Remarks on weakly continuous functions in banach spaces
Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …, ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1 … u1∝1 … un∝n is standard and will used throughout. We will write |∝| = ∝1 + …...
- Autores:
-
Restrepo, Guillermo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1968
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42076
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42076
http://bdigital.unal.edu.co/32173/
- Palabra clave:
- Finite sequence
polynomial
real function
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …, ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1 … u1∝1 … un∝n is standard and will used throughout. We will write |∝| = ∝1 + … + ∝n . Any real valued function in E of the form P = ∑ (|∝|≤n) a∝ u∝ , a∝ a real number, is said to be a polynomial. Clearly, every polynomial is weakly continuous. |
---|