Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica

ilustraciones, diagramas, fotografías

Autores:
Rodríguez Vera, Edward Andrés
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85403
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85403
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
530 - Física::532 - Mecánica de fluidos
610 - Medicina y salud::615 - Farmacología y terapéutica
sistemas de liberación de medicamentos
diseño de fármacos
mecánica de fluidos
Drug Delivery Systems
Drug Design
Flow Mechanics
MIcrofluidos
Película polimérica
Dinámica de fluidos computacional
Sistemas de liberación modificada
Diseño integrado de producto y proceso
MIcrofluidics
Polymeric film
Computational fluid dynamics
Modified release system
Integrated product and process development
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_8ef7b83bc04e1f89823b62f2de49af6f
oai_identifier_str oai:repositorio.unal.edu.co:unal/85403
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
dc.title.translated.eng.fl_str_mv Study of mass transport phenomena at a microscopic scale, for its application in the design of modified release systems of the polymeric film type
title Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
spellingShingle Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
530 - Física::532 - Mecánica de fluidos
610 - Medicina y salud::615 - Farmacología y terapéutica
sistemas de liberación de medicamentos
diseño de fármacos
mecánica de fluidos
Drug Delivery Systems
Drug Design
Flow Mechanics
MIcrofluidos
Película polimérica
Dinámica de fluidos computacional
Sistemas de liberación modificada
Diseño integrado de producto y proceso
MIcrofluidics
Polymeric film
Computational fluid dynamics
Modified release system
Integrated product and process development
title_short Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
title_full Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
title_fullStr Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
title_full_unstemmed Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
title_sort Estudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
dc.creator.fl_str_mv Rodríguez Vera, Edward Andrés
dc.contributor.advisor.spa.fl_str_mv Vallejo Díaz, Bibiana Margarita
dc.contributor.author.spa.fl_str_mv Rodríguez Vera, Edward Andrés
dc.contributor.researchgroup.spa.fl_str_mv Investigación en Procesos de Transformación de Materiales Para la Industria Farmacéutica
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
530 - Física::532 - Mecánica de fluidos
610 - Medicina y salud::615 - Farmacología y terapéutica
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
530 - Física::532 - Mecánica de fluidos
610 - Medicina y salud::615 - Farmacología y terapéutica
sistemas de liberación de medicamentos
diseño de fármacos
mecánica de fluidos
Drug Delivery Systems
Drug Design
Flow Mechanics
MIcrofluidos
Película polimérica
Dinámica de fluidos computacional
Sistemas de liberación modificada
Diseño integrado de producto y proceso
MIcrofluidics
Polymeric film
Computational fluid dynamics
Modified release system
Integrated product and process development
dc.subject.decs.spa.fl_str_mv sistemas de liberación de medicamentos
diseño de fármacos
mecánica de fluidos
dc.subject.decs.eng.fl_str_mv Drug Delivery Systems
Drug Design
Flow Mechanics
dc.subject.proposal.spa.fl_str_mv MIcrofluidos
Película polimérica
Dinámica de fluidos computacional
Sistemas de liberación modificada
Diseño integrado de producto y proceso
dc.subject.proposal.eng.fl_str_mv MIcrofluidics
Polymeric film
Computational fluid dynamics
Modified release system
Integrated product and process development
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-08-02
dc.date.accessioned.none.fl_str_mv 2024-01-22T20:02:36Z
dc.date.available.none.fl_str_mv 2024-01-22T20:02:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85403
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85403
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8, e46188. https://doi.org/10.7554/eLife.46188
Adrover, A., & Nobili, M. (2015). Release kinetics from oral thin films: Theory and experiments. Chemical Engineering Research and Design, 98, 188-201. https://doi.org/10.1016/j.cherd.2015.04.016
Alexeenko, A. A., Ganguly, A., & Nail, S. L. (2009). Computational analysis of fluid dynamics in pharmaceutical freeze-drying. Journal of Pharmaceutical Sciences, 98(9), 3483-3494. https://doi.org/10.1002/jps.21862
AlSalka, Y., Hakki, A., Fleisch, M., & Bahnemann, D. W. (2018). Understanding the degradation pathways of oxalic acid in different photocatalytic systems: Towards simultaneous photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 366, 81-90. https://doi.org/10.1016/j.jphotochem.2018.04.008
Anderson, J. D. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.
Ascanio, G., Castro, B., & Galindo, E. (2004). Measurement of Power Consumption in Stirred Vessels—A Review. Chemical Engineering Research and Design, 82(9), 1282-1290. https://doi.org/10.1205/cerd.82.9.1282.44164
ASTM Standards. (2018). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/d0882-18.html
Bader, R. A., Herzog, K. T., & Kao, W. J. (2009). A study of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing. Polymer Bulletin, 62(3), 381-389. https://doi.org/10.1007/s00289-008-0023-x
Bain, A., Chandna, P., Butcher, G., & Bryant, J. (2000). Picosecond polarized fluorescence studies of anisotropic fluid media. II. Experimental studies of molecular order and motion in jet aligned rhodamine 6G and resorufin solutions. The Journal of Chemical Physics, 112, 10435-10449. https://doi.org/10.1063/1.481679
Banerjee, A., Shuai, Y., Dixit, R., Papautsky, I., & Klotzkin, D. (2010). Concentration dependence of fluorescence signal in a microfluidic fluorescence detector. Journal of Luminescence, 130(6), 1095-1100. https://doi.org/10.1016/j.jlumin.2010.02.002
Bassi, P., & Kaur, G. (2017). Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceutical Journal, 25(1), 32-43. https://doi.org/10.1016/j.jsps.2015.06.003
Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and Applications of Microfluidics in Biology. Annual Review of Biomedical Engineering, 4(1), 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916
Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena (Revised ed). Wiley.
