Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones

ilustraciones, gráficas

Autores:
Fúneme Mateus, Cristian Camilo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81057
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81057
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::512 - Álgebra
Álgebra
Matemáticas
Teoría de grafos
Algebra
Mathematics
Graph theory
Álgebras de configuración de Brauer
Carcaj
Matriz de mensajes
Región de mutación
Región de congelamiento
Brauer configuration algebras
Quiver
Message matrix
Mutation region
Freezing region
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8f3da787e0c44215316e413b1b1d481f
oai_identifier_str oai:repositorio.unal.edu.co:unal/81057
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
dc.title.translated.eng.fl_str_mv Biserial algebras, Brauer graph algebras and some of its applications
title Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
spellingShingle Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
510 - Matemáticas::512 - Álgebra
Álgebra
Matemáticas
Teoría de grafos
Algebra
Mathematics
Graph theory
Álgebras de configuración de Brauer
Carcaj
Matriz de mensajes
Región de mutación
Región de congelamiento
Brauer configuration algebras
Quiver
Message matrix
Mutation region
Freezing region
title_short Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
title_full Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
title_fullStr Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
title_full_unstemmed Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
title_sort Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones
dc.creator.fl_str_mv Fúneme Mateus, Cristian Camilo
dc.contributor.advisor.spa.fl_str_mv Moreno Cañadas, Agustín
dc.contributor.author.spa.fl_str_mv Fúneme Mateus, Cristian Camilo
dc.contributor.researchgroup.spa.fl_str_mv Terenufia-Unal
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::512 - Álgebra
topic 510 - Matemáticas::512 - Álgebra
Álgebra
Matemáticas
Teoría de grafos
Algebra
Mathematics
Graph theory
Álgebras de configuración de Brauer
Carcaj
Matriz de mensajes
Región de mutación
Región de congelamiento
Brauer configuration algebras
Quiver
Message matrix
Mutation region
Freezing region
dc.subject.lemb.spa.fl_str_mv Álgebra
Matemáticas
Teoría de grafos
dc.subject.lemb.eng.fl_str_mv Algebra
Mathematics
Graph theory
dc.subject.proposal.spa.fl_str_mv Álgebras de configuración de Brauer
Carcaj
Matriz de mensajes
Región de mutación
Región de congelamiento
dc.subject.proposal.eng.fl_str_mv Brauer configuration algebras
Quiver
Message matrix
Mutation region
Freezing region
description ilustraciones, gráficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11
dc.date.accessioned.none.fl_str_mv 2022-02-24T21:01:57Z
dc.date.available.none.fl_str_mv 2022-02-24T21:01:57Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81057
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81057
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv T. Aihara, Derived equivalences between symmetric special biserial algebras, https://arxiv.org/pdf/1312.0328.pdf, (2014).
M.A. Antipov, Derived equivalence of symmetric special biserial algebras, Journal of Mathematical Sciences 147 (2007), no. 5, 6981-6994.
I. Assem, D. Simson, and A. Skowronski, Elements of the representation theory of associative algebras, volume 1, techniques of representation theory, (2006).
I. Assem and S. Trepode, Homological methods, representation theory and cluster algebras, (2018).
C. Cohecha, Teorema del binomio y aplicaciones, Universidad Nacional de Colombia, Facultad de Ciencias (2014). Mg. Thesis. Bogotá.
L. Demonet, Algebras of partial triangulations, arXiv:1602.01592 (2016).
P.W. Donovan and M.R Freislich, The indecomposable modular representations of certain groups with dihedral sylow subgroup, Mathematische Annalen 238 (1978), no. 3, 207-216.
J.A. Drozd, Tame and wild matrix problems, in: V.O. Dlab, and P. Gabriel (eds.) Representation Theory II, Springer Lecture Notes in Mathematics 832 (1980), 242- 258.
G.K. Eagelson, A characterization theorem for positive definite sequences of the krawtchouk polynomials, Australian J. Stat 11, (1969), 29-38.
K. Erdmann, Algebras with non-periodic bounded modules, Journal of Algebra 475 (2017), 308-326.
P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum random walks, Contemporary Mathematics 287, (2001), 89-36.
P. Feinsilver and R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum, (1991), 129-135.
P. Fernández, Categorification of some integer sequences and its applications, Universidad Nacional de Colombia, Facultad de Ciencias (2021). PhD Thesis. Bogotá.
