J., 2016. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030
Li, L., Zhang, J., Lin, J., Liu, J., 2015. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J. Microbiol. Biotechnol. 31, 1501–1515. https://doi.org/10.1007/s11274-015-1915-1
Li, W., Ni, J., Cai, S., Liu, Y., Shen, C., Yang, H., Chen, Y., Tao, J., Yu, Y., Liu, Q., 2019. Variations in microbial community structure and functional gene expression in bio-treatment processes with odorous pollutants. Sci. Reports 2019 91 9, 1–9. https://doi.org/10.1038/s41598-019-54281-0
Li, Y., Ma, J., Yong, X., Luo, L., Wong, J.W.C., Zhang, Y., Wu, H., Zhou, J., 2022. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 343, 126137. https://doi.org/10.1016/J.BIORTECH.2021.126137
Liu, H., Luo, G.-Q., Hu, H.-Y., Zhang, Q., Yang, J.-K., Yao, H., 2012. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J. Hazard. Mater. 235–236, 298–306. https://doi.org/http://dx.doi.org/10.1016/j.jhazmat.2012.07.060
Liu, J., Yang, K., Li, L., Zhang, J., 2017. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics. Front. Environ. Sci. Eng. 11, 6. https://doi.org/10.1007/s11783-017-0932-8
Liu, T., Dong, H., Zhu, Z., Shang, B., Yin, F., Zhang, W., Zhou, T., 2017. Effects of biofilter media depth and moisture content on removal of gases from a swine barn. J. Air Waste Manag. Assoc. 67, 1288–1297. https://doi.org/10.1080/10962247.2017.1321591
López, R., Cabeza, I.O., Giráldez, I., Díaz, M.J., 2011. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 102, 7984–7993. https://doi.org/10.1016/j.biortech.2011.05.085
Lozupone, C., Knight, R., 2005. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 71, 8228. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
Luo, X., Meng, F., 2020. Roles of Organic Matter-Induced Heterotrophic Bacteria in Nitritation Reactors: Ammonium Removal and Bacterial Interactions. ACS Sustain. Chem. Eng. 8, 3976–3985. https://doi.org/10.1021/acssuschemeng.0c00241
MADS, 2013. Resolución 1541 de 2013 (12 de noviembre). Colombia.
Maeda, K., Hanajima, D., Toyoda, S., Yoshida, N., Morioka, R., Osada, T., 2011. Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4, 700–709. https://doi.org/10.1111/j.1751-7915.2010.00236.x
Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. 112, 15684–15689. https://doi.org/10.1073/pnas.1516684112
Maia, G.D.N., Day V, G.B., Gates, R.S., Taraba, J.L., 2012. Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters. Atmos. Environ. 46, 659–664. https://doi.org/10.1016/j.atmosenv.2011.10.019
Malhautier, L., Gracian, C., Roux, J.C., Fanlo, J.L., Le Cloirec, P., 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere 50, 145–153. https://doi.org/10.1016/S0045-6535(02)00395-8
Marrugan, A., 2004. Measuring Biological Diversity. Wiley-Blackwell.
Martinez, A.P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis.
MAVDT- Ministerio del MedioAmbiente, V. y, 2010. Resolución número 610 (24 de marzo de 2010). Colombia. https://doi.org/>>>>Z’1FG
MAVDT. Ministerio de Ambiente, V. y D.T., 2006. Resolución 601 de 04 de abril de 2006.
McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217.
MinSalud, M. de S. y P.S., OPS, O.P. de la S., 2012. Convenio Cooperación Técnica No 485/10. Lineamiento para la vigilancia sanitaria y ambiental del impacto de los olores ofensivos en la salud y calidad de vida de las comunidades expuestas en áreas urbanas. Colombia.
Montebello, A.M., Bezerra, T., Rovira, R., Rago, L., Lafuente, J., Gamisans, X., Campoy, S., Baeza, M., Gabriel, D., 2013. Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. Chemosphere 93, 2675–2682. https://doi.org/10.1016/J.CHEMOSPHERE.2013.08.052
Mora, Z.A., Chávez, C.H., Fonseca, G., Cabra, J. a, Salgado, C., 2005. Desarrollo de un inóculo microbiano empleando lodos activados para la remoción de ácido sulfhídrico ( H2S ). Rev. Colomb. Biotecnol. VII, 26–34.
Morgan-Sagastume, J.M., Noyola, A., 2006. Hydrogen sulfide removal by compost biofiltration: Effect of mixing the filter media on operational factors. Bioresour. Technol. 97, 1546–1553. https://doi.org/10.1016/J.BIORTECH.2005.06.003
Mulvaney, R.L., 1996. Nitrogen—Inorganic Forms, in: Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Series SV - 5.3. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 1123–1184. https://doi.org/10.2136/sssabookser5.3.c38
Muñoz, R., Malhautier, L., Fanlo, J.-L., Quijano, G., 2015. Biological technologies for the treatment of atmospheric pollutants. Int. J. Environ. Anal. Chem. 95, 950–967. https://doi.org/10.1080/03067319.2015.1055471
Nicolai, R.E., Janni, K.A., 2001. Biofilter media mixture ratio of wood chips and compost treating swine odors. Water Sci. Technol. 44, 261—267. https://doi.org/10.2166/wst.2001.0554
Nikolaou, A.D., Golfinopoulos, S.K., Kostopoulou, M.N., Kolokythas, G.A., Lekkas, T.D., 2002. Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res. 36, 2883–2890. https://doi.org/10.1016/S0043-1354(01)00497-3
NIST National Institute of Standards and Technology, 2022. NIST Standard Reference Database Number 69 [WWW Document]. NIST Chem. Webb. https://doi.org/10.18434/T4D303
Nokhal, T.H., Schlegel, H.G., 1983. Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33, 26–37. https://doi.org/10.1099/00207713-33-1-26/CITE/REFWORKS
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. vegan.
Oliveira, L.C.G., Ramos, P.L., Marem, A., Kondo, M.Y., Rocha, R.C.S., Bertolini, T., Silveira, M.A.V., Cruz, J.B. da, Vasconcellos, S.P. de, Juliano, L., Okamoto, D.N., 2015. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts. Brazilian J. Microbiol. 46, 347–354. https://doi.org/10.1590/S1517-838246220130316
Omoregie, A.I., Ong, D.E.L., Nissom, P.M., 2019. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett. Appl. Microbiol. 68, 173–181. https://doi.org/https://doi.org/10.1111/lam.13103
Omri, I., Aouidi, F., Bouallagui, H., Godon, J., Hamdi, M., 2013. Performance study of biofilter developed to treat H2S from wastewater odor. Saudi J. Biol. Sci. 169–176. https://doi.org/10.1016/j.sjbs.2013.01.005
Ouattara, A.S., Assih, E.A., Thierry, S., Cayol, J.L., Labat, M., Monroy, O., Macarie, H., 2003. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int. J. Syst. Evol. Microbiol. 53, 1247–1251. https://doi.org/10.1099/IJS.0.02540-0/CITE/REFWORKS
Ovreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997
Pagans, E., Barrena, R., Font, X., Sánchez, A., 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62, 1534–1542. https://doi.org/10.1016/j.chemosphere.2005.06.044
Pandey, S.K., Kim, K.H., Kwon, E.E., Kim, Y.H., 2016. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas. Environ. Res. 146, 235–244. https://doi.org/10.1016/J.ENVRES.2015.12.033
Park, S., Bae, W., 2009. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem. 44, 631–640. https://doi.org/https://doi.org/10.1016/j.procbio.2009.02.002
Parkes, R.J., Sass, H., 2009. Deep Sub-Surface. Encycl. Microbiol. 64–79. https://doi.org/10.1016/B978-012373944-5.00275-3
Parthasarathy, S., Azam, S., Lakshman Sagar, A., Narasimha Rao, V., Gudla, R., Parapatla, H., Yakkala, H., Ghanta Vemuri, S., Siddavattam, D., 2017. Genome-Guided Insights Reveal Organophosphate-Degrading Brevundimonas diminuta as Sphingopyxis wildii and Define Its Versatile Metabolic Capabilities and Environmental Adaptations. Genome Biol. Evol. 9, 77–81. https://doi.org/10.1093/gbe/evw275
Perman, E., Schnürer, A., Björn, A., Moestedt, J., 2022. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass and Bioenergy 161, 106478. https://doi.org/10.1016/J.BIOMBIOE.2022.106478
Pokorna, D., Zabranska, J., 2015. Sulfur-oxidizing Bacteria in Environmental Technology. Biotechnol. Adv. 33, 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
Portilla, E., Sáez, R.T., 2007. Hydrogen sulphide removal by a biofiltration system in the waste-water treatment plant of the city of Bucaramanga in Colombia. J. Biotechnol. 131, S158–S159. https://doi.org/http://dx.doi.org/10.1016/j.jbiotec.2007.07.880
Prado, Ó.J., Gabriel, D., Lafuente, J., 2009. Economical assessment of the design, construction and operation of open-bed biofilters for waste gas treatment. J. Environ. Manage. 90, 2515–2523. https://doi.org/10.1016/J.JENVMAN.2009.01.022
Prenafeta-Boldú, F.X., Rojo, N., Gallastegui, G., Guivernau, M., Viñas, M., Elías, A., 2014. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material. Biodegradation 25, 557–568. https://doi.org/10.1007/s10532-014-9681-6
Prinn, R.G., Weiss, R.F., Arduini, J., Arnold, T., Langley Dewitt, H., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kim, J., Krummel, P.B., Li, S., Loh, Z.M., Lunder, C.R., Maione, M., Manning, A.J., Miller, B.R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P.K., Schmidt, R., Simmonds, P.G., Paul Steele, L., Vollmer, M.K., Wang, R.H., Yao, B., Yokouchi, Y., Young, D., Zhou, L., 2018. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018. https://doi.org/10.5194/ESSD-10-985-2018
Qi, B., Moe, W., Kinney, K., 2005. Treatment of Paint Spray Booth Off-Gases in a Fungal Biofilter. J. Environ. Eng. 131, 180–189. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(180)
Qiu, X., Deshusses, M.A., 2017. Performance of a monolith biotrickling filter treating high concentrations of H2S from mimic biogas and elemental sulfur plugging control using pigging. Chemosphere 186, 790–797. https://doi.org/10.1016/j.chemosphere.2017.08.032
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41. https://doi.org/10.1093/nar/gks1219
Quintero, R., Hernández del Toro, C., 2017. Sistema Para El Control De Olores En La Central Hidroeléctrica El Paraiso.