Böhling, P., Khinast, J. G., Jajcevic, D., Davies, C., Carmody, A., Doshi, P., Am Ende, M. T., & Sarkar, A. (2019). Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater. Journal of Pharmaceutical Sciences, 108(1), 538-550. https://doi.org/10.1016/j.xphs.2018.10.016
Budak, K., Sogut, O., & Aydemir Sezer, U. (2020). A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research, 27(8), 208. https://doi.org/10.1007/s10965-020-02187-1
Busatto, C., Pesoa, J., Helbling, I., Luna, J., & Estenoz, D. (2018). Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. International Journal of Pharmaceutics, 536(1), 360-369. https://doi.org/10.1016/j.ijpharm.2017.12.006
Chen, X., Partheniadis, I., Nikolakakis, I., & Al-Obaidi, H. (2020). Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers, 12(4), 854. https://doi.org/10.3390/polym12040854
Colombo, S., Beck-Broichsitter, M., Bøtker, J. P., Malmsten, M., Rantanen, J., & Bohr, A. (2018). Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 128, 115-131. https://doi.org/10.1016/j.addr.2018.04.004
Connors, K. A., Amidon, G. L., & Stella, V. J. (1986). Chemical stability of pharmaceuticals: A handbook for pharmacists (2nd ed). Wiley.
Culbertson, C. (2002). Diffusion coefficient measurements in microfluidic devices. Talanta, 56(2), 365-373. https://doi.org/10.1016/S0039-9140(01)00602-6
de Guzman, R., Polykratis, I. A., Sondeen, J. L., Darlington, D. N., Cap, A. P., & Dubick, M. A. (2013). Stability of Tranexamic Acid after 12-Week Storage at Temperatures from –20°C to 50°C. Prehospital Emergency Care, 17(3), 394-400. https://doi.org/10.3109/10903127.2013.792891
Department of Defense. (1998). Integrated Product and Process Development Handbook.
Ding, C., Zhang, M., & Li, G. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymers, 119, 194-201. https://doi.org/10.1016/j.carbpol.2014.11.057
Entwistle, C. A., & Rowe, R. C. (2011). Plasticization of cellulose ethers used in the film coating of tablets. Journal of Pharmacy and Pharmacology, 31(1), 269-272. https://doi.org/10.1111/j.2042-7158.1979.tb13499.x
Ferreira, L. F. M., Thomaz, D. V., Duarte, M. P. F., Lopez, R. F. V., Pedrazzi, V., Freitas, O. de, & Couto, R. O. do. (2021). Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration. Revista de Ciências Farmacêutica Básica e Aplicadas - RCFBA, 42, e707. https://doi.org/10.4322/2179-443X.0707
Ferziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics (3rd, rev. ed ed.). Springer.
Gendron, P.-O., Avaltroni, F., & Wilkinson, K. J. (2008). Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 18(6), 1093-1101. https://doi.org/10.1007/s10895-008-0357-7
Ghadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Khosrowshahi Asl, A. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition, 7(11), 3363-3377. https://doi.org/10.1002/fsn3.1206
Guarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications: POLYCAPROLACTONE: SYNTHESIS, PROPERTIES, AND APPLICATIONS. En John Wiley & Sons, Inc. (Ed.), Encyclopedia of Polymer Science and Technology (pp. 1-36). John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst658
Hajji, H., Kolsi, L., Hassen, W., Al-Rashed, A. A. A. A., Borjini, M. N., & Aichouni, M. A. (2018). Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Physica E: Low-Dimensional Systems and Nanostructures, 104, 177-186. https://doi.org/10.1016/j.physe.2018.07.034
Honary, S., & Orafai, H. (2002). The Effect of Different Plasticizer Molecular Weights and Concentrations on Mechanical and Thermomechanical Properties of Free Films. Drug Development and Industrial Pharmacy, 28(6), 711-715. https://doi.org/10.1081/DDC-120003863
Honary, S., Orafai, H., & Shojaei, A. H. (2000). The Influence of Plasticizer Molecular Weight on Spreading Droplet Size of HPMC Aqueous Solutions Using an Indirect Method. Drug Development and Industrial Pharmacy, 26(9), 1019-1024. https://doi.org/10.1081/DDC-100101332
Kalyan, S., & Bansal, M. (2012). Recent Trends in the Development of Oral dissolving Film.
Kanabekova, P., Kadyrova, A., & Kulsharova, G. (2022). Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines, 13(3), 428. https://doi.org/10.3390/mi13030428
Karatay, E. (2013). Microfluidic studies of interfacial transport [PhD, University of Twente]. https://doi.org/10.3990/1.9789036506915
Kaya, D., Küçükada, K., & Alemdar, N. (2019). Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films. Carbohydrate Polymers, 215, 189-197. https://doi.org/10.1016/j.carbpol.2019.03.041
Kremer, D. M., & Hancock, B. C. (2006). Process Simulation in the Pharmaceutical Industry: A Review of Some Basic Physical Models. Journal of Pharmaceutical Sciences, 95(3), 517-529. https://doi.org/10.1002/jps.20583
Krevelen, D. W. van, & Nijenhuis, K. te. (2009). Properties of polymers: Their correlation with chemical structure: their numerical estimation and prediction from additive group contributions (4th, completely rev. ed ed.). Elsevier.
Lakshmi, P., Sridharan, A., & Sreekanth, J. (2011). Formulation development of fast releasing oral thin films of levocetrizine dihydrochloride with Eudragit ® Epo and optimization through Taguchi orthogonal experimental design. Asian Journal of Pharmaceutics, 5(2), 84. https://doi.org/10.4103/0973-8398.84548
Li, X., & Zhou, Y. (Eds.). (2013). Microfluidic devices for biomedical applications. Woodhead Publishing.
Li, Z., & Seker, E. (2017). Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on a Chip, 17(19), 3331-3337. https://doi.org/10.1039/C7LC00851A
Liew, K. B., Tan, Y. T. F., & Peh, K.-K. (2014). Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Development and Industrial Pharmacy, 40(1), 110-119. https://doi.org/10.3109/03639045.2012.749889
Luo, Y., Hong, Y., Shen, L., Wu, F., & Lin, X. (2021). Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech, 22(1), 34. https://doi.org/10.1208/s12249-020-01909-4
Lustig, S. R., & Peppas, N. A. (1988). Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. Journal of Applied Polymer Science, 36(4), 735-747. https://doi.org/10.1002/app.1988.070360401
McMillan, D. E., Strigberger, J., & Utterback, N. G. (1987). Rapidly recovered transient flow resistance: A newly discovered property of blood. American Journal of Physiology-Heart and Circulatory Physiology, 253(4), H919-H926. https://doi.org/10.1152/ajpheart.1987.253.4.H919
Medical Cañada. (s. f.). EPISTAXIS Y TAPONAMIENTO NASAL. RAUCOCEL. Recuperado 2 de octubre de 2022, de https://blog.medicalcanada.es/2015/07/epistaxis-y-taponamiento-nasal-raucocel/
Ministerio de Energía de España. (s. f.). Ministerio para la Transición Ecológica y el Reto Demográfico—Documentos reconocidos. Recuperado 13 de febrero de 2023, de https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspx
Ministerio de la Protección Social. (2005). DECRETO NÚMERO 4725 DE 2005.