K. Fuller, Biserial rings, in: Ring theory, proc. conf., univ. waterloo, waterloo, Lecture Notes in Math (1978), 64-90.
P. Gabriel, Auslander-reiten sequences and representation-finite algebras, Lecture Notes in Mat. 831 (1980), 1-71.
P. Gabriel, Indecomposable representations 2, Symposia Mat. Inst. Naz. Alta Mat. 11 (1973), 81-104.
P. Gabriel, Unzerlegbare darstellungen 1, Manuscripta Math 6 (1972), 71-103.
J. Villa; M. Duque; A. Gauthier and N. Rakoto, Modelamiento y control de sistemas híbridos, Revista de ingeniería 6, (2004), 177-182.
I.M. Gelfand and V.A. Ponomarev, Indecomposable representations of the Lorentz group, Russian Mathematical Surveys 23 (1968), no. 2, 1-58.
E. Green and S. Schroll, Brauer configuration algebras: A generalization of brauer graph algebras, Bulletin des Sciences Math ematiques, 141 (2017), 539-572.
E. Green and S. Schroll, Multiserial and special multiserial algebras and their representations, Advances in Mathematics (2015), 1-24.
E. Green, S. Schroll, and N. Snashall, Group actions and coverings of brauer graph algebras, Glasgow Mathematical Journal 56 (2011), no. 2, 439-464.
E. Green, S. Schroll, N. Snashall, and R. Taillefer, The ext algebra of a brauer graph algebra, Journal of noncommutative geometry 11 (2011), no. 2, 537-579.
G.J. Janusz, Indecomposable modules for finite groups, Annals of Mathematics 89 (1969), no. 2, 209-241.
M. Krawtchouk, Sur la distribution des racines des polynomes orthogonaux, Comptes Rendus 196, (1933), 739-741.
M. Krawtchouk, Sur une generalisation des polynomes d'hermite, Comptes Rendus 189, (1929), 620-622.
S. Ladkani, Mutation classes of certain quivers with potentials as derived equivalence classes, arXiv:1102.4108 (2011).
A. Rattew; Y. Sun; P. Minssen and M. Pistoia, The efficient preparation of normal distributions in quantum registers, arXiv:2009.06601, (2021), 1-30.
T. Nakayama, Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.
I. Hernández; C. Mateos; J. Núñez and Á. Tenorio, Algunas aplicaciones de la teoría de lie a la economía y a las finanzas, Revista de métodos cuantitativos para la economía y la empresa 6, (2008), 74-94.
M. Osorio and A. Moreno, Brauer configuration algebras for multimedia based cryptography and security applications, Multimedia Tools and Applications, (2021), https://doi.org/10.1007/s11042-020-10239-3.
Z. Pogorzaly and A. Skowronski, Selfinjective biserial standard algebras, Journal of algebra 138 (1991), 491-504.
C. M. Ringel, Indecomposables live in all smaller lengths, Bull. Lond. Math. Soc. 43 (2011), 655-660.
C.M. Ringel, The indecomposable representations of the dihedral 2-groups, Mathematische Annalen 214 (1975), no. 1, 19-34.
K.W. Roggenkamp, Biserial algebras and graphs, In: I. Reiten, S.O. Smalo, O. Solberg (eds.) Algebras and Modules II (Geiranger, 1996), Conference proceedings – Canadian Mathematical Society, Mathematische Annalen 24 (1998), 481-496.
R. Schiffler, Quiver representations, Canadian Mathematical Society- Department of Mathematics University of Connecticut, CMS Books in Mathematics, Springer International Publishing (2014).
S. Schroll, Brauer graph algebras, Springer, Cham, 2018. In: Assem I., Trepode S. (eds), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, 177-223.
Trivial extensions of gentle algebras and brauer graph algebras, Journal of Algebra 444 (2015), 183-200.
A. Sierra, The dimension of the center of a brauer configuration algebra, J. Algebra 510, (2018), 289-318.
A. Skowronski and J. Waschbüsch, Representation-finite biserial algebras, Journal of pure and applied mathematics 345 (1983), 172-181.
G. Szegö, Orthogonal polynomials, Colloquium Publications, Vol. 23, New York, AMS, revised eddition, (1959), 35-37.
D. Vere-Jones, Finite bivariate distributions and semi-groups of nonnegative matrices, Q. J. Math. Oxford 22, 2, (1971), 247-270.