Rabbani, K.A., Charles, W., Kayaalp, A., Cord-ruwisch, R., Ho, G., 2016. Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochem. Eng. J. 107, 1–10. https://doi.org/10.1016/j.bej.2015.11.018
Ralebitso-Senior, T.K., Senior, E., Di Felice, R., Jarvis, K., 2012. Waste gas biofiltration: Advances and limitations of current approaches in microbiology. Environ. Sci. Technol. 46, 8542–8573. https://doi.org/10.1021/es203906c
Ramette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
Ravina, M., Panepinto, D., Mejia Estrada, J., De Giorgio, L., Salizzoni, P., Chiara Zanetti, M., Meucci, L., 2019. Characterization of odorous emissions from a civil wastewater treatment plant in Italy. WIT Trans. Ecol. Environ. 236, 159–170. https://doi.org/10.2495/AIR190161
Ren, B., Zhao, Y., Lyczko, N., Nzihou, A., 2019. Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant. Waste and Biomass Valorization 10, 1443–1458. https://doi.org/10.1007/s12649-018-0384-9
Rene, E.R., Kennes, C., Veiga, M.C., 2013. Biofilters, in: Kennes, C., Veiga, M.C. (Eds.), Air Pollution Prevention and Control: Bioreactors and Bioenergy. John Wiley & Sons, Ltd., pp. 60–72.
Rene, E.R., Mohammad, B.T., Veiga, M.C., Kennes, C., 2012. Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresour. Technol. 116, 204–213. https://doi.org/10.1016/j.biortech.2011.12.006
Revah, S., Morgan-Sagastume, J., 2005a. Methods of Odor and VOC Control, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control SE - 3. Springer Berlin Heidelberg, pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3
Revah, S., Morgan-Sagastume, J.M., 2005b. Methods of odor and VOC control, in: Biotechnology for Odor and Air Pollution Control. pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3
Reyes, J., Toledo, M., Michán, C., Siles, J.A., Alhama, J., Martín, M.A., 2020. Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. Environ. Res. 190. https://doi.org/10.1016/j.envres.2020.110057
Rotthauwe, J., Witzel, K., 1997. 1997 The ammonia monooxygenase structural gene amoA as a functional marker Molecular fine-scale analysis of natural ammonia-oxidizing populations.pdf 63, 4704–4712.
Rueda Saa, G.H., 2001. Capacidad de eliminación de H2S en un biofiltro empacado con mezcla de suelo carbonilla y ceniza volcánica. Universidad del Valle.
Sánchez-Porro, C., De La Haba, R.R., Ventosa, A., 2014. The genus virgibacillus. The Prokaryotes: Firmicutes and Tenericutes 9783642301209, 455–465. https://doi.org/10.1007/978-3-642-30120-9_353/COVER
Sapek, A., 2013. Ammonia Emissions from Non-Agricultural Sources. Polish J. Environ. Stud. 22, 63–70.
Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S., Karsch-Mizrachi, I., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020. https://doi.org/10.1093/DATABASE/BAAA062
Secretaria del Medio Ambiente. Observatorio de Salud Ambiental, 2016. Quejas atendidas por exposición a olores ofensivos [WWW Document]. URL http: //biblioteca.saludcapital.gov.co/ambiental/index.shtml?s=l&id=327&v=l
Secretaría Distrital de Salud. Observatorio de Salud de Bogotá-SaluData, 2021. Quejas atendidas en Bogotá D.C. | SALUDATA [WWW Document]. URL https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-ambiental/quejas/ (accessed 10.5.22).
Sévin, D.C., Stählin, J.N., Pollak, G.R., Kuehne, A., Sauer, U., 2016. Global Metabolic Responses to Salt Stress in Fifteen Species. PLoS One 11, e0148888. https://doi.org/10.1371/JOURNAL.PONE.0148888
Shareefdeen, Z., 2020. Industrial biofilter case studies, From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. INC. https://doi.org/10.1016/b978-0-12-819064-7.00009-1
Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T., 2020. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agron. . https://doi.org/10.3390/agronomy10091429
Singh, A., Ward, O., 2005. Microbiology of bioreactors for waste gas treatment. Biotechnol. Odor Air Pollut. Control 101–121. https://doi.org/10.1007/3-540-27007-8_5/COVER
Sivret, E.C., Le-Minh, N., Wang, B., Wang, X., Stuetz, R.M., 2017. Dynamics of Volatile Sulfur Compounds and Volatile Organic Compounds in Sewer Headspace Air. J. Environ. Eng. 143, 04016080. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001154
Sivret, E.C., Wang, B., Parcsi, G., Stuetz, R.M., 2016. Prioritisation of odorants emitted from sewers using odour activity values. Water Res. 88, 308–321. https://doi.org/10.1016/j.watres.2015.10.020
Smet, E., Van Langenhove, H., 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation 9, 273–284. https://doi.org/10.1023/a:1008281609966
Sorokin, D.Y., Kuenen, J.G., 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol. Rev. 29. https://doi.org/10.1016/j.femsre.2004.10.005
Spieck, E., Bock, E., 2015. The Lithoautotrophic Nitrite-Oxidizing Bacteria, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–10. https://doi.org/https://doi.org/10.1002/9781118960608.bm00014
Spieck, E., Lipski, A., 2011. Chapter five - Cultivation, Growth Physiology, and Chemotaxonomy of Nitrite-Oxidizing Bacteria, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 109–130. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00005-5
Spieck, E., Wegen, S., Keuter, S., 2021. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl. Microbiol. Biotechnol. 105, 7123–7139. https://doi.org/10.1007/s00253-021-11487-5
Steele, J.A., Ozis, F., Fuhrman, J.A., Devinny, J.S., 2005. Structure of microbial communities in ethanol biofilters. Chem. Eng. J. 113, 135–143. https://doi.org/10.1016/j.cej.2005.04.011
Szukics, U., Abell, G.C.J., Hödl, V., Mitter, B., Sessitsch, A., Hackl, E., Zechmeister-Boltenstern, S., 2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol. Ecol. 72, 395–406. https://doi.org/10.1111/j.1574-6941.2010.00853.x
Talaiekhozani, A., Bagheri, M., Goli, A., Talaei Khoozani, M.R., 2016. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manage. 170, 186–206. https://doi.org/10.1016/j.jenvman.2016.01.021
Tang, S.-K., Wang, Y., Lee, J.-C., Lou, K., Park, D.-J., Kim, C.-J., Li, W.-J., 2010. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 60, 1317–1421. https://doi.org/10.1099/ijs.0.014993-0
Thanakiatkrai, P., Welch, L., 2012. Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I 161–165. https://doi.org/10.1007/s00414-011-0558-5
Tian, W., Chen, X., Zhou, P., Fu, X., Zhao, H., 2020. Removal of H2S by vermicompost biofilter and analysis on bacterial community. Open Chem. 18, 720–731. https://doi.org/10.1515/chem-2020-0131
Tourna, M., Maclean, P., Condron, L., O’Callaghan, M., Wakelin, S.A., 2014. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 88, 538–549. https://doi.org/10.1111/1574-6941.12323
Trujillo, M.E., Dedysh, S., P., D., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B. (Eds.), 2015. Sporosarcina, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–7. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00563
Tsang, Y.F., Wang, L., Chua, H., 2015. Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change. Chem. Eng. J. 281, 389–396. https://doi.org/10.1016/j.cej.2015.06.107
Tu, X., Li, J., Feng, R., Sun, G., Guo, J., 2016. Comparison of removal behavior of two biotrickling filters under transient condition and effect of pH on the bacterial communities. PLoS One 11, 1–14. https://doi.org/10.1371/journal.pone.0155593
Van Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E., Takacs-Vesbach, C.D., 2014. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert. Appl. Environ. Microbiol. 80, 3034–3043. https://doi.org/10.1128/AEM.03414-13
Vergara-Fernández, A., Hernández, S., Revah, S., 2011. Elimination of hydrophobic volatile organic compounds in fungal biofilters: Reducing start-up time using different carbon sources. Biotechnol. Bioeng. 108, 758–765. https://doi.org/10.1002/bit.23003
Vikrant, K., Kumar, S., Tsang, D.C.W., Soo, S., Kumar, P., Shekhar, B., Sharan, R., Kim, K., 2018. Bio fi ltration of hydrogen sul fi de : Trends and challenges 187. https://doi.org/10.1016/j.jclepro.2018.03.188
Wang, K., Li, W., Li, X., Ren, N., 2015. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure. Sci. Rep. 5, 1–8. https://doi.org/10.1038/srep14932
Wang, L., Shao, Z., 2021. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front. Microbiol. 12, 390. https://doi.org/10.3389/fmicb.2021.652766
Wright, W.F., Schroeder, E.D., Chang, D.P., 2005. Transient Response of Flow-Direction-Switching Vapor-Phase Biofilters. J. Environ. Eng. 131, 999–1009. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(999)
Xi, B.D., He, X.S., Wei, Z.M., Jiang, Y.H., Li, M.X., Li, D., Li, Y., Dang, Q.L., 2012. Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere 88, 744–750. https://doi.org/10.1016/J.CHEMOSPHERE.2012.04.032
Xia, Y., Lü, C., Hou, N., Xin, Y., Liu, J., Liu, H., Xun, L., 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11, 2754–2766. https://doi.org/10.1038/ismej.2017.125
Xie, B., Liang, S.B., Tang, Y., Mi, W.X., Xu, Y., 2009. Petrochemical wastewater odor treatment by biofiltration. Bioresour. Technol. 100, 2204–2209. https://doi.org/10.1016/j.biortech.2008.10.035