Mukherjee, S., Ghati, A., & Paul, G. (2021). An Ultraviolet–Visible Spectrophotometric Approach to Establish a Method for Determining the Presence of Rhodamine B in Food Articles. ACS Food Science & Technology, 1(9), 1615-1622. https://doi.org/10.1021/acsfoodscitech.1c00172
Naik, V., Patil, N., Aparadh, V., & Karadge, B. (2014). METHODOLOGY IN DETERMINATION OF OXALIC ACID IN PLANT TISSUE: A COMPARATIVE APPROACH. Journal Global Trends in Pharmaceutical Sciences, 5, 1662-1672.
nanoComposix. (s. f.). Molecular Weight to Size Calculator. NanoComposix. Recuperado 28 de julio de 2023, de https://nanocomposix.com/pages/molecular-weight-to-size-calculator
Nasouri, K., Shoushtari, A. M., & Mojtahedi, M. R. M. (2015). Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent: RESEARCH ARTICLE. Advances in Polymer Technology, 34(3), n/a-n/a. https://doi.org/10.1002/adv.21495
Niaounakis, M. (2015). Properties. En Biopolymers: Processing and Products (pp. 79-116). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00002-7
Ohtsuki, C. (s. f.). How to prepare the simulated body fluid (SBF) and its related solutions. Recuperado 7 de octubre de 2022, de https://www.chembio.nagoya-u.ac.jp/archive/apchem/ketsu5/contents/SBF/
Ossa, A., Zapata, V., & Botero-Jaramillo, E. (2015, noviembre 18). METODOLOGÍA PARA RESOLVER POR DIFERENCIAS FINITAS NUEVOS MODELOS CONSTITUTIVOS EN EL PROGRAMA FLAC3D.
Panda, B., Parihar, A. S., & Mallick, S. (2014). Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. International Journal of Biological Macromolecules, 67, 295-302. https://doi.org/10.1016/j.ijbiomac.2014.03.033
Pedacchia, A., & Adrover, A. (2014). Study of release kinetics and diffusion coefficients in swellable cellulosic thin films by means of a simple spectrophotometric technique. Chemical Engineering Research and Design, 92(11), 2550-2556. https://doi.org/10.1016/j.cherd.2014.03.017
Peppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75-81. https://doi.org/10.1016/j.jconrel.2014.06.041
Pervin, R., Ghosh, P., & Basavaraj, M. G. (2021). Engineering polymer film porosity for solvent triggered actuation. Soft Matter, 17(10), 2900-2912. https://doi.org/10.1039/D0SM01772H
Polyvinyl Alcohol—An overview | ScienceDirect Topics. (s. f.). Recuperado 18 de julio de 2023, de https://www.sciencedirect.com/topics/chemical-engineering/polyvinyl-alcohol
Pranzo, D., Larizza, P., Filippini, D., & Percoco, G. (2018). Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines, 9(8), 374. https://doi.org/10.3390/mi9080374
Qiu, S., Chu, H., Zou, Y., Xiang, C., Zhang, H., Sun, L., & Xu, F. (2016). Thermochemical studies of Rhodamine B and Rhodamine 6G by modulated differential scanning calorimetry and thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 123(2), 1611-1618. https://doi.org/10.1007/s10973-015-5055-5
Rao, N. M., & Sankar, D. G. (2016). Development and Validation of Stability-indicating RP-HPLC Method for The Estimation of Pseudoephedrine, Ambroxol and Desloratadine in Bulk and Their Tablet Dosage Forms. Indian Journal of Pharmaceutical Sciences, 78(4). https://doi.org/10.4172/pharmaceutical-sciences.1000144
Riahi, S., Hadiloo, F., Milani, S. M. R., Davarkhah, N., Ganjali, M. R., Norouzi, P., & Seyfi, P. (2011). A new technique for spectrophotometric determination of Pseudoephedrine and Guaifenesin in syrup and synthetic mixture. Drug Testing and Analysis, 3(5), 319-324. https://doi.org/10.1002/dta.235
Riccio, B. V. F., Silvestre, A. L. P., Meneguin, A. B., Ribeiro, T. de C., Klosowski, A. B., Ferrari, P. C., & Chorilli, M. (2022). Exploiting Polymeric Films as a Multipurpose Drug Delivery System: A Review. AAPS PharmSciTech, 23(7), 269. https://doi.org/10.1208/s12249-022-02414-6
Romero, A. I., Villegas, M., Cid, A. G., Parentis, M. L., Gonzo, E. E., & Bermúdez, J. M. (2018). Validation of kinetic modeling of progesterone release from polymeric membranes. Asian Journal of Pharmaceutical Sciences, 13(1), 54-62. https://doi.org/10.1016/j.ajps.2017.08.007
Roy, A., Ghosh, A., Datta, S., Das, S., Mohanraj, P., Deb, J., & Bhanoji Rao, M. E. (2009). Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharmaceutical Journal, 17(3), 233-241. https://doi.org/10.1016/j.jsps.2009.08.004
Sadia, M., Arafat, B., Ahmed, W., Forbes, R. T., & Alhnan, M. A. (2018). Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. Journal of Controlled Release, 269, 355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
Sai Cheong Wan, L., Wan Sia Heng, P., & Fun Wong, L. (1995). Matrix swelling: A simple model describing extent of swelling of HPMC matrices. International Journal of Pharmaceutics, 116(2), 159-168. https://doi.org/10.1016/0378-5173(94)00285-D
Sakellariou, P., Hassan, A., & Rowe, R. C. (1993). Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. European Polymer Journal, 29(7), 937-943. https://doi.org/10.1016/0014-3057(93)90289-R
Seiffert, S., & Thiele, J. (2020). Microfluidics: Theory and practice for beginners. De Gruyter.
Setapa, A., Ahmad, N., Mohd Mahali, S., & Mohd Amin, M. C. I. (2020). Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122921
Shamsi, M., Mohammadi, A., Manshadi, M. K. D., & Sanati-Nezhad, A. (2019). Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 307, 150-165. https://doi.org/10.1016/j.jconrel.2019.06.014
Siepmann, J., Kranz, H., Bodmeier, R., & Peppas, N. A. (1999). HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharmaceutical Research, 16(11), 1748-1756. https://doi.org/10.1023/A:1018914301328
Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351-362. https://doi.org/10.1016/j.jconrel.2011.10.006
Skolotneva, E., Cretin, M., & Mareev, S. (2021). A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes, 11(6), 431. https://doi.org/10.3390/membranes11060431
Skoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of instrumental analysis (Seventh edition). Cengage Learning.
Soylak, M., Unsal, Y. E., Yilmaz, E., & Tuzen, M. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 49(8), 1796-1799. https://doi.org/10.1016/j.fct.2011.04.030
Stationery Office. (2009). British pharmacopoeia.
Stone, R. B., & Wood, K. L. (1999). Development of a Functional Basis for Design. Volume 3: 11th International Conference on Design Theory and Methodology, 261-275. https://doi.org/10.1115/DETC99/DTM-8765
Suzuki, T., & Nakagami, H. (1999). Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. European Journal of Pharmaceutics and Biopharmaceutics, 47(3), 225-230. https://doi.org/10.1016/S0939-6411(98)00102-7
Tang, S., Zhang, R., Liu, F., & Liu, X. (2015). Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents. European Polymer Journal, 72, 83-88. https://doi.org/10.1016/j.eurpolymj.2015.09.009
Tho, I. (2018). Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 10, 222. https://doi.org/10.3390/pharmaceutics10040222
Tiwari, S. K., Bhat, S., & Mahato, K. K. (2020). Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65995-x
Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056
Tretinnikov, O. N., & Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy, 79(4), 521-526. https://doi.org/10.1007/s10812-012-9634-y
Uragami, T., Sumida, I., Miyata, T., Shiraiwa, T., Tamura, H., & Yajima, T. (2011). Pervaporation Characteristics in Removal of Benzene from Water through Polystyrene-Poly (Dimethylsiloxane) IPN Membranes. Materials Sciences and Applications, 02(03), 169-179. https://doi.org/10.4236/msa.2011.23021
Usher, J. M., Roy, U., & Parsaei, H. (1998). Integrated Product and Process Development: Methods, Tools, and Technologies. John Wiley & Sons.
Vallejo Díaz, B. M., Cortés Rodríguez, C. J., Espinosa, A., & Barbosa B., H. J. (2004). Aplicación de la metodología de diseño axiomático en el desarrollo de productos de liberación modificada. https://repositorio.unal.edu.co/handle/unal/28662
Vallejo Díaz, B. M. R., & Perilla Perilla, J. E. (2009). Estudio del fenómeno de adhesión a superficies biológicas de películas obtenidas partir de biopolímeros, para aplicaciones en el área de la salud.
van den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., den Hartog, W. F., & van de Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45(6), 651-661. https://doi.org/10.3233/BIR-2008-0513
Varani, G. (2017). Buccal and Topical drug delivery [PhD]. University of Rome.
Vulović, A., Šušteršič, T., Cvijić, S., Ibrić, S., & Filipović, N. (2018). Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. European Journal of Pharmaceutical Sciences, 113, 171-184. https://doi.org/10.1016/j.ejps.2017.10.022
Wise, D. L. (2000). Handbook of Pharmaceutical Controlled Release Technology. CRC Press.
Yan, P., Zhou, M., & Sebastian, D. (1999). An integrated product and process development methodology: Concept formulation. Robotics and Computer-Integrated Manufacturing, 15(3), 201-210. https://doi.org/10.1016/S0736-5845(99)00025-3
Young, R. E., & Huh, D. D. (2021). Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 173, 461-478. https://doi.org/10.1016/j.addr.2021.03.010
Zeinali Kalkhoran, A. H., Vahidi, O., & Naghib, S. M. (2018). A new mathematical approach to predict the actual drug release from hydrogels. European Journal of Pharmaceutical Sciences, 111, 303-310. https://doi.org/10.1016/j.ejps.2017.09.038
Zhang, L., Huang, Y.-K., Yue, L.-N., Xu, L., Qian, J.-Y., & He, X.-D. (2022). Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films. Carbohydrate Polymers, 296, 119951. https://doi.org/10.1016/j.carbpol.2022.119951
Zhang, L., Yu, L., Liu, H., Wang, Y., Simon, G. P., Ji, Z., & Qian, J. (2017). Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocolloids, 70, 251-259. https://doi.org/10.1016/j.foodhyd.2017.03.019
Zhang, S., & Byrne, G. (2021). Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. Journal of Drug Delivery Science and Technology, 61, 102136. https://doi.org/10.1016/j.jddst.2020.102136
Zhu, L., Liu, Q., Yang, B., Ju, H., & Lei, J. (2018). Pixel Counting of Fluorescence Spots Triggered by DNA Walkers for Ultrasensitive Quantification of Nucleic Acid. Analytical Chemistry, 90(11), 6357-6361. https://doi.org/10.1021/acs.analchem.8b01146
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 148 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85403/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85403/2/1010237370.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85403/3/1010237370.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
329142437a801a338d35149a952e39c5
e0b72014b36c78c67f6782eefc7d8877
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089721441157120