B. Wald and J. Waschbüsch, Tame biserial algebras, Journal of algebra, 95 (1985), no. 2, 480-500.
A. Zavadskij, On the kronecker problem and related problems of linear algebra, Linear Algebra and its Applications 425, (2007), 26-62.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81057/3/2949954731.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81057/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81057/5/2949954731.2021.pdf.jpg
bitstream.checksum.fl_str_mv 7f6fed93427c3031aaf3797d366bc314
8153f7789df02f0a4c9e079953658ab2
0b547450a4ebc85c8877f6cf5b1c4c45
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089812597014528
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Cañadas, Agustín9ca55eaf75ecd87559010093e719d1f8Fúneme Mateus, Cristian Camilod839db390f641dbae77b955d0e26da87600Terenufia-Unal2022-02-24T21:01:57Z2022-02-24T21:01:57Z2021-11https://repositorio.unal.edu.co/handle/unal/81057Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasEl objetivo principal de este trabajo es estudiar las álgebras de configuración de Brauer. Para esto, se inicia por la exposición de aspectos básicos de la Teoría de representación de carcajes, luego se describen las álgebras biseriales y especial biseriales desde ejemplos y propiedades de ellas que las relacionan con el surgimiento de las álgebras de grafo de Brauer, estas últimas se definen y ejemplifican para hacer la posterior presentación de las álgebras de configuración de Brauer y algunas de sus propiedades. A partir de lo anterior, el presente trabajo ofrece como resultado la definición de las Álgebras de configuración de Brauer asociadas a puntos en el plano, estableciendo ecuaciones que permiten calcular la dimensión de estas álgebras y de su centro. Además, se presentan ejemplos relacionados con la construcción de álgebras de configuración de Brauer asociadas a puntos en el plano, regiones de congelamiento y regiones de mutación, determinando propiedades para ellas. Por último, se presentan algunas conclusiones y recomendaciones que servirán de base para futuros trabajos de investigación. (Texto tomado de la fuente).The main objective of this work is to study Brauer configuration algebras. For this, it begins with the exposition of basic aspects of the representation theory of characters, then biserial and special biserial algebras are described from examples and properties of them that relate them to the emergence of Brauer graph algebras, the latter are defined and exemplified to make the subsequent presentation of Brauer configuration algebras and some of its properties. From the above, the present work offers, as a result, the definition of Brauer configuration algebras associated to points in the plane, establishing equations that allow calculating the dimension of these algebras and their center. In addition, examples related to the construction of Brauer configuration algebras associated to points in the plane, freezing regions, and mutation regions are presented, determining properties for them. Finally, some conclusions and recommendations are presented, which will serve as a basis for future research work.MaestríaMagíster en Ciencias - MatemáticasÁlgebra y combinatoriaviii, 74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::512 - ÁlgebraÁlgebraMatemáticasTeoría de grafosAlgebraMathematicsGraph theoryÁlgebras de configuración de BrauerCarcajMatriz de mensajesRegión de mutaciónRegión de congelamientoBrauer configuration algebrasQuiverMessage matrixMutation regionFreezing regionÁlgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicacionesBiserial algebras, Brauer graph algebras and some of its applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMT. Aihara, Derived equivalences between symmetric special biserial algebras, https://arxiv.org/pdf/1312.0328.pdf, (2014).M.A. Antipov, Derived equivalence of symmetric special biserial algebras, Journal of Mathematical Sciences 147 (2007), no. 5, 6981-6994.I. Assem, D. Simson, and A. Skowronski, Elements of the representation theory of associative algebras, volume 1, techniques of representation theory, (2006).I. Assem and S. Trepode, Homological methods, representation theory and cluster algebras, (2018).C. Cohecha, Teorema del binomio y aplicaciones, Universidad Nacional de Colombia, Facultad de Ciencias (2014). Mg. Thesis. Bogotá.L. Demonet, Algebras of partial triangulations, arXiv:1602.01592 (2016).P.W. Donovan and M.R Freislich, The indecomposable modular representations of certain groups with dihedral sylow subgroup, Mathematische Annalen 238 (1978), no. 3, 207-216.J.A. Drozd, Tame and wild matrix problems, in: V.O. Dlab, and P. Gabriel (eds.) Representation Theory II, Springer Lecture Notes in Mathematics 832 (1980), 242- 258.G.K. Eagelson, A characterization theorem for positive definite sequences of the krawtchouk polynomials, Australian J. Stat 11, (1969), 29-38.K. Erdmann, Algebras with non-periodic bounded modules, Journal of Algebra 475 (2017), 308-326.P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum random walks, Contemporary Mathematics 287, (2001), 89-36.P. Feinsilver and R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum, (1991), 129-135.P. Fernández, Categorification of some integer sequences and its applications, Universidad Nacional de Colombia, Facultad de Ciencias (2021). PhD Thesis. Bogotá.K. Fuller, Biserial rings, in: Ring theory, proc. conf., univ. waterloo, waterloo, Lecture Notes in Math (1978), 64-90.P. Gabriel, Auslander-reiten sequences and representation-finite algebras, Lecture Notes in Mat. 831 (1980), 1-71.P. Gabriel, Indecomposable representations 2, Symposia Mat. Inst. Naz. Alta Mat. 11 (1973), 81-104.P. Gabriel, Unzerlegbare darstellungen 1, Manuscripta Math 6 (1972), 71-103.J. Villa; M. Duque; A. Gauthier and N. Rakoto, Modelamiento y control de sistemas híbridos, Revista de ingeniería 6, (2004), 177-182.I.M. Gelfand and V.A. Ponomarev, Indecomposable representations of the Lorentz group, Russian Mathematical Surveys 23 (1968), no. 2, 1-58.E. Green and S. Schroll, Brauer configuration algebras: A generalization of brauer graph algebras, Bulletin des Sciences Math ematiques, 141 (2017), 539-572.E. Green and S. Schroll, Multiserial and special multiserial algebras and their representations, Advances in Mathematics (2015), 1-24.E. Green, S. Schroll, and N. Snashall, Group actions and coverings of brauer graph algebras, Glasgow Mathematical Journal 56 (2011), no. 2, 439-464.E. Green, S. Schroll, N. Snashall, and R. Taillefer, The ext algebra of a brauer graph algebra, Journal of noncommutative geometry 11 (2011), no. 2, 537-579.G.J. Janusz, Indecomposable modules for finite groups, Annals of Mathematics 89 (1969), no. 2, 209-241.M. Krawtchouk, Sur la distribution des racines des polynomes orthogonaux, Comptes Rendus 196, (1933), 739-741.M. Krawtchouk, Sur une generalisation des polynomes d'hermite, Comptes Rendus 189, (1929), 620-622.S. Ladkani, Mutation classes of certain quivers with potentials as derived equivalence classes, arXiv:1102.4108 (2011).A. Rattew; Y. Sun; P. Minssen and M. Pistoia, The efficient preparation of normal distributions in quantum registers, arXiv:2009.06601, (2021), 1-30.T. Nakayama, Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.I. Hernández; C. Mateos; J. Núñez and Á. Tenorio, Algunas aplicaciones de la teoría de lie a la economía y a las finanzas, Revista de métodos cuantitativos para la economía y la empresa 6, (2008), 74-94.M. Osorio and A. Moreno, Brauer configuration algebras for multimedia based cryptography and security applications, Multimedia Tools and Applications, (2021), https://doi.org/10.1007/s11042-020-10239-3.Z. Pogorzaly and A. Skowronski, Selfinjective biserial standard algebras, Journal of algebra 138 (1991), 491-504.C. M. Ringel, Indecomposables live in all smaller lengths, Bull. Lond. Math. Soc. 43 (2011), 655-660.C.M. Ringel, The indecomposable representations of the dihedral 2-groups, Mathematische Annalen 214 (1975), no. 1, 19-34.K.W. Roggenkamp, Biserial algebras and graphs, In: I. Reiten, S.O. Smalo, O. Solberg (eds.) Algebras and Modules II (Geiranger, 1996), Conference proceedings – Canadian Mathematical Society, Mathematische Annalen 24 (1998), 481-496.R. Schiffler, Quiver representations, Canadian Mathematical Society- Department of Mathematics University of Connecticut, CMS Books in Mathematics, Springer International Publishing (2014).S. Schroll, Brauer graph algebras, Springer, Cham, 2018. In: Assem I., Trepode S. (eds), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, 177-223.Trivial extensions of gentle algebras and brauer graph algebras, Journal of Algebra 444 (2015), 183-200.A. Sierra, The dimension of the center of a brauer configuration algebra, J. Algebra 510, (2018), 289-318.A. Skowronski and J. Waschbüsch, Representation-finite biserial algebras, Journal of pure and applied mathematics 345 (1983), 172-181.G. Szegö, Orthogonal polynomials, Colloquium Publications, Vol. 23, New York, AMS, revised eddition, (1959), 35-37.D. Vere-Jones, Finite bivariate distributions and semi-groups of nonnegative matrices, Q. J. Math. Oxford 22, 2, (1971), 247-270.B. Wald and J. Waschbüsch, Tame biserial algebras, Journal of algebra, 95 (1985), no. 2, 480-500.A. Zavadskij, On the kronecker problem and related problems of linear algebra, Linear Algebra and its Applications 425, (2007), 26-62.EstudiantesInvestigadoresORIGINAL2949954731.2021.pdf2949954731.2021.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf666185https://repositorio.unal.edu.co/bitstream/unal/81057/3/2949954731.2021.pdf7f6fed93427c3031aaf3797d366bc314MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81057/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL2949954731.2021.pdf.jpg2949954731.2021.pdf.jpgGenerated Thumbnailimage/jpeg2223https://repositorio.unal.edu.co/bitstream/unal/81057/5/2949954731.2021.pdf.jpg0b547450a4ebc85c8877f6cf5b1c4c45MD55unal/81057oai:repositorio.unal.edu.co:unal/810572023-08-02 23:03:31.082Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK