Remarks on weakly continuous functions in banach spaces

Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …,  ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1  … u1∝1 … un∝n is standard and will used throughout. We will write  |∝| = ∝1 + …...

Full description

Autores:
Restrepo, Guillermo
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42076
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42076
http://bdigital.unal.edu.co/32173/
Palabra clave:
Finite sequence
polynomial
real function
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …,  ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1  … u1∝1 … un∝n is standard and will used throughout. We will write  |∝| = ∝1 + … + ∝n .  Any real valued function in E of the form   P = ∑ (|∝|≤n) a∝ u∝ , a∝  a real number, is said to be a polynomial. Clearly, every polynomial is weakly continuous.