Yang, L., Kent, A.D., Wang, X., Funk, T.L., Gates, R.S., Zhang, Y., 2014a. Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities. J. Hazard. Mater. 271, 292–301. https://doi.org/10.1016/j.jhazmat.2014.01.058
Yang, L., Wang, X., Funk, T.L., 2014b. Strong influence of medium pH condition on gas-phase biofilter ammonia removal, nitrous oxide generation and microbial communities. Bioresour. Technol. 152, 74–79. https://doi.org/10.1016/j.biortech.2013.10.116
Yang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X., 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854–862. https://doi.org/10.1016/J.BIORTECH.2010.09.007
Yasuda, T., Waki, M., Fukumoto, Y., Hanajima, D., Kuroda, K., Suzuki, K., Matsumoto, T., Uenishi, H., 2017. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter. J. Appl. Microbiol. 123, 1498–1511. https://doi.org/10.1111/jam.13603
Ye, J., Zhang, R., Nielsen, S., Joseph, S.D., Huang, D., Thomas, T., 2016. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 7, 372. https://doi.org/10.3389/fmicb.2016.00372
Yeung, M., Saingam, P., Xu, Y., Xi, J., 2021. Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. Microbiome 9, 1–10. https://doi.org/10.1186/s40168-020-00944-4
Ying, S., Kong, X., Cai, Z., Man, Z., Xin, Y., Liu, D., 2020. Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia. Chemosphere 255. https://doi.org/10.1016/j.chemosphere.2020.126931
Yuan, J., Du, L., Li, S., Yang, F., Zhang, Z., Li, G., Wang, G., 2019. Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ. Sci. Pollut. Res. 26, 3762–3770. https://doi.org/10.1007/s11356-018-3795-z
Zainudin, M.H., Mustapha, N.A., Maeda, T., Ramli, N., Sakai, K., Hassan, M., 2020. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw. Waste Manag. 106, 240–249. https://doi.org/10.1016/J.WASMAN.2020.03.029
Zainudin, M.H.M., Zulkarnain, A., Azmi, A.S., Muniandy, S., Sakai, K., Shirai, Y., Hassan, M.A., 2022. Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy 12. https://doi.org/10.3390/agronomy12010198
Zamir, S.M., Halladj, R., Nasernejad, B., 2011. Removal of toluene vapors using a fungal biofilter under intermittent loading. Process Saf. Environ. Prot. 89, 8–14. https://doi.org/10.1016/J.PSEP.2010.10.001
Zarra, T., Naddeo, V., Belgiorno, V., Reiser, M., Kranert, M., 2008. Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Sci. Technol. 58, 89–94. https://doi.org/10.2166/wst.2008.330
Zhang, J., Li, L., Liu, J., 2017. Effects of irrigation and water content of packing materials on a thermophilic biofilter for SO2 removal: Performance, oxygen distribution and microbial population. Biochem. Eng. J. 118, 105–112. https://doi.org/10.1016/J.BEJ.2016.11.015
Zheng, T., Li, L., Chai, F., Wang, Y., 2021. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site. Process Saf. Environ. Prot. 149, 410–421. https://doi.org/10.1016/j.psep.2020.11.009
Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., Zavarzin, G.A., 2001. Amphibacillus fermentum sp. nov. and Amphibacillus tropicussp. nov., New Alkaliphilic, Facultatively Anaerobic, Saccharolytic Bacilli from Lake Magadi. Microbiology 70, 711–722. https://doi.org/10.1023/A:1013196017556
Zhu, X., Suidan, M.T., Pruden, A., Yang, C., Alonso, C., Kim, B.J., Kim, B.R., 2004. Effect of substrate henry’s constant on biofilter performance. J. Air Waste Manag. Assoc. 54, 409–418. https://doi.org/10.1080/10473289.2004.10470918
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 202 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83919/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83919/2/Tesis%20Diana%20Vela-repositorio.pdf
https://repositorio.unal.edu.co/bitstream/unal/83919/3/Tesis%20Diana%20Vela-repositorio.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
dd351baa1857ddcc8e03b547b4b15c71
bc86de463803095766d8bbc5962b9c52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089772954550272
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2de Brito Brandão, Pedro Filipe9ec73d77d555a4dff5e0457f24f26aefCabeza, Iván O.8efc5801036ed1a1665f185e6d678634Vela Aparicio, Diana Gissetfd7b0ee85f237decf9fb010455f2dc1fGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina2023-05-30T20:29:12Z2023-05-30T20:29:12Z2022-10https://repositorio.unal.edu.co/handle/unal/83919Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coilustraciones, fotografías, graficasLa biofiltración es una biotecnología de alta eficiencia y bajo costo para la remoción de H2S y NH3 emitidos en plantas de tratamiento de aguas residuales (PTAR). Sin embargo, la influencia de condiciones transitorias durante la operación, frecuentes a nivel industrial, sobre la comunidad microbiana presente en el biofiltro no ha sido muy estudiada. Este trabajo evaluó los cambios de la comunidad microbiana de dos biofiltros de compost de pollinaza y bagazo de caña bajo condiciones que simulan las variaciones y rangos de concentraciones de H2S y NH3 encontradas en la PTAR El Salitre. Estos biofiltros se sometieron a cambios en la carga de los gases, mediante la disminución del tiempo de residencia (EBRT) y picos de concentración, y posteriormente, se redujo la humedad del lecho. En las condiciones donde disminuyó la eficiencia de remoción (ER), se analizaron los productos de oxidación de los gases y se determinó la composición de la comunidad microbiana, mediante secuenciación del gen ARNr 16S del metagenoma. Finalmente, se inoculó el lecho de uno de los biofiltros con un cultivo microbiano enriquecido en bacterias nitrificantes y oxidantes de azufre para evaluar su capacidad de recuperación bajo condiciones que simularon las variaciones estacionales y diarias de concentración en la PTAR. A un EBRT de 25 s, alta concentración de gases y 40% de humedad, el biofiltro alcanzó una capacidad de eliminación de 32,2±4,7 g H2S/m3h y 1,3±0,1 g NH3/m3h con una ER de 80% de H2S y 91% de NH3. La acumulación de subproductos (sulfato y amonio) provocó una alta proporción de bacterias heterótrofas halófilas en el lecho. Tras la reducción de la humedad a 20%, se redujo la eficiencia de remoción y la diversidad microbiana. Finalmente, ambos biofiltros, inoculado o no, pudieron recuperar la remoción de gases a más de 90%, bajo cambios diarios en la concentración de los gases y a alta concentración de sulfato y amonio. Este estudio demostró que la comunidad microbiana del biofiltro pudo adaptarse a cambios drásticos en la carga de gases, disminución en la humedad y acumulación de sulfato y amonio en el lecho hasta alcanzar una composición estable. Se concluye que el biofiltro desarrollado puede usarse para la eliminación de H2S y NH3 en diversas actividades industriales y bajo condiciones de operación variables mencionadas (Texto tomado de la fuente)Biofiltration is a high efficiency and low-cost biotechnology for the removal of H2S and NH3 emitted in wastewater treatment plants (WWTP). However, the influence of transient conditions during operation, frequent at the industrial level, on the microbial community involved in gas removal has not been well studied. This work evaluated the changes in the microbial community of two compost biofilters made of chicken manure and sugarcane bagasse to remove H2S and NH3 under conditions that simulate the variations and ranges of concentrations found at the WWTP El Salitre. These biofilters were exposed to changes in gas loading by decreasing the residence time (EBRT) and concentration peaks, and subsequently, the bed moisture was reduced. The oxidation products of the gases were analyzed, and the composition of the microbial community was determined by 16S rRNA metagenome sequencing when the removal efficiency (RE) declined. Finally, the bed of one of the biofilters was inoculated with an enriched culture of nitrifying and sulfur-oxidizing bacteria to evaluate its recovery capacity under conditions that simulated seasonal and daily concentration variations at the WWTP. The biofilter achieved a removal capacity of 32.2±4.7 g H2S/m3h and 1.3±0.1 g NH3/m3h with an ER of 80% H2S and 91% NH3 at an EBRT of 25 s, high concentration of gases and 40% moisture. The accumulation of by-products (sulfate and ammonium) resulted in a high proportion of heterotrophic halophilic bacteria in the bed. After moisture reduction to 20%, removal efficiency and microbial diversity were reduced. Finally, both biofilters, inoculated or not, could recover gas removal under daily changes in gas concentrations and at high sulfate and ammonium concentrations. This study showed that the microbial community of the biofilter could adapt to drastic changes in gas loading, moisture reduction and accumulation of sulfate and ammonium in the bed until it reached a stable composition. The results suggest that the developed biofilter can be used for H2S and NH3 gas removal in several industrial facilities and under the mentioned operating conditionsDoctoradoDoctor en BiotecnologíaProyecto de investigación - Convocatoria de Doctorados Nacionales 727 de 2015Biotecnología Ambientalxxii, 202 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesBiofiltraciónCompostSulfuro de hidrógenoAmoniacoCondiciones transitoriasComunidad microbianaPTAR El SalitreBiofiltrationHydrogen sulfideAmmoniaTransient conditionsMicrobial communityWWTP El SalitrebiofilterBiofiltroscompostEvaluación de la comunidad microbiana en un sistema de biofiltración simultánea de H2S y NH3 basado en lechos orgánicosEvaluation of the microbial community in a simultaneous H2S and NH3 biofiltration system based on organic bedsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAcinas, S.G., Marcelino, L.A., Klepac-Ceraj, V., Polz, M.F., 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635. https://doi.org/10.1128/JB.186.9.2629-2635.2004Air Clean System, 2010. ACS IOL 108 Informe de Resultados y Análisis del Monitoreo de Olores en la PTAR El Salitre”. ColombiaAizpuru, A., Malhautier, L., Roux, J.C., Fanlo, J.L., 2001. Biofiltration of a mixture of volatile organic emissions. J. Air Waste Manag. Assoc. https://doi.org/10.1080/10473289.2001.10464388Alinezhad, E., Haghighi, M., Rahmani, F., Keshizadeh, H., Abdi, M., Naddafi, K., 2019. Technical and economic investigation of chemical scrubber and biofiltration in removal of H2S and NH3 from wastewater treatment plant. J. Environ. Manage. 241, 32–43. https://doi.org/10.1016/j.jenvman.2019.04.003Allievi, M.J., Silveira, D.D., Cantão, M.E., Filho, P.B., 2018. Bacterial community diversity in a full scale biofilter treating wastewater odor. Water Sci. Technol. 77, 2014–2022. https://doi.org/10.2166/wst.2018.114Alvarez Mancilla, A., Benítez Jiménez, J., Camargo Caicedo, Y., 2011. Biofiltración para la remoción de Sulfuro de Hidrógeno en la Estación de Bombeo Norte de Aguas Residuales. INGE CUC 7, 113–126Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/https://doi.org/10.1111/j.1442-9993.2001.01070.pp.xAPHA, 2017. 2540 SOLIDS (2017). Stand. Methods Exam. Water Wastewater. https://doi.org/10.2105/SMWW.2882.03Arp, D.J., Stein, L.Y., 2003. Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. Crit. Rev. Biochem. Mol. Biol. 38, 471–495. https://doi.org/10.1080/10409230390267446Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B.F., Recous, S., Roux, X. Le, 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ. Microbiol. 12, 315–326. https://doi.org/10.1111/j.1462-2920.2009.02070.xBaena, S.J., Hernández, L., 2012. Análisis de la regulación colombiana en materia de olores ofensivosBaker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.-M.H., van Spanning, R.J.M., 1998. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62, 1046–1078. https://doi.org/10.1128/MMBR.62.4.1046-1078.1998Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., Kozik, V., 2017. Biological methods for odor treatment – A review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2017.03.093Barbusiński, K., Parzentna-Gabor, A., Kasperczyk, D., 2021. Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods. Clean Technol. 3, 138–155. https://doi.org/10.3390/cleantechnol3010009Baskaran, V., Patil, P.K., Antony, M.L., Avunje, S., Nagaraju, V.T., Ghate, S.D., Nathamuni, S., Dineshkumar, N., Alavandi, S. V., Vijayan, K.K., 2020. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-62183-9Bejarano Ortiz, D.I., Thalasso, F., Cuervo López, F. de M., Texier, A.C., 2013. Inhibitory effect of sulfide on the nitrifying respiratory process. J. Chem. Technol. Biotechnol. 88, 1344–1349. https://doi.org/10.1002/jctb.3982Bennur, T., Kumar, A.R., Zinjarde, S., Javdekar, V., 2015. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol. Res. 174, 33–47. https://doi.org/10.1016/J.MICRES.2015.03.010Beristain-Cardoso, R., Gómez, J., Méndez-Pampín, R., 2010. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor. Bioresour. Technol. 101, 8593–8598. https://doi.org/10.1016/j.biortech.2010.06.084Bernal, M.P., Alburquerque, J.A., Moral, R., 2009. Bioresource Technology Composting of animal manures and chemical criteria for compost maturity assessment . A review. Bioresour. Technol. 100, 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027Bernal, M.P., Sommer, S.G., Chadwick, D., Qing, C., Guoxue, L., Michel, F.C., 2017. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. Adv. Agron. 144, 143–233. https://doi.org/10.1016/BS.AGRON.2017.03.002Besaury, L., Marty, F., Buquet, S., Mesnage, V., Muyzer, G., Quillet, L., 2013. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments. Microb. Ecol. 65, 311–324. https://doi.org/10.1007/S00248-012-0120-0/TABLES/4Boden, R., 2017. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. Nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int. J. Syst. Evol. Microbiol. 67, 3919–3928. https://doi.org/10.1099/ijsem.0.002222Bollmann, A., French, E., Laanbroek, H.J., 2011. Chapter three - Isolation, Cultivation, and Characterization of Ammonia-Oxidizing Bacteria and Archaea Adapted to Low Ammonium Concentrations, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 55–88. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00003-1Bollmann, A., Laanbroek, H.J., 2001. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol. Ecol. 37, 211–221. https://doi.org/10.1016/S0168-6496(01)00163-5Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V, Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9Bouzalakos, S., Jefferson, B., Longhurst, P.J., Stuetz, R.M., 2004. Developing methods to evaluate odour control products. Water Sci. Technol. 50, 225–232.Braker, G., Fesefeldt, A., Witzel, K.P., 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769–3775. https://doi.org/10.1128/AEM.64.10.3769-3775.1998Bueno, P., Tapias, R., López, F., Díaz, M.J., 2008. Optimizing composting parameters for nitrogen conservation in composting. Bioresour. Technol. 99, 5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087Cabeza, I. O., López, R., Giraldez, I., Stuetz, R.M., Díaz, M.J., 2013. Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chem. Eng. J. 233, 149–158. https://doi.org/10.1016/j.cej.2013.08.032Cabeza, I O, López, R., Ruiz-Montoya, M., Díaz, M.J., 2013. Maximising municipal solid waste - Legume trimming residue mixture degradation in composting by control parameters optimization. J. Environ. Manage. 128, 266–273. https://doi.org/10.1016/j.jenvman.2013.05.030Cabrol, L., Malhautier, L., 2011. Integrating microbial ecology in bioprocess understanding: The case of gas biofiltration. Appl. Microbiol. Biotechnol. 90, 837–849. https://doi.org/10.1007/s00253-011-3191-9Cabrol, L., Malhautier, L., Poly, F., Lepeuple, A.S., Fanlo, J.L., 2012. Bacterial dynamics in steady-state biofilters: Beyond functional stability. FEMS Microbiol. Ecol. 79, 260–271. https://doi.org/10.1111/j.1574-6941.2011.01213.xCabrol, L., Poly, F., Malhautier, L., Pommier, T., Lerondelle, C., Verstraete, W., Lepeuple, A.S., Fanlo, J.L., Roux, X. Le, 2016. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. Environ. Sci. Technol. 50, 338–348. https://doi.org/10.1021/acs.est.5b02740Cai, W., Zhao, M., Kong, J., Riggio, S., Finnigan, T., Stuckey, D., Guo, M., 2021. Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. iScience 24, 102958. https://doi.org/10.1016/j.isci.2021.102958CEN, 2007. CEN - EN 13040 Soil improvers and growing media - Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density.Chen, L., Hoff, S.J., 2012. A two-stage wood chip-based biofilter system to mitigate odors from a deep-pit swine building. Appl. Eng. Agric. 28, 893–901Chen, X., Li, G.D., Li, Q.Y., Hu, C.J., Qiu, S.M., Jiang, Y., Jiang, C.L., Han, L., Huang, X.S., 2015. Enteractinococcus lamae sp. nov. and Enteractinococcus viverrae sp. nov., isolated from animal faeces. Antonie van Leeuwenhoek 2015 1086 108, 1477–1483. https://doi.org/10.1007/S10482-015-0603-3Chien, S.H., Gearhart, M.M., Villagarcía, S., 2011. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: A review. Soil Sci. 176, 327–335. https://doi.org/10.1097/SS.0B013E31821F0816Chung, Y.-C., Huang, C., 1998. Biotreatment of ammonia in air by an immobilized Nitrosomonas europaea biofilter. Environ. Prog. 17, 70–76. https://doi.org/10.1002/ep.670170211Chung, Y.C., Ho, K.L., Tseng, C.P., 2007. Two-stage biofilter for effective NH3 Removal from Waste Gases Containing High Concentrations of H2S. J. Air Waste Manag. Assoc. 57, 337–347. https://doi.org/10.1080/10473289.2007.10465332Chung, Y.C., Huang, C., Tseng, C.P., Rushing Pan, J., 2000. Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter. Chemosphere 41, 329–336. https://doi.org/10.1016/S0045-6535(99)00490-7Costello, R.C., Sullivan, D.M., 2014. Determining the pH buffering capacity of compost via titration with dilute sulfuric acid. Waste and Biomass Valorization 5, 505–513. https://doi.org/10.1007/s12649-013-9279-yDahl, C., Friedrich, C., Kletzin, A., 2008. Sulfur Oxidation in Prokaryotes. eLS. https://doi.org/10.1002/9780470015902.A0021155Daims, H., Lücker, S., Wagner, M., 2016. Review A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004Das, J., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., van Hullebusch, E.D., 2019. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour. Technol. 273, 581–591. https://doi.org/10.1016/j.biortech.2018.11.052Das, S.K., Mishra, A.K., Tindall, B.J., Rainey, F.A., Stackebrandt, E., 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46, 981–987. https://doi.org/10.1099/00207713-46-4-981Datta, I., Allen, D.G., 2005. Biofilter technology, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control. Springer, Berlin, Heidelberg, pp. 125–145. https://doi.org/10.1007/3-540-27007-8_6de Gannes, V., Eudoxie, G., Hickey, W.J., 2013. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol. 133, 573–580. https://doi.org/10.1016/j.biortech.2013.01.138Delgado Vela, J., Dick, G.J., Love, N.G., 2018. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Res. 138, 241–249. https://doi.org/10.1016/j.watres.2018.03.047Delhoménie, M.-C., Heitz, M., 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25, 53–72. https://doi.org/10.1080/07388550590935814Dorado, A.D., Lafuente, F.J., Gabriel, D., Gamisans, X., 2010. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ. Technol. 31, 193–204. https://doi.org/10.1080/09593330903426687Du, W., Parker, W., 2012. Characterization of Sulfur in Raw and Anaerobically Digested Municipal Wastewater Treatment Sludges. Water Environ. Res. 85, 124–132. https://doi.org/10.2175/106143012x13407275694671Duan, S., Zhang, Y., Zheng, S., 2021. Heterotrophic nitrifying bacteria in wastewater biological nitrogen removal systems: A review. Crit. Rev. Environ. Sci. Technol. 0, 1–37. https://doi.org/10.1080/10643389.2021.1877976EAAB, n.d. Planta de Tratamiento de Aguas Residuales-PTAR Salitre [WWW Document]. URL http://www.acueducto.com.co/wpsv61/wps/portal/!ut/p/c5/04_SB8K8xLLM9MSSzPy8xBz9CP0os3gLw2DfYHMPIwN_cyMXA09HV1cLM2MTJ5MgE6B8pFm8s7ujh4m5j4GBv1GYgYGRn2lwoEFosLGBpzEB3eEg-_DrB8kb4ACOBvp-Hvm5qfoFuREGWSaOigAIs6kp/dl3/d3/L0lDU0lKSWdra0EhIS9JTlJBQUlpQ2dBek15cUEh (accessed 12.10.16).Elías, A., Barona, A., Gallastegi, G., Rojo, N., Gurtubay, L., Ibarra-Berastegi, G., 2010. Preliminary acclimation strategies for successful startup in conventional biofilters. J. Air Waste Manag. Assoc. 60, 959–967. https://doi.org/10.3155/1047-3289.60.8.959EPA, U.S.E.P.A., 1996. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. Environ. Sci. Technol. 42, 8715–8720. https://doi.org/10.1021/es801391uEscalas, A., Guadayol, J.M., Cortina, M., Rivera, J., Caixach, J., 2003. Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res. 37, 3913–3920. https://doi.org/10.1016/S0043-1354(03)00336-1Estrada, J.M., Kraakman, N.J.R.B., Muñoz, R., Lebrero, R., 2011. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 45, 1100–1106. https://doi.org/10.1021/es103478jFinkmann, W., Altendorf, K., Stackebrandt, E., Lipski, A., 2000. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273–282. https://doi.org/10.1099/00207713-50-1-273Forero, D.. F., Peña, C.E., Hernández, M.A., Cabeza, I.O., 2017. Biofiltración De Ácido Acético Usando Como Lecho Filtrante Compost A Partir De Pollinaza- Residuos De Poda- Cascarilla De Arroz. Universidad Santo Tomás.Forero, D.F., Acevedo, P., Cabeza, I.O., Peña, C., Hernandez, M., 2018. Biofiltration of acetic acid vapours using filtering bed compost from poultry manure - pruning residues - rice husks. Chem. Eng. Trans. 64, 511–516. https://doi.org/10.3303/CET1864086Forquin, M.P., Weimer, B.C., 2014. Brevibacterium. Encycl. Food Microbiol. Second Ed. 324–330. https://doi.org/10.1016/B978-0-12-384730-0.00047-1Franke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M., Körner, I., 2014. Changes in the microbial communities during co-composting of digestates. Waste Manag. 34, 632–641. https://doi.org/10.1016/j.wasman.2013.12.009Friedrich, C.G., Bardischewsky, F., Rother, D., Quentmeier, A., Fischer, J., 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259. https://doi.org/https://doi.org/10.1016/j.mib.2005.04.005Gabriel, D., Maestre, J.P., Martín, L., Gamisans, X., Lafuente, J., 2007. Characterisation and performance of coconut fibre as packing material in the removal of ammonia in gas-phase biofilters. Biosyst. Eng. 97, 481–490. https://doi.org/10.1016/j.biosystemseng.2007.03.038Geets, J., Boon, N., Verstraete, W., 2006. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol. Ecol. 58, 1–13. https://doi.org/10.1111/J.1574-6941.2006.00170.XGonzález-Sánchez, A., Revah, S., Deshusses, M.A., 2008. Alkaline Biofiltration of H2S Odors. Environ. Sci. Technol. 42, 7398–7404. https://doi.org/10.1021/es800437fGuimerà, X., Dorado, A.D., Santos, A., Gamisans, X., Gabriel, D., 2015. Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl. Microbiol. Biotechnol. 99, 67–76. https://doi.org/10.1007/s00253-014-5796-2Hammerl, V., Kastl, E.-M., Schloter, M., Kublik, S., Schmidt, H., Welzl, G., Jentsch, A., Beierkuhnlein, C., Gschwendtner, S., 2019. Influence of rewetting on microbial communities involved in nitrification and denitrification in a grassland soil after a prolonged drought period. Sci. Rep. 9, 2280. https://doi.org/10.1038/s41598-018-38147-5Haug, R.T., 1993. The Practical Handbook of Compost Engineering The Practical Handbook of Compost Engineering. CRC Press.Hayes, J.E., Stevenson, R.J., Stuetz, R.M., 2014. The impact of malodour on communities: A review of assessment techniques. Sci. Total Environ. 500–501, 395–407. https://doi.org/10.1016/J.SCITOTENV.2014.09.003Ho, K.L., Chung, Y.C., Tseng, C.P., 2008. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. Bioresour. Technol. 99, 2757–2765. https://doi.org/10.1016/j.biortech.2007.06.041Hort, C., Gracy, S., Platel, V., Moynault, L., 2013. A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: Application at industrial scale. Waste Manag. 33, 18–25. https://doi.org/10.1016/j.wasman.2012.09.009Hou, J., Li, M., Xia, T., Hao, Y., Ding, J., 2016. Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. Environ. Sci. Pollut. Res. 23, 20628–20636. https://doi.org/10.1007/s11356-016-7238-4Huang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., Zhang, M., 2021. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere 278, 130413. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130413Hvitved-Jacobsen, T., 2001. Sewer Processes, Sewer Processes. CRC Press. https://doi.org/10.1201/9781420012668Hwang, J.W., Jang, S.J., Lee, E.Y., Choi, C.Y., Park, S., 2007. Evaluation of composts as biofilter packing material for treatment of gaseous p-xylene. Biochem. Eng. J. 35, 142–149. https://doi.org/10.1016/J.BEJ.2007.01.008ICONTEC, Instituto Colombiano de Normas Técnicas y Certificaciones, 2011. NTC 5167-Productos para la industria agrícola.Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo.IDEAM, 2012. Estado de la Calidad del Aire en Colombia 2007-2010.llumina, 2013. 16S Metagenomic Sequencing Library Preparation. Part #15044223 [WWW Document]. Illumina.com. URL https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed 8.7.22).Imhoff, J.F., Wiese, J., 2014. The Order Kiloniellales, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 301–306. https://doi.org/10.1007/978-3-642-30197-1_301Iranpour, R., Cox, H.H.J., Deshusses, M.A., Schroeder, E.D., 2005. Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Prog. 24, 254–267. https://doi.org/10.1002/ep.10077Jeong, D.W., Heo, S., Ryu, S., Blom, J., Lee, J.H., 2017. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 7. https://doi.org/10.1038/S41598-017-05918-5Jiang, G., Melder, D., Keller, J., Yuan, Z., 2017. Odor emissions from domestic wastewater: A review. Crit. Rev. Environ. Sci. Technol. 47, 1581–1611. https://doi.org/10.1080/10643389.2017.1386952Jiang, X., Luo, Y., Yan, R., Tay, J.H., 2009a. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia. Bioresour. Technol. 100, 5707–5713. https://doi.org/10.1016/j.biortech.2009.06.055Jiang, X., Tay, J.H., 2010. Microbial community structures in a horizontal biotrickling filter degrading H2S and NH3. Bioresour. Technol. 101, 1635–1641. https://doi.org/10.1016/j.biortech.2009.09.074Jiang, X., Yan, R., Hwa, J., 2009b. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75, 1350–1355. https://doi.org/10.1016/j.chemosphere.2009.02.028Kanehisa Laboratories, 2019. KEGG: Kyoto Encyclopedia of Genes and Genomes [WWW Document]. URL https://www.genome.jp/kegg/pathway.html (accessed 10.10.19).Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462. https://doi.org/10.1093/nar/gkv1070Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166Kennes, C., Rene, E.R., Veiga, M.C., 2009. Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84, 1419–1436. https://doi.org/10.1002/jctb.2216Khan, F.I., Kr. Ghoshal, A., 2000. Removal of Volatile Organic Compounds from polluted air. J. Loss Prev. Process Ind. 13, 527–545. https://doi.org/10.1016/S0950-4230(00)00007-3Kim, H.S., Kim, Y.J., Chung, J.S., Xie, Q., 2002. Long-term operation of a biofilter for simultaneous removal of H2S and NH3. J. Air Waste Manage. Assoc. 52, 1389–1398. https://doi.org/10.1080/10473289.2002.10470871Kim, I.S., Ivanov, V.N., 2000. Detection of nitrifying bacteria in activated sludge by fluorescent in situ hybridization and fluorescence spectrometry. World J. Microbiol. Biotechnol. 16, 425–430. https://doi.org/10.1023/A:1008949821236Kim, K.K., Lee, J.-S., Stevens, D.A., 2013. Microbiology and epidemiology of Halomonas species. Future Microbiol. 8, 1559–1573. https://doi.org/10.2217/fmb.13.108Kim, N.J., Hirai, M., Shoda, M., 2000. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters. J. Hazard. Mater. 72, 77–90. https://doi.org/10.1016/S0304-3894(99)00160-0Kitamura, R., Ishii, K., Maeda, I., Kozaki, T., Iwabuchi, K., Saito, T., 2016. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost. J. Biosci. Bioeng. 121, 57–65. https://doi.org/10.1016/j.jbiosc.2015.05.005Kleinheinz, G.T., Langolf, B.M., 2016. A long-term study of a lava rock-based biofilter for hydrogen sulfide, ammonia and volatile organic compounds (VOCs) treatment at a wastewater treatment facility. Nat. Environ. Pollut. Technol. 15, 1279–1284.Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1. https://doi.org/10.1093/nar/gks808Kloos, K., Mergel, A., Rösch, C., Bothe, H., 2001. Denitrification within the genus Azospirillum and other associative bacteria. Funct. Plant Biol. 28, 991–998. https://doi.org/10.1071/PP01071Kogan, V., Torres, E.M., 1997. Ammonia Emissions from Publicly Owned Treatment Works (POTWs), in: Air & Waste Management Association’s 90th-Annual Meeting and Exhibition. Toronto.Kouba, V., Proksova, E., Wiesinger, H., Vejmelkova, D., Bartacek, J., 2017. Good servant, bad master: sulfide influence on partial nitritation of sewage. Water Sci. Technol. 76, 3258–3268. https://doi.org/10.2166/wst.2017.490Krishnani, K.K., Kathiravan, V., Natarajan, M., Kailasam, M., Pillai, S.M., 2010. Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture. Appl. Biochem. Biotechnol. 162, 1225–1237. https://doi.org/10.1007/s12010-009-8886-3Kristiansen, A., Lindholst, S., Feilberg, A., Nielsen, P.H., Neufeld, J.D., Nielsen, J.L., 2011. Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility. Appl. Environ. Microbiol. 77, 8595–8604. https://doi.org/10.1128/AEM.06175-11Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. MICROBIAL BIOGEOCHEMISTRY The microbial nitrogen-cycling network. Nat. Publ. Gr. 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9Lasaridi, K., Katsabanis, G., Kyriacou, A., Maggos, T., Manios, T., Fountoulakis, M., Kalogerakis, N., Karageorgos, P., Stentiford, E.I., 2010. Assessing odour nuisance from wastewater treatment and composting facilities in Greece. Waste Manag. Res. 28, 977–984. https://doi.org/10.1177/0734242X10372660Lawson, P.A., 2019. Tissierella, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–12. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00721.pub2Le Borgne, S., Baquerizo, G., 2019. Microbial ecology of biofiltration units used for the desulfurization of biogas. ChemEngineering 3, 1–26. https://doi.org/10.3390/chemengineering3030072Lebrero, R., Bouchy, L., Stuetz, R., Muñoz, R., 2011. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 41, 915–950. https://doi.org/10.1080/10643380903300000Lee, C.J.D., McMullan, P.E., O’Kane, C.J., Stevenson, A., Santos, I.C., Roy, C., Ghosh, W., Mancinelli, R.L., Mormile, M.R., McMullan, G., Banciu, H.L., Fares, M.A., Benison, K.C., Oren, A., Dyall-Smith, M.L., Hallsworth, J.E., 2018. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693. https://doi.org/10.1093/femsre/fuy026Legendre, P., Anderson, M.J., 1999. Distance-Based Redundancy Analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. https://doi.org/https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716Lewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., Namiesnik, J., 2016. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030Li, L., Zhang, J., Lin, J., Liu, J., 2015. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J. Microbiol. Biotechnol. 31, 1501–1515. https://doi.org/10.1007/s11274-015-1915-1Li, W., Ni, J., Cai, S., Liu, Y., Shen, C., Yang, H., Chen, Y., Tao, J., Yu, Y., Liu, Q., 2019. Variations in microbial community structure and functional gene expression in bio-treatment processes with odorous pollutants. Sci. Reports 2019 91 9, 1–9. https://doi.org/10.1038/s41598-019-54281-0Li, Y., Ma, J., Yong, X., Luo, L., Wong, J.W.C., Zhang, Y., Wu, H., Zhou, J., 2022. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 343, 126137. https://doi.org/10.1016/J.BIORTECH.2021.126137Liu, H., Luo, G.-Q., Hu, H.-Y., Zhang, Q., Yang, J.-K., Yao, H., 2012. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J. Hazard. Mater. 235–236, 298–306. https://doi.org/http://dx.doi.org/10.1016/j.jhazmat.2012.07.060Liu, J., Yang, K., Li, L., Zhang, J., 2017. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics. Front. Environ. Sci. Eng. 11, 6. https://doi.org/10.1007/s11783-017-0932-8Liu, T., Dong, H., Zhu, Z., Shang, B., Yin, F., Zhang, W., Zhou, T., 2017. Effects of biofilter media depth and moisture content on removal of gases from a swine barn. J. Air Waste Manag. Assoc. 67, 1288–1297. https://doi.org/10.1080/10962247.2017.1321591López, R., Cabeza, I.O., Giráldez, I., Díaz, M.J., 2011. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresour. Technol. 102, 7984–7993. https://doi.org/10.1016/j.biortech.2011.05.085Lozupone, C., Knight, R., 2005. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 71, 8228. https://doi.org/10.1128/AEM.71.12.8228-8235.2005Luo, X., Meng, F., 2020. Roles of Organic Matter-Induced Heterotrophic Bacteria in Nitritation Reactors: Ammonium Removal and Bacterial Interactions. ACS Sustain. Chem. Eng. 8, 3976–3985. https://doi.org/10.1021/acssuschemeng.0c00241MADS, 2013. Resolución 1541 de 2013 (12 de noviembre). Colombia.Maeda, K., Hanajima, D., Toyoda, S., Yoshida, N., Morioka, R., Osada, T., 2011. Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4, 700–709. https://doi.org/10.1111/j.1751-7915.2010.00236.xMaestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. 112, 15684–15689. https://doi.org/10.1073/pnas.1516684112Maia, G.D.N., Day V, G.B., Gates, R.S., Taraba, J.L., 2012. Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters. Atmos. Environ. 46, 659–664. https://doi.org/10.1016/j.atmosenv.2011.10.019Malhautier, L., Gracian, C., Roux, J.C., Fanlo, J.L., Le Cloirec, P., 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere 50, 145–153. https://doi.org/10.1016/S0045-6535(02)00395-8Marrugan, A., 2004. Measuring Biological Diversity. Wiley-Blackwell.Martinez, A.P., 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis.MAVDT- Ministerio del MedioAmbiente, V. y, 2010. Resolución número 610 (24 de marzo de 2010). Colombia. https://doi.org/>>>>Z’1FGMAVDT. Ministerio de Ambiente, V. y D.T., 2006. Resolución 601 de 04 de abril de 2006.McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217.MinSalud, M. de S. y P.S., OPS, O.P. de la S., 2012. Convenio Cooperación Técnica No 485/10. Lineamiento para la vigilancia sanitaria y ambiental del impacto de los olores ofensivos en la salud y calidad de vida de las comunidades expuestas en áreas urbanas. Colombia.Montebello, A.M., Bezerra, T., Rovira, R., Rago, L., Lafuente, J., Gamisans, X., Campoy, S., Baeza, M., Gabriel, D., 2013. Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material. Chemosphere 93, 2675–2682. https://doi.org/10.1016/J.CHEMOSPHERE.2013.08.052Mora, Z.A., Chávez, C.H., Fonseca, G., Cabra, J. a, Salgado, C., 2005. Desarrollo de un inóculo microbiano empleando lodos activados para la remoción de ácido sulfhídrico ( H2S ). Rev. Colomb. Biotecnol. VII, 26–34.Morgan-Sagastume, J.M., Noyola, A., 2006. Hydrogen sulfide removal by compost biofiltration: Effect of mixing the filter media on operational factors. Bioresour. Technol. 97, 1546–1553. https://doi.org/10.1016/J.BIORTECH.2005.06.003Mulvaney, R.L., 1996. Nitrogen—Inorganic Forms, in: Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Series SV - 5.3. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp. 1123–1184. https://doi.org/10.2136/sssabookser5.3.c38Muñoz, R., Malhautier, L., Fanlo, J.-L., Quijano, G., 2015. Biological technologies for the treatment of atmospheric pollutants. Int. J. Environ. Anal. Chem. 95, 950–967. https://doi.org/10.1080/03067319.2015.1055471Nicolai, R.E., Janni, K.A., 2001. Biofilter media mixture ratio of wood chips and compost treating swine odors. Water Sci. Technol. 44, 261—267. https://doi.org/10.2166/wst.2001.0554Nikolaou, A.D., Golfinopoulos, S.K., Kostopoulou, M.N., Kolokythas, G.A., Lekkas, T.D., 2002. Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res. 36, 2883–2890. https://doi.org/10.1016/S0043-1354(01)00497-3NIST National Institute of Standards and Technology, 2022. NIST Standard Reference Database Number 69 [WWW Document]. NIST Chem. Webb. https://doi.org/10.18434/T4D303Nokhal, T.H., Schlegel, H.G., 1983. Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33, 26–37. https://doi.org/10.1099/00207713-33-1-26/CITE/REFWORKSOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. vegan.Oliveira, L.C.G., Ramos, P.L., Marem, A., Kondo, M.Y., Rocha, R.C.S., Bertolini, T., Silveira, M.A.V., Cruz, J.B. da, Vasconcellos, S.P. de, Juliano, L., Okamoto, D.N., 2015. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts. Brazilian J. Microbiol. 46, 347–354. https://doi.org/10.1590/S1517-838246220130316Omoregie, A.I., Ong, D.E.L., Nissom, P.M., 2019. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett. Appl. Microbiol. 68, 173–181. https://doi.org/https://doi.org/10.1111/lam.13103Omri, I., Aouidi, F., Bouallagui, H., Godon, J., Hamdi, M., 2013. Performance study of biofilter developed to treat H2S from wastewater odor. Saudi J. Biol. Sci. 169–176. https://doi.org/10.1016/j.sjbs.2013.01.005Ouattara, A.S., Assih, E.A., Thierry, S., Cayol, J.L., Labat, M., Monroy, O., Macarie, H., 2003. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int. J. Syst. Evol. Microbiol. 53, 1247–1251. https://doi.org/10.1099/IJS.0.02540-0/CITE/REFWORKSOvreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997Pagans, E., Barrena, R., Font, X., Sánchez, A., 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62, 1534–1542. https://doi.org/10.1016/j.chemosphere.2005.06.044Pandey, S.K., Kim, K.H., Kwon, E.E., Kim, Y.H., 2016. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas. Environ. Res. 146, 235–244. https://doi.org/10.1016/J.ENVRES.2015.12.033Park, S., Bae, W., 2009. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem. 44, 631–640. https://doi.org/https://doi.org/10.1016/j.procbio.2009.02.002Parkes, R.J., Sass, H., 2009. Deep Sub-Surface. Encycl. Microbiol. 64–79. https://doi.org/10.1016/B978-012373944-5.00275-3Parthasarathy, S., Azam, S., Lakshman Sagar, A., Narasimha Rao, V., Gudla, R., Parapatla, H., Yakkala, H., Ghanta Vemuri, S., Siddavattam, D., 2017. Genome-Guided Insights Reveal Organophosphate-Degrading Brevundimonas diminuta as Sphingopyxis wildii and Define Its Versatile Metabolic Capabilities and Environmental Adaptations. Genome Biol. Evol. 9, 77–81. https://doi.org/10.1093/gbe/evw275Perman, E., Schnürer, A., Björn, A., Moestedt, J., 2022. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass and Bioenergy 161, 106478. https://doi.org/10.1016/J.BIOMBIOE.2022.106478Pokorna, D., Zabranska, J., 2015. Sulfur-oxidizing Bacteria in Environmental Technology. Biotechnol. Adv. 33, 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007Portilla, E., Sáez, R.T., 2007. Hydrogen sulphide removal by a biofiltration system in the waste-water treatment plant of the city of Bucaramanga in Colombia. J. Biotechnol. 131, S158–S159. https://doi.org/http://dx.doi.org/10.1016/j.jbiotec.2007.07.880Prado, Ó.J., Gabriel, D., Lafuente, J., 2009. Economical assessment of the design, construction and operation of open-bed biofilters for waste gas treatment. J. Environ. Manage. 90, 2515–2523. https://doi.org/10.1016/J.JENVMAN.2009.01.022Prenafeta-Boldú, F.X., Rojo, N., Gallastegui, G., Guivernau, M., Viñas, M., Elías, A., 2014. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material. Biodegradation 25, 557–568. https://doi.org/10.1007/s10532-014-9681-6Prinn, R.G., Weiss, R.F., Arduini, J., Arnold, T., Langley Dewitt, H., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kim, J., Krummel, P.B., Li, S., Loh, Z.M., Lunder, C.R., Maione, M., Manning, A.J., Miller, B.R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P.K., Schmidt, R., Simmonds, P.G., Paul Steele, L., Vollmer, M.K., Wang, R.H., Yao, B., Yokouchi, Y., Young, D., Zhou, L., 2018. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018. https://doi.org/10.5194/ESSD-10-985-2018Qi, B., Moe, W., Kinney, K., 2005. Treatment of Paint Spray Booth Off-Gases in a Fungal Biofilter. J. Environ. Eng. 131, 180–189. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(180)Qiu, X., Deshusses, M.A., 2017. Performance of a monolith biotrickling filter treating high concentrations of H2S from mimic biogas and elemental sulfur plugging control using pigging. Chemosphere 186, 790–797. https://doi.org/10.1016/j.chemosphere.2017.08.032Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41. https://doi.org/10.1093/nar/gks1219Quintero, R., Hernández del Toro, C., 2017. Sistema Para El Control De Olores En La Central Hidroeléctrica El Paraiso.Rabbani, K.A., Charles, W., Kayaalp, A., Cord-ruwisch, R., Ho, G., 2016. Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochem. Eng. J. 107, 1–10. https://doi.org/10.1016/j.bej.2015.11.018Ralebitso-Senior, T.K., Senior, E., Di Felice, R., Jarvis, K., 2012. Waste gas biofiltration: Advances and limitations of current approaches in microbiology. Environ. Sci. Technol. 46, 8542–8573. https://doi.org/10.1021/es203906cRamette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.xRavina, M., Panepinto, D., Mejia Estrada, J., De Giorgio, L., Salizzoni, P., Chiara Zanetti, M., Meucci, L., 2019. Characterization of odorous emissions from a civil wastewater treatment plant in Italy. WIT Trans. Ecol. Environ. 236, 159–170. https://doi.org/10.2495/AIR190161Ren, B., Zhao, Y., Lyczko, N., Nzihou, A., 2019. Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant. Waste and Biomass Valorization 10, 1443–1458. https://doi.org/10.1007/s12649-018-0384-9Rene, E.R., Kennes, C., Veiga, M.C., 2013. Biofilters, in: Kennes, C., Veiga, M.C. (Eds.), Air Pollution Prevention and Control: Bioreactors and Bioenergy. John Wiley & Sons, Ltd., pp. 60–72.Rene, E.R., Mohammad, B.T., Veiga, M.C., Kennes, C., 2012. Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresour. Technol. 116, 204–213. https://doi.org/10.1016/j.biortech.2011.12.006Revah, S., Morgan-Sagastume, J., 2005a. Methods of Odor and VOC Control, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control SE - 3. Springer Berlin Heidelberg, pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3Revah, S., Morgan-Sagastume, J.M., 2005b. Methods of odor and VOC control, in: Biotechnology for Odor and Air Pollution Control. pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3Reyes, J., Toledo, M., Michán, C., Siles, J.A., Alhama, J., Martín, M.A., 2020. Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. Environ. Res. 190. https://doi.org/10.1016/j.envres.2020.110057Rotthauwe, J., Witzel, K., 1997. 1997 The ammonia monooxygenase structural gene amoA as a functional marker Molecular fine-scale analysis of natural ammonia-oxidizing populations.pdf 63, 4704–4712.Rueda Saa, G.H., 2001. Capacidad de eliminación de H2S en un biofiltro empacado con mezcla de suelo carbonilla y ceniza volcánica. Universidad del Valle.Sánchez-Porro, C., De La Haba, R.R., Ventosa, A., 2014. The genus virgibacillus. The Prokaryotes: Firmicutes and Tenericutes 9783642301209, 455–465. https://doi.org/10.1007/978-3-642-30120-9_353/COVERSapek, A., 2013. Ammonia Emissions from Non-Agricultural Sources. Polish J. Environ. Stud. 22, 63–70.Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S., Karsch-Mizrachi, I., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020. https://doi.org/10.1093/DATABASE/BAAA062Secretaria del Medio Ambiente. Observatorio de Salud Ambiental, 2016. Quejas atendidas por exposición a olores ofensivos [WWW Document]. URL http: //biblioteca.saludcapital.gov.co/ambiental/index.shtml?s=l&id=327&v=lSecretaría Distrital de Salud. Observatorio de Salud de Bogotá-SaluData, 2021. Quejas atendidas en Bogotá D.C. | SALUDATA [WWW Document]. URL https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-ambiental/quejas/ (accessed 10.5.22).Sévin, D.C., Stählin, J.N., Pollak, G.R., Kuehne, A., Sauer, U., 2016. Global Metabolic Responses to Salt Stress in Fifteen Species. PLoS One 11, e0148888. https://doi.org/10.1371/JOURNAL.PONE.0148888Shareefdeen, Z., 2020. Industrial biofilter case studies, From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment. INC. https://doi.org/10.1016/b978-0-12-819064-7.00009-1Siebielec, S., Siebielec, G., Klimkowicz-Pawlas, A., Gałązka, A., Grządziel, J., Stuczyński, T., 2020. Impact of Water Stress on Microbial Community and Activity in Sandy and Loamy Soils. Agron. . https://doi.org/10.3390/agronomy10091429Singh, A., Ward, O., 2005. Microbiology of bioreactors for waste gas treatment. Biotechnol. Odor Air Pollut. Control 101–121. https://doi.org/10.1007/3-540-27007-8_5/COVERSivret, E.C., Le-Minh, N., Wang, B., Wang, X., Stuetz, R.M., 2017. Dynamics of Volatile Sulfur Compounds and Volatile Organic Compounds in Sewer Headspace Air. J. Environ. Eng. 143, 04016080. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001154Sivret, E.C., Wang, B., Parcsi, G., Stuetz, R.M., 2016. Prioritisation of odorants emitted from sewers using odour activity values. Water Res. 88, 308–321. https://doi.org/10.1016/j.watres.2015.10.020Smet, E., Van Langenhove, H., 1998. Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation 9, 273–284. https://doi.org/10.1023/a:1008281609966Sorokin, D.Y., Kuenen, J.G., 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol. Rev. 29. https://doi.org/10.1016/j.femsre.2004.10.005Spieck, E., Bock, E., 2015. The Lithoautotrophic Nitrite-Oxidizing Bacteria, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–10. https://doi.org/https://doi.org/10.1002/9781118960608.bm00014Spieck, E., Lipski, A., 2011. Chapter five - Cultivation, Growth Physiology, and Chemotaxonomy of Nitrite-Oxidizing Bacteria, in: Klotz, M.G. (Ed.), Research on Nitrification and Related Processes, Part A, Methods in Enzymology. Academic Press, pp. 109–130. https://doi.org/https://doi.org/10.1016/B978-0-12-381294-0.00005-5Spieck, E., Wegen, S., Keuter, S., 2021. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl. Microbiol. Biotechnol. 105, 7123–7139. https://doi.org/10.1007/s00253-021-11487-5Steele, J.A., Ozis, F., Fuhrman, J.A., Devinny, J.S., 2005. Structure of microbial communities in ethanol biofilters. Chem. Eng. J. 113, 135–143. https://doi.org/10.1016/j.cej.2005.04.011Szukics, U., Abell, G.C.J., Hödl, V., Mitter, B., Sessitsch, A., Hackl, E., Zechmeister-Boltenstern, S., 2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol. Ecol. 72, 395–406. https://doi.org/10.1111/j.1574-6941.2010.00853.xTalaiekhozani, A., Bagheri, M., Goli, A., Talaei Khoozani, M.R., 2016. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manage. 170, 186–206. https://doi.org/10.1016/j.jenvman.2016.01.021Tang, S.-K., Wang, Y., Lee, J.-C., Lou, K., Park, D.-J., Kim, C.-J., Li, W.-J., 2010. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 60, 1317–1421. https://doi.org/10.1099/ijs.0.014993-0Thanakiatkrai, P., Welch, L., 2012. Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I 161–165. https://doi.org/10.1007/s00414-011-0558-5Tian, W., Chen, X., Zhou, P., Fu, X., Zhao, H., 2020. Removal of H2S by vermicompost biofilter and analysis on bacterial community. Open Chem. 18, 720–731. https://doi.org/10.1515/chem-2020-0131Tourna, M., Maclean, P., Condron, L., O’Callaghan, M., Wakelin, S.A., 2014. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 88, 538–549. https://doi.org/10.1111/1574-6941.12323Trujillo, M.E., Dedysh, S., P., D., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B. (Eds.), 2015. Sporosarcina, in: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd, pp. 1–7. https://doi.org/https://doi.org/10.1002/9781118960608.gbm00563Tsang, Y.F., Wang, L., Chua, H., 2015. Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change. Chem. Eng. J. 281, 389–396. https://doi.org/10.1016/j.cej.2015.06.107Tu, X., Li, J., Feng, R., Sun, G., Guo, J., 2016. Comparison of removal behavior of two biotrickling filters under transient condition and effect of pH on the bacterial communities. PLoS One 11, 1–14. https://doi.org/10.1371/journal.pone.0155593Van Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E., Takacs-Vesbach, C.D., 2014. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert. Appl. Environ. Microbiol. 80, 3034–3043. https://doi.org/10.1128/AEM.03414-13Vergara-Fernández, A., Hernández, S., Revah, S., 2011. Elimination of hydrophobic volatile organic compounds in fungal biofilters: Reducing start-up time using different carbon sources. Biotechnol. Bioeng. 108, 758–765. https://doi.org/10.1002/bit.23003Vikrant, K., Kumar, S., Tsang, D.C.W., Soo, S., Kumar, P., Shekhar, B., Sharan, R., Kim, K., 2018. Bio fi ltration of hydrogen sul fi de : Trends and challenges 187. https://doi.org/10.1016/j.jclepro.2018.03.188Wang, K., Li, W., Li, X., Ren, N., 2015. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure. Sci. Rep. 5, 1–8. https://doi.org/10.1038/srep14932Wang, L., Shao, Z., 2021. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front. Microbiol. 12, 390. https://doi.org/10.3389/fmicb.2021.652766Wright, W.F., Schroeder, E.D., Chang, D.P., 2005. Transient Response of Flow-Direction-Switching Vapor-Phase Biofilters. J. Environ. Eng. 131, 999–1009. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(999)Xi, B.D., He, X.S., Wei, Z.M., Jiang, Y.H., Li, M.X., Li, D., Li, Y., Dang, Q.L., 2012. Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere 88, 744–750. https://doi.org/10.1016/J.CHEMOSPHERE.2012.04.032Xia, Y., Lü, C., Hou, N., Xin, Y., Liu, J., Liu, H., Xun, L., 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11, 2754–2766. https://doi.org/10.1038/ismej.2017.125Xie, B., Liang, S.B., Tang, Y., Mi, W.X., Xu, Y., 2009. Petrochemical wastewater odor treatment by biofiltration. Bioresour. Technol. 100, 2204–2209. https://doi.org/10.1016/j.biortech.2008.10.035Yang, L., Kent, A.D., Wang, X., Funk, T.L., Gates, R.S., Zhang, Y., 2014a. Moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide generation, and microbial communities. J. Hazard. Mater. 271, 292–301. https://doi.org/10.1016/j.jhazmat.2014.01.058Yang, L., Wang, X., Funk, T.L., 2014b. Strong influence of medium pH condition on gas-phase biofilter ammonia removal, nitrous oxide generation and microbial communities. Bioresour. Technol. 152, 74–79. https://doi.org/10.1016/j.biortech.2013.10.116Yang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X., 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102, 854–862. https://doi.org/10.1016/J.BIORTECH.2010.09.007Yasuda, T., Waki, M., Fukumoto, Y., Hanajima, D., Kuroda, K., Suzuki, K., Matsumoto, T., Uenishi, H., 2017. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter. J. Appl. Microbiol. 123, 1498–1511. https://doi.org/10.1111/jam.13603Ye, J., Zhang, R., Nielsen, S., Joseph, S.D., Huang, D., Thomas, T., 2016. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 7, 372. https://doi.org/10.3389/fmicb.2016.00372Yeung, M., Saingam, P., Xu, Y., Xi, J., 2021. Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. Microbiome 9, 1–10. https://doi.org/10.1186/s40168-020-00944-4Ying, S., Kong, X., Cai, Z., Man, Z., Xin, Y., Liu, D., 2020. Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia. Chemosphere 255. https://doi.org/10.1016/j.chemosphere.2020.126931Yuan, J., Du, L., Li, S., Yang, F., Zhang, Z., Li, G., Wang, G., 2019. Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ. Sci. Pollut. Res. 26, 3762–3770. https://doi.org/10.1007/s11356-018-3795-zZainudin, M.H., Mustapha, N.A., Maeda, T., Ramli, N., Sakai, K., Hassan, M., 2020. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw. Waste Manag. 106, 240–249. https://doi.org/10.1016/J.WASMAN.2020.03.029Zainudin, M.H.M., Zulkarnain, A., Azmi, A.S., Muniandy, S., Sakai, K., Shirai, Y., Hassan, M.A., 2022. Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy 12. https://doi.org/10.3390/agronomy12010198Zamir, S.M., Halladj, R., Nasernejad, B., 2011. Removal of toluene vapors using a fungal biofilter under intermittent loading. Process Saf. Environ. Prot. 89, 8–14. https://doi.org/10.1016/J.PSEP.2010.10.001Zarra, T., Naddeo, V., Belgiorno, V., Reiser, M., Kranert, M., 2008. Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Sci. Technol. 58, 89–94. https://doi.org/10.2166/wst.2008.330Zhang, J., Li, L., Liu, J., 2017. Effects of irrigation and water content of packing materials on a thermophilic biofilter for SO2 removal: Performance, oxygen distribution and microbial population. Biochem. Eng. J. 118, 105–112. https://doi.org/10.1016/J.BEJ.2016.11.015Zheng, T., Li, L., Chai, F., Wang, Y., 2021. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site. Process Saf. Environ. Prot. 149, 410–421. https://doi.org/10.1016/j.psep.2020.11.009Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., Zavarzin, G.A., 2001. Amphibacillus fermentum sp. nov. and Amphibacillus tropicussp. nov., New Alkaliphilic, Facultatively Anaerobic, Saccharolytic Bacilli from Lake Magadi. Microbiology 70, 711–722. https://doi.org/10.1023/A:1013196017556Zhu, X., Suidan, M.T., Pruden, A., Yang, C., Alonso, C., Kim, B.J., Kim, B.R., 2004. Effect of substrate henry’s constant on biofilter performance. J. Air Waste Manag. Assoc. 54, 409–418. https://doi.org/10.1080/10473289.2004.10470918MincienciasUniversidad Santo TomásDivisión de Investigación de Bogotá-DIB- Universidad Nacional de ColombiaGrupos comunitariosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83919/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis Diana Vela-repositorio.pdfTesis Diana Vela-repositorio.pdfTesis de Doctorado en Biotecnologíaapplication/pdf7217251https://repositorio.unal.edu.co/bitstream/unal/83919/2/Tesis%20Diana%20Vela-repositorio.pdfdd351baa1857ddcc8e03b547b4b15c71MD52THUMBNAILTesis Diana Vela-repositorio.pdf.jpgTesis Diana Vela-repositorio.pdf.jpgGenerated Thumbnailimage/jpeg4828https://repositorio.unal.edu.co/bitstream/unal/83919/3/Tesis%20Diana%20Vela-repositorio.pdf.jpgbc86de463803095766d8bbc5962b9c52MD53unal/83919oai:repositorio.unal.edu.co:unal/839192024-08-07 23:11:11.335Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=