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vallejo Díaz, Bibiana Margaritaae0fdc78b870634d89f3dda3a3e15fb9Rodríguez Vera, Edward Andrés88d99f3f8e74038c35498d423573e7abInvestigación en Procesos de Transformación de Materiales Para la Industria Farmacéutica2024-01-22T20:02:36Z2024-01-22T20:02:36Z2023-08-02https://repositorio.unal.edu.co/handle/unal/85403Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn esta investigación se estudiaron los fenómenos de transporte de masa y momento en un dispositivo de dimensiones milimétricas, fabricado con el propósito de recrear un modelo simplificado de cavidad nasal; este dispositivo permite la inserción de una película polimérica y el flujo de un fluido simulado de sangre. La descripción de estos fenómenos se realizó a través del planteamiento de un modelo matemático que fue discretizado con un esquema combinado de diferencias finitas centradas y diferencias finitas hacia atrás, incorporando un método de avance temporal semi-implícito. Para validar el modelo matemático se realizó un experimento que consiste en insertar una película polimérica cargada de rodamina dentro del dispositivo de estudio y se capturan imágenes en un microscopio de fluorescencia a diferentes tiempos; por otro lado, a la salida del dispositivo se recolectan muestras que se cuantifican posteriormente por medio de un espectrofotómetro UV-vis. También, se desarrollaron una serie de experimentos complementarios que retroalimentan la simulación. El resultado de las operaciones computacionales sumado a la estandarización del método de elaboración de películas seleccionado (vertimiento en placa) permitió aplicar bases científicas y matemáticas al diseño de películas poliméricas siguiendo algunos conceptos de la metodología del Diseño Integrado de Producto y Proceso. Gracias a los experimentos y las herramientas computacionales, se plantearon una serie de casos para el análisis de la influencia de parámetros en el desempeño de la liberación de películas poliméricas. (Texto tomado de la fuente).In the current research, the mass and momentum transport phenomena were studied in a device of millimeter dimensions, manufactured with the purpose of recreating a simplified model of the nasal cavity; this device allows the insertion of a polymeric film and the flow of a simulated blood fluid. Phenomena description was carried out through the approach of a mathematical model that was discretized with a combined centered finite differences and backwards finite differences schemes, incorporating a semi-implicit time advance method. To validate the mathematical model, it was developed an experiment that consists of inserting a rhodamine-loaded polymeric film inside the study device and capturing images in a fluorescence microscope at different times; on the other hand, at the exit of the device, samples are collected and quantified by means of a UV-vis spectrophotometer. Also, a series of complementary experiments were elaborated to feed back the simulation. The results of the computational operations added to the standardization method to produce films (casting) allowed to apply scientific and mathematical bases to polymeric films design following some concepts of the Integrated Product and Process Development methodology. As a result of the experiments and the computational tools, a series of cases were raised for the analysis of the influence of parameters on the release performance of polymeric films.MaestríaMagíster en Ciencias FarmacéuticasFarmacotecnia e ingeniería farmacéuticaxviii, 148 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación530 - Física::532 - Mecánica de fluidos610 - Medicina y salud::615 - Farmacología y terapéuticasistemas de liberación de medicamentosdiseño de fármacosmecánica de fluidosDrug Delivery SystemsDrug DesignFlow MechanicsMIcrofluidosPelícula poliméricaDinámica de fluidos computacionalSistemas de liberación modificadaDiseño integrado de producto y procesoMIcrofluidicsPolymeric filmComputational fluid dynamicsModified release systemIntegrated product and process developmentEstudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película poliméricaStudy of mass transport phenomena at a microscopic scale, for its application in the design of modified release systems of the polymeric film typeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAchberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8, e46188. https://doi.org/10.7554/eLife.46188Adrover, A., & Nobili, M. (2015). Release kinetics from oral thin films: Theory and experiments. Chemical Engineering Research and Design, 98, 188-201. https://doi.org/10.1016/j.cherd.2015.04.016Alexeenko, A. A., Ganguly, A., & Nail, S. L. (2009). Computational analysis of fluid dynamics in pharmaceutical freeze-drying. Journal of Pharmaceutical Sciences, 98(9), 3483-3494. https://doi.org/10.1002/jps.21862AlSalka, Y., Hakki, A., Fleisch, M., & Bahnemann, D. W. (2018). Understanding the degradation pathways of oxalic acid in different photocatalytic systems: Towards simultaneous photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 366, 81-90. https://doi.org/10.1016/j.jphotochem.2018.04.008Anderson, J. D. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.Ascanio, G., Castro, B., & Galindo, E. (2004). Measurement of Power Consumption in Stirred Vessels—A Review. Chemical Engineering Research and Design, 82(9), 1282-1290. https://doi.org/10.1205/cerd.82.9.1282.44164ASTM Standards. (2018). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/d0882-18.htmlBader, R. A., Herzog, K. T., & Kao, W. J. (2009). A study of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing. Polymer Bulletin, 62(3), 381-389. https://doi.org/10.1007/s00289-008-0023-xBain, A., Chandna, P., Butcher, G., & Bryant, J. (2000). Picosecond polarized fluorescence studies of anisotropic fluid media. II. Experimental studies of molecular order and motion in jet aligned rhodamine 6G and resorufin solutions. The Journal of Chemical Physics, 112, 10435-10449. https://doi.org/10.1063/1.481679Banerjee, A., Shuai, Y., Dixit, R., Papautsky, I., & Klotzkin, D. (2010). Concentration dependence of fluorescence signal in a microfluidic fluorescence detector. Journal of Luminescence, 130(6), 1095-1100. https://doi.org/10.1016/j.jlumin.2010.02.002Bassi, P., & Kaur, G. (2017). Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceutical Journal, 25(1), 32-43. https://doi.org/10.1016/j.jsps.2015.06.003Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and Applications of Microfluidics in Biology. Annual Review of Biomedical Engineering, 4(1), 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena (Revised ed). Wiley.Böhling, P., Khinast, J. G., Jajcevic, D., Davies, C., Carmody, A., Doshi, P., Am Ende, M. T., & Sarkar, A. (2019). Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater. Journal of Pharmaceutical Sciences, 108(1), 538-550. https://doi.org/10.1016/j.xphs.2018.10.016Budak, K., Sogut, O., & Aydemir Sezer, U. (2020). A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research, 27(8), 208. https://doi.org/10.1007/s10965-020-02187-1Busatto, C., Pesoa, J., Helbling, I., Luna, J., & Estenoz, D. (2018). Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. International Journal of Pharmaceutics, 536(1), 360-369. https://doi.org/10.1016/j.ijpharm.2017.12.006Chen, X., Partheniadis, I., Nikolakakis, I., & Al-Obaidi, H. (2020). Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers, 12(4), 854. https://doi.org/10.3390/polym12040854Colombo, S., Beck-Broichsitter, M., Bøtker, J. P., Malmsten, M., Rantanen, J., & Bohr, A. (2018). Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 128, 115-131. https://doi.org/10.1016/j.addr.2018.04.004Connors, K. A., Amidon, G. L., & Stella, V. J. (1986). Chemical stability of pharmaceuticals: A handbook for pharmacists (2nd ed). Wiley.Culbertson, C. (2002). Diffusion coefficient measurements in microfluidic devices. Talanta, 56(2), 365-373. https://doi.org/10.1016/S0039-9140(01)00602-6de Guzman, R., Polykratis, I. A., Sondeen, J. L., Darlington, D. N., Cap, A. P., & Dubick, M. A. (2013). Stability of Tranexamic Acid after 12-Week Storage at Temperatures from –20°C to 50°C. Prehospital Emergency Care, 17(3), 394-400. https://doi.org/10.3109/10903127.2013.792891Department of Defense. (1998). Integrated Product and Process Development Handbook.Ding, C., Zhang, M., & Li, G. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymers, 119, 194-201. https://doi.org/10.1016/j.carbpol.2014.11.057Entwistle, C. A., & Rowe, R. C. (2011). Plasticization of cellulose ethers used in the film coating of tablets. Journal of Pharmacy and Pharmacology, 31(1), 269-272. https://doi.org/10.1111/j.2042-7158.1979.tb13499.xFerreira, L. F. M., Thomaz, D. V., Duarte, M. P. F., Lopez, R. F. V., Pedrazzi, V., Freitas, O. de, & Couto, R. O. do. (2021). Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration. Revista de Ciências Farmacêutica Básica e Aplicadas - RCFBA, 42, e707. https://doi.org/10.4322/2179-443X.0707Ferziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics (3rd, rev. ed ed.). Springer.Gendron, P.-O., Avaltroni, F., & Wilkinson, K. J. (2008). Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 18(6), 1093-1101. https://doi.org/10.1007/s10895-008-0357-7Ghadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Khosrowshahi Asl, A. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition, 7(11), 3363-3377. https://doi.org/10.1002/fsn3.1206Guarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications: POLYCAPROLACTONE: SYNTHESIS, PROPERTIES, AND APPLICATIONS. En John Wiley & Sons, Inc. (Ed.), Encyclopedia of Polymer Science and Technology (pp. 1-36). John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst658Hajji, H., Kolsi, L., Hassen, W., Al-Rashed, A. A. A. A., Borjini, M. N., & Aichouni, M. A. (2018). Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Physica E: Low-Dimensional Systems and Nanostructures, 104, 177-186. https://doi.org/10.1016/j.physe.2018.07.034Honary, S., & Orafai, H. (2002). The Effect of Different Plasticizer Molecular Weights and Concentrations on Mechanical and Thermomechanical Properties of Free Films. Drug Development and Industrial Pharmacy, 28(6), 711-715. https://doi.org/10.1081/DDC-120003863Honary, S., Orafai, H., & Shojaei, A. H. (2000). The Influence of Plasticizer Molecular Weight on Spreading Droplet Size of HPMC Aqueous Solutions Using an Indirect Method. Drug Development and Industrial Pharmacy, 26(9), 1019-1024. https://doi.org/10.1081/DDC-100101332Kalyan, S., & Bansal, M. (2012). Recent Trends in the Development of Oral dissolving Film.Kanabekova, P., Kadyrova, A., & Kulsharova, G. (2022). Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines, 13(3), 428. https://doi.org/10.3390/mi13030428Karatay, E. (2013). Microfluidic studies of interfacial transport [PhD, University of Twente]. https://doi.org/10.3990/1.9789036506915Kaya, D., Küçükada, K., & Alemdar, N. (2019). Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films. Carbohydrate Polymers, 215, 189-197. https://doi.org/10.1016/j.carbpol.2019.03.041Kremer, D. M., & Hancock, B. C. (2006). Process Simulation in the Pharmaceutical Industry: A Review of Some Basic Physical Models. Journal of Pharmaceutical Sciences, 95(3), 517-529. https://doi.org/10.1002/jps.20583Krevelen, D. W. van, & Nijenhuis, K. te. (2009). Properties of polymers: Their correlation with chemical structure: their numerical estimation and prediction from additive group contributions (4th, completely rev. ed ed.). Elsevier.Lakshmi, P., Sridharan, A., & Sreekanth, J. (2011). Formulation development of fast releasing oral thin films of levocetrizine dihydrochloride with Eudragit ® Epo and optimization through Taguchi orthogonal experimental design. Asian Journal of Pharmaceutics, 5(2), 84. https://doi.org/10.4103/0973-8398.84548Li, X., & Zhou, Y. (Eds.). (2013). Microfluidic devices for biomedical applications. Woodhead Publishing.Li, Z., & Seker, E. (2017). Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on a Chip, 17(19), 3331-3337. https://doi.org/10.1039/C7LC00851ALiew, K. B., Tan, Y. T. F., & Peh, K.-K. (2014). Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Development and Industrial Pharmacy, 40(1), 110-119. https://doi.org/10.3109/03639045.2012.749889Luo, Y., Hong, Y., Shen, L., Wu, F., & Lin, X. (2021). Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech, 22(1), 34. https://doi.org/10.1208/s12249-020-01909-4Lustig, S. R., & Peppas, N. A. (1988). Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. Journal of Applied Polymer Science, 36(4), 735-747. https://doi.org/10.1002/app.1988.070360401McMillan, D. E., Strigberger, J., & Utterback, N. G. (1987). Rapidly recovered transient flow resistance: A newly discovered property of blood. American Journal of Physiology-Heart and Circulatory Physiology, 253(4), H919-H926. https://doi.org/10.1152/ajpheart.1987.253.4.H919Medical Cañada. (s. f.). EPISTAXIS Y TAPONAMIENTO NASAL. RAUCOCEL. Recuperado 2 de octubre de 2022, de https://blog.medicalcanada.es/2015/07/epistaxis-y-taponamiento-nasal-raucocel/Ministerio de Energía de España. (s. f.). Ministerio para la Transición Ecológica y el Reto Demográfico—Documentos reconocidos. Recuperado 13 de febrero de 2023, de https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspxMinisterio de la Protección Social. (2005). DECRETO NÚMERO 4725 DE 2005.Mukherjee, S., Ghati, A., & Paul, G. (2021). An Ultraviolet–Visible Spectrophotometric Approach to Establish a Method for Determining the Presence of Rhodamine B in Food Articles. ACS Food Science & Technology, 1(9), 1615-1622. https://doi.org/10.1021/acsfoodscitech.1c00172Naik, V., Patil, N., Aparadh, V., & Karadge, B. (2014). METHODOLOGY IN DETERMINATION OF OXALIC ACID IN PLANT TISSUE: A COMPARATIVE APPROACH. Journal Global Trends in Pharmaceutical Sciences, 5, 1662-1672.nanoComposix. (s. f.). Molecular Weight to Size Calculator. NanoComposix. Recuperado 28 de julio de 2023, de https://nanocomposix.com/pages/molecular-weight-to-size-calculatorNasouri, K., Shoushtari, A. M., & Mojtahedi, M. R. M. (2015). Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent: RESEARCH ARTICLE. Advances in Polymer Technology, 34(3), n/a-n/a. https://doi.org/10.1002/adv.21495Niaounakis, M. (2015). Properties. En Biopolymers: Processing and Products (pp. 79-116). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00002-7Ohtsuki, C. (s. f.). How to prepare the simulated body fluid (SBF) and its related solutions. Recuperado 7 de octubre de 2022, de https://www.chembio.nagoya-u.ac.jp/archive/apchem/ketsu5/contents/SBF/Ossa, A., Zapata, V., & Botero-Jaramillo, E. (2015, noviembre 18). METODOLOGÍA PARA RESOLVER POR DIFERENCIAS FINITAS NUEVOS MODELOS CONSTITUTIVOS EN EL PROGRAMA FLAC3D.Panda, B., Parihar, A. S., & Mallick, S. (2014). Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. International Journal of Biological Macromolecules, 67, 295-302. https://doi.org/10.1016/j.ijbiomac.2014.03.033Pedacchia, A., & Adrover, A. (2014). Study of release kinetics and diffusion coefficients in swellable cellulosic thin films by means of a simple spectrophotometric technique. Chemical Engineering Research and Design, 92(11), 2550-2556. https://doi.org/10.1016/j.cherd.2014.03.017Peppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75-81. https://doi.org/10.1016/j.jconrel.2014.06.041Pervin, R., Ghosh, P., & Basavaraj, M. G. (2021). Engineering polymer film porosity for solvent triggered actuation. Soft Matter, 17(10), 2900-2912. https://doi.org/10.1039/D0SM01772HPolyvinyl Alcohol—An overview | ScienceDirect Topics. (s. f.). Recuperado 18 de julio de 2023, de https://www.sciencedirect.com/topics/chemical-engineering/polyvinyl-alcoholPranzo, D., Larizza, P., Filippini, D., & Percoco, G. (2018). Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines, 9(8), 374. https://doi.org/10.3390/mi9080374Qiu, S., Chu, H., Zou, Y., Xiang, C., Zhang, H., Sun, L., & Xu, F. (2016). Thermochemical studies of Rhodamine B and Rhodamine 6G by modulated differential scanning calorimetry and thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 123(2), 1611-1618. https://doi.org/10.1007/s10973-015-5055-5Rao, N. M., & Sankar, D. G. (2016). Development and Validation of Stability-indicating RP-HPLC Method for The Estimation of Pseudoephedrine, Ambroxol and Desloratadine in Bulk and Their Tablet Dosage Forms. Indian Journal of Pharmaceutical Sciences, 78(4). https://doi.org/10.4172/pharmaceutical-sciences.1000144Riahi, S., Hadiloo, F., Milani, S. M. R., Davarkhah, N., Ganjali, M. R., Norouzi, P., & Seyfi, P. (2011). A new technique for spectrophotometric determination of Pseudoephedrine and Guaifenesin in syrup and synthetic mixture. Drug Testing and Analysis, 3(5), 319-324. https://doi.org/10.1002/dta.235Riccio, B. V. F., Silvestre, A. L. P., Meneguin, A. B., Ribeiro, T. de C., Klosowski, A. B., Ferrari, P. C., & Chorilli, M. (2022). Exploiting Polymeric Films as a Multipurpose Drug Delivery System: A Review. AAPS PharmSciTech, 23(7), 269. https://doi.org/10.1208/s12249-022-02414-6Romero, A. I., Villegas, M., Cid, A. G., Parentis, M. L., Gonzo, E. E., & Bermúdez, J. M. (2018). Validation of kinetic modeling of progesterone release from polymeric membranes. Asian Journal of Pharmaceutical Sciences, 13(1), 54-62. https://doi.org/10.1016/j.ajps.2017.08.007Roy, A., Ghosh, A., Datta, S., Das, S., Mohanraj, P., Deb, J., & Bhanoji Rao, M. E. (2009). Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharmaceutical Journal, 17(3), 233-241. https://doi.org/10.1016/j.jsps.2009.08.004Sadia, M., Arafat, B., Ahmed, W., Forbes, R. T., & Alhnan, M. A. (2018). Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. Journal of Controlled Release, 269, 355-363. https://doi.org/10.1016/j.jconrel.2017.11.022Sai Cheong Wan, L., Wan Sia Heng, P., & Fun Wong, L. (1995). Matrix swelling: A simple model describing extent of swelling of HPMC matrices. International Journal of Pharmaceutics, 116(2), 159-168. https://doi.org/10.1016/0378-5173(94)00285-DSakellariou, P., Hassan, A., & Rowe, R. C. (1993). Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. European Polymer Journal, 29(7), 937-943. https://doi.org/10.1016/0014-3057(93)90289-RSeiffert, S., & Thiele, J. (2020). Microfluidics: Theory and practice for beginners. De Gruyter.Setapa, A., Ahmad, N., Mohd Mahali, S., & Mohd Amin, M. C. I. (2020). Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122921Shamsi, M., Mohammadi, A., Manshadi, M. K. D., & Sanati-Nezhad, A. (2019). Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 307, 150-165. https://doi.org/10.1016/j.jconrel.2019.06.014Siepmann, J., Kranz, H., Bodmeier, R., & Peppas, N. A. (1999). HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharmaceutical Research, 16(11), 1748-1756. https://doi.org/10.1023/A:1018914301328Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351-362. https://doi.org/10.1016/j.jconrel.2011.10.006Skolotneva, E., Cretin, M., & Mareev, S. (2021). A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes, 11(6), 431. https://doi.org/10.3390/membranes11060431Skoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of instrumental analysis (Seventh edition). Cengage Learning.Soylak, M., Unsal, Y. E., Yilmaz, E., & Tuzen, M. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 49(8), 1796-1799. https://doi.org/10.1016/j.fct.2011.04.030Stationery Office. (2009). British pharmacopoeia.Stone, R. B., & Wood, K. L. (1999). Development of a Functional Basis for Design. Volume 3: 11th International Conference on Design Theory and Methodology, 261-275. https://doi.org/10.1115/DETC99/DTM-8765Suzuki, T., & Nakagami, H. (1999). Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. European Journal of Pharmaceutics and Biopharmaceutics, 47(3), 225-230. https://doi.org/10.1016/S0939-6411(98)00102-7Tang, S., Zhang, R., Liu, F., & Liu, X. (2015). Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents. European Polymer Journal, 72, 83-88. https://doi.org/10.1016/j.eurpolymj.2015.09.009Tho, I. (2018). Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 10, 222. https://doi.org/10.3390/pharmaceutics10040222Tiwari, S. K., Bhat, S., & Mahato, K. K. (2020). Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65995-xTrache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056Tretinnikov, O. N., & Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy, 79(4), 521-526. https://doi.org/10.1007/s10812-012-9634-yUragami, T., Sumida, I., Miyata, T., Shiraiwa, T., Tamura, H., & Yajima, T. (2011). Pervaporation Characteristics in Removal of Benzene from Water through Polystyrene-Poly (Dimethylsiloxane) IPN Membranes. Materials Sciences and Applications, 02(03), 169-179. https://doi.org/10.4236/msa.2011.23021Usher, J. M., Roy, U., & Parsaei, H. (1998). Integrated Product and Process Development: Methods, Tools, and Technologies. John Wiley & Sons.Vallejo Díaz, B. M., Cortés Rodríguez, C. J., Espinosa, A., & Barbosa B., H. J. (2004). Aplicación de la metodología de diseño axiomático en el desarrollo de productos de liberación modificada. https://repositorio.unal.edu.co/handle/unal/28662Vallejo Díaz, B. M. R., & Perilla Perilla, J. E. (2009). Estudio del fenómeno de adhesión a superficies biológicas de películas obtenidas partir de biopolímeros, para aplicaciones en el área de la salud.van den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., den Hartog, W. F., & van de Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45(6), 651-661. https://doi.org/10.3233/BIR-2008-0513Varani, G. (2017). Buccal and Topical drug delivery [PhD]. University of Rome.Vulović, A., Šušteršič, T., Cvijić, S., Ibrić, S., & Filipović, N. (2018). Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. European Journal of Pharmaceutical Sciences, 113, 171-184. https://doi.org/10.1016/j.ejps.2017.10.022Wise, D. L. (2000). Handbook of Pharmaceutical Controlled Release Technology. CRC Press.Yan, P., Zhou, M., & Sebastian, D. (1999). An integrated product and process development methodology: Concept formulation. Robotics and Computer-Integrated Manufacturing, 15(3), 201-210. https://doi.org/10.1016/S0736-5845(99)00025-3Young, R. E., & Huh, D. D. (2021). Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 173, 461-478. https://doi.org/10.1016/j.addr.2021.03.010Zeinali Kalkhoran, A. H., Vahidi, O., & Naghib, S. M. (2018). A new mathematical approach to predict the actual drug release from hydrogels. European Journal of Pharmaceutical Sciences, 111, 303-310. https://doi.org/10.1016/j.ejps.2017.09.038Zhang, L., Huang, Y.-K., Yue, L.-N., Xu, L., Qian, J.-Y., & He, X.-D. (2022). Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films. Carbohydrate Polymers, 296, 119951. https://doi.org/10.1016/j.carbpol.2022.119951Zhang, L., Yu, L., Liu, H., Wang, Y., Simon, G. P., Ji, Z., & Qian, J. (2017). Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocolloids, 70, 251-259. https://doi.org/10.1016/j.foodhyd.2017.03.019Zhang, S., & Byrne, G. (2021). Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. Journal of Drug Delivery Science and Technology, 61, 102136. https://doi.org/10.1016/j.jddst.2020.102136Zhu, L., Liu, Q., Yang, B., Ju, H., & Lei, J. (2018). Pixel Counting of Fluorescence Spots Triggered by DNA Walkers for Ultrasensitive Quantification of Nucleic Acid. Analytical Chemistry, 90(11), 6357-6361. https://doi.org/10.1021/acs.analchem.8b01146Facultad de Ciencias - Universidad Nacional de ColombiaBibliotecariosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85403/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1010237370.2023.pdf1010237370.2023.pdfTesis de Maestría en Ciencias Farmacéuticasapplication/pdf2884076https://repositorio.unal.edu.co/bitstream/unal/85403/2/1010237370.2023.pdf329142437a801a338d35149a952e39c5MD52THUMBNAIL1010237370.2023.pdf.jpg1010237370.2023.pdf.jpgGenerated Thumbnailimage/jpeg4888https://repositorio.unal.edu.co/bitstream/unal/85403/3/1010237370.2023.pdf.jpge0b72014b36c78c67f6782eefc7d8877MD53unal/85403oai:repositorio.unal.edu.co:unal/854032024-08-21 23:13:35.755Